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Abstract: In this study we examine the performance of the Markowitz portfolio optimization
model using stock time series data of various stock exchanges and investment period inter-
vals. Several methods are used to estimate expected returns, then different “noise” filtering
techniques are applied on the correlation matrix containing the pairwise correlations of the
time series. The performance of the methods is compared using the estimated and realized
returns and risks, respectively. The results show that the estimated risk is closer to the real-
ized risk using filtering methods in general. Bootstrap analysis shows that ratio between the
realized return and the estimated risk (Sharpe ratio) is also improved by filtering. In terms
of the expected return estimation results show that the James-Stein estimator improves the
reliability of the portfolio, which means that the realized risk is closer to the estimated risk in
this case.

Keywords: Portfolio optimization; Markowitz model; Random matrix theory; Hierarchical
clustering

1 Introduction

The portfolio optimization is one of the fundamental problems in asset management
that aims to reduce the risk of an investment by diversifying it into assets expected
to fluctuate independently [7]. In his seminal work [17], Markowitz formulated the
problem as a quadratic programming task: given the expected return of the portfolio,
the risk, a quadratic function that is measured via the covariances of the asset time
series, has to be minimized. Recently, the investigation of the correlation coefficient
matrix, that is a normalization of the covariance matrix appears in the objective
function of the model, has received a big amount of attention, see, without being
exhaustive, e.g. [4, 6, 12, 13, 22, 24]. The question of quantifying the degree of
statistical uncertainty, called “noise” especially in the statistical physics community,
present in the correlation matrix and filter the part of information which is robust
against this uncertainty has been addressed and tested [4, 10, 12, 13, 14]. Filtered
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correlation matrices have been successfully used in portfolio optimization for risk
reduction [13, 22, 24]. However, most of these studies assumed that the investor has
perfect knowledge on the future returns at the time of optimization.

In this study we investigate and test the portfolio optimization problem by using
several filtering procedures applied to the correlation matrix given by the pairwise
asset correlations. The performance of the procedures is simply measured by com-
paring the predicted and realized risk and return they provide, respectively. For
more details on performance analysis of portfolio selection, see [26] for example.
In this work the we assume that future returns are not known at the time of the in-
vestment. Moreover, besides the maximum likelihood estimator (i.e. the average of
daily returns) we try other methods to calculate the expected returns.

The structure of this paper is the following. In Section 2 we describe the Markowitz
portfolio optimization problem together with some possible estimations of the ex-
pected returns (Sec. 2.1) and several filtering procedures that can be performed on
the correlation matrices (Sec. 2.2). In Section 3 we present our results with the de-
tailed description of data sets, the experimental setup and evaluation metrics we used
(Sec. 3.1, Sec. 3.2 and Sec. 3.3). Finally we draw some conclusions and indicate
potential future work.

2 Markowitz portfolio optimization model

Given n risky assets, a portfolio composition is determined by the weights pi (i =
1, . . . ,n), such that ∑

n
i pi = 1, indicating the fraction of wealth invested in asset i.

The expected return and the variance of the portfolio p are calculated as

rp = prT =
n

∑
i=1

piri (1)

and

σ
2
p = pΣpT =

n

∑
i=1

n

∑
j=1

σi j pi p j, (2)

respectively, where ri is the expected return of asset i, σi j is the covariance between
asset i and j and Σ is the covariance matrix. Vectors are considered as row vectors
in this paper. We should point out that only the proportions p1, . . . , pn are needed to
determine the performance of the portfolio. It means that the values rp and σ2

p are
the same for any investment volume if the weights are the same.

In the classical Markowitz model [17] the risk is measured by the variance providing
a quadratic optimization problem consists in finding vector p, such that ∑

n
i=1 pi = 1

which minimizes σ2
p for a given “minimal expected return” value of rp. Here, we

assume that short selling is allowed and therefore pi can be negative. The solution
of this problem, found by Markowitz, is

p∗ = λΣ
−11T + γΣ

−1rT , (3)
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where 1 = (1, . . . ,1) while the other parameters are

λ = (C− rpB)/D and γ = (rpA−B)/D

using the notations

A = 1Σ
−11T ,B = 1Σ

−1rT ,C = rΣ
−1rT and D = AC−B2.

However, Eq. 3 is rarely used to solve the Markowitz portfolio optimization problem
due to numerical stability problems with matrix inversion [5]. Instead, we used the
Lagrange multiplier method for optimization (see Sec. 3.3). Next we will describe
three possible methods to calculate the expected stock returns in a given period.

2.1 Estimators for the expected returns

Considering the price time series of n assets and denoting the closure price of asset
i in time t (t = 0,1, . . . ,T ) by Pi(t), the daily logarithmic return of i is defined as

ri(t +1) = log
Pi(t +1)

Pi(t)
= logPi(t +1)− logPi(t). (4)

In case of stationary independent normal returns (as random variables) the maxi-
mum likelihood estimator is the sample mean of the past observations of ri as it was
defined by

r̂ML
i =

1
T

T

∑
t=1

ri(t). (5)

Hence, for the portfolio we define

r̂ML = (r̂ML
1 , . . . , r̂ML

n ), (6)

The maximum likelihood return estimation can be highly inefficient since assets
with high past returns are likely to contain more positive estimation errors than
others. The positive part trimming could further reduce the risk and the James-Stein
estimator [11] provides a constructive shrinkage estimator in order to do it. The
James-Stein estimation for the expected return for asset i is

r̂JS = (1−w)r̂ML +wr01, (7)

where

r0 =
1Σ−1r̂T

ML

1Σ−11T ,w =
λ

λ +T
and λ =

(n+2)(T −1)
(r̂ML− r01)Σ−1(r̂ML− r01)T .

In this calculation, each sample mean is shrunk toward the average return of the
minimum variance portfolio r0.
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For small sample size, usually below 50, it was observed that there is no evidence
that common asset expected returns are different. If all expected returns are assumed
to be equal, the minimum-variance portfolio is efficient and

r̂MV = r01. (8)

Finally, the covariance between asset i and j is estimated by the formula

σ̂
2
i, j =

1
T −1

T

∑
t=1

(ri(t)− r̂i)(r j(t)− r̂ j), (9)

where r̂i is denotes the estimated value of the with respect the estimator used.

2.2 Filtering the statistical uncertainty

Random matrix theory

The correlation coefficient between asset i and j is defined as ρi j = σi j/
√

σiσ j,
where σi = σii is the standard deviation (often called average volatility) of asset i. A
simple random matrix is a matrix whose elements are random numbers from a given
distribution [19]. In context of asset portfolios random matrix theory (RMT) can
be useful to investigate the effect of statistical uncertainty in the estimation of the
correlation matrix [24]. Given the time series of length T of the returns of n assets
and assuming that the returns are independent Gaussian random variables with zero
mean and unit variance (σ2=1), in the limit n→ ∞, T → ∞ such that Q = T/n is
fixed, the distribution Prm(λ ) of the eigenvalues of a random correlation matrix
(Crm) is given by

Prm(λ ) =
Q

2πσ2

√
(λ −λmin)(λmax−λ )

λ
, (10)

where λmin and λmax are the minimum and maximum eigenvalues, respectively [23],
given in the form

λmax,min = σ
2(1+

1
Q
±2

√
1
Q
). (11)

Previous studies have pointed out that the largest eigenvalue of correlation matrices
from returns of financial assets is completely inconsistent with Eq. 10 and refers
the common behavior of the stocks in the portfolio, i.e. the behavior of the market
itself. [12, 20]. Since Eq. 10 is strictly valid only for n→∞, T →∞, we constructed
random matrices for the certain n and T values of the data sets we used and we
compared the largest eigenvalues and the spectrum C and Crm. Since Trace(C) = n
the variance of the part not explained by the largest eigenvalue can be quantified
as σ2 = 1− λlargest/n. We can recalculate λmin and λmax in Eq. 11 and construct
a filtered diagonal matrix get by setting to zero all eigenvalues of C smaller than
λmax and transform it to the basis of C with setting the diagonal elements to one.
A possible RMT approach for portfolio optimization, following [22], is to use Σrm
(that can be easily calculated form Crm) instead of Σ in the Markowitz model.
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Figure 1
Indexed hierarchical tree - obtained by the single linkage clustering algorithm - and the associated MST
of the correlation matrix of 40 assets of the Budapest Stock Exchange

Hierarchical clustering

Correlation based clustering can be considered as a filtering procedure transform-
ing the correlation matrix such that a smaller number of distinct elements retains.
The correlation matrix C has n(n− 1)/2 ∼ n2 element therefore it contains a large
amount of information even for a small number of assets considered in the portfo-
lio. Mantegna and others showed that the single linkage hierarchical clustering algo-
rithm (closely related to minimal spanning trees (MST) of graphs) provide meaning-
ful economic information using only n−1 elements of the correlation matrix [15].
The effectiveness of clustering methods have been shown in many studies, e.g. in
[2, 9, 18, 25]. To construct the MST, the correlation matrix C is converted into a
distance matrix D, for instance following [15, 16], using di j =

√
2(1−ρi j) ultra-

metric distance. Ultrametric distances are such distances that satisfy the inequality
di j ≤ max{dik,dk j}, which is a stronger assumption that the standard triangular in-
equality. The distance matrix D can be seen as representing a fully connected graph
of the assets with edge weights di j representing a similarity of the time series of
assets i and j. For this graph (i.e. a distance matrix) one can use the Kruskal algo-
rithm in order to obtain the MST of n− 1 elements and then construct the filtered
correlation matrix Csl using just the n− 1 correlation coefficients converted back
from the n−1 distances in the MST. Figure 1 shows an illustrative example for hi-
erarchical clustering and the associated spanning tree obtained using the Budapest
Stock Exchange data set. For portfolio optimization, we used Σsl instead of Σ in the
Markowitz model.

In [24] the authors proposed a new portfolio optimization method using another
widespread hierarchical clustering procedure, namely the average linkage algorithm.
While the single linkage clustering procedure basically follows the greedy Kruskal
MST method, the average linkage algorithm, in an iteration step, defines the dis-
tance between an element and a cluster as the average distance between the element
and each element in the cluster. For detailed description, see e.g. [1]. For portfo-
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lio optimization, we can use Σal constructed using average linkage clustering in the
Markowitz model.

3 Results

3.1 Data description

To compare the performance of the methods we analyzed two different data sets.
The first data set consists of n = 40 stocks traded in the Budapest Stock Exchange
(BSE) in the period 1995-2016, using 5145 records of daily returns per stock. The
second data set contains the stock time series of n = 48 companies of the Informa-
tion Technology sector (Hardware + Software) that are available on Yahoo Finance
(YF) (https://finance.yahoo.com/) in almost the same period as the BSE data with
5395 records of daily returns of each stock.

We consider t = t0 as the time when the optimization is performed. Since the co-
variance matrix has ∼ n2 distinct elements while the number of records used in the
estimation is nT , the length of the time series need to be T >> n to get small errors
on the covariance. On the other hand, for large T the non-stationarity of the time
series more likely appears. The problem is known as the “curse of dimensional-
ity” [27]. To handle this, we computed the covariance matrix and expected returns
using the [−T,0] interval with T = 50 ≈ n, T = 100 > n and T = 500 >> n days
preceding t = 0. The calculation of the expected returns, the covariance matrix and
filtered covariance matrices was performed using the time series data of this inter-
val. Then, the realized returns and realized risk (for each method) were calculated
using the data on the [0,T ] interval. To quantify and compare the different methods
considered, we used the measures described in the next section.

We should also mention here, that solving the Markowitz portfolio selection method
as a quadratic programming problem is particularly simple when Σ (in. Eq. 2) is pos-
itive semi-definite and the constraints are equalities (as in Eq. 1). It is not difficult to
see that the positive semi-definiteness is true for the original covariance matrix and
also for the filtered matrix obtained by the RMT method. In [1] it was proved that
the filtered correlation matrix obtained by the single linkage clustering procedure is
always positive definite if all the elements of the obtained filtered correlation matrix
are positive. This is usually the case for correlations of stock time series and it has
been observed for all the matrices we have used. Moreover, it was proved in the
same paper that the filtered correlation matrix obtained by using the average linkage
clustering method is also positive definite under the same conditions as in the case
of the single linkage procedure.

3.2 Performance evaluation

To measure the performance of a portfolio selected by the different models, we use
the following measures to investigate how the estimated and the realized quantities
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relate to each other. For portfolio p, the Sharpe ratio measures the excess return
(realized) per unit of risk (estimated):

Sp =
rp− r f

σ̂2
p

(12)

The portfolio risk, due to the estimation of the correlation matrix is calculated as

Rp =
|σ̂2

p −σ2
p |

σ̂2
p

(13)

where σ̂2
p is the predicted risk, while σ2

p is the realized risk of the portfolio.

3.3 Simulation setup and results

We implemented our simulation environment in R [21]. We are given a data set of
stock time series and the input parameters the timeInverval T , vector of
startingTimes t0 = (t1

0 , . . . , t
k
0) and rp = (r1

p, . . . ,r
`
p) vector of expectedReturns

(equal steps between the average return and the maximal return over all asset by de-
fault). The simulation procedure is done via the following steps:

1. For each starting time t j
0 the asset.solve.Complete.SelectTimes() sub-

routine checks whether the portfolio optimization can be done for that starting
time on interval [−T, t j

0]

• if yes, it calculates the optimal portfolio using asset.solve.Comp-

lete.R()

• if not1, it goes to the next starting time t j+1
0

2. The subroutine stores portfolio weights and the data required for performance
evaluation

The subroutine asset.solve.Complete.R() works as follows:

1. Determines the expected returns using maximum likelihood, James-Stein and
minimum variance estimations

2. Determines the covariance matrix of stock time series

3. Calculates the filtered covariance matrices using the RMT, the single linkage
and average linkage procedures

4. Portfolio optimization is performed for each return estimation

• using the Lagrange multipliers method of the ’Rsolnp’ package [8] cal-
culates the optimal weights for each covariance matrix

• calculates the portfolio risk according to the optimal weights

1 Usually, data with lots of missing (NA) values results in a singular covariance matrix
and optimization cannot be performed
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• determines the realized risk and Sharpe-ratio

In order to improve the running times the ‘doParallel’ R package [3] was used (here
we do not describe the details of parallelization).2

To check the robustness of the methods, a standard bootstrap experiment was per-
formed. We considered 50 starting times randomly and solved the optimization
problem using the time series on the intervals [− T, t j

0] (T = 50,100,500, j =
1, . . . ,50). For each portfolio, the predicted risk was calculated according to Eq. 2
for fixed expected returns from the average ∑

n
i=1 ri/n to the maximum expected re-

turn max{ri : i = 1, . . . ,n} with equal spans. The Lagrange multiplier method, that
is available in ’Rsolnp’ R package, was used for the optimization. In each case, the
portfolios with realized returns in the top and bottom 10% were dropped. The re-
alized risk using the determined stock weights at t j

0 , the realized covariance matrix
and realized returns were calculated on [t j

0,T ].

Fig. 2 and Fig. 3 show the ratio of the ratio of the realized risk σ2
p (continuous

line) and the predicted risk σ̂2
p (dashed line) as the function of the expected return

rp obtained by the different procedures for the BSE data set and Yahoo data set,
respectively. For each T , the time of the investment t j

0 ( j = 1, . . . ,50) and the set of
stocks were the same.

For the BSE data set, the classic method and the RMT method provide similar real-
ized returns that are always higher using hierarchical clustering (single and average
linkage). On the other hand, the risk ratio Rp (i.e. the reliability of the portfo-
lio) is also significantly decreased (see Fig. 2, and Tab. 1 “Risk Ratio” column),
but the deviations of the realized returns were increased. The Sharpe ratio of the
hierarchical clustering methods were smaller than using the other methods, since
the estimated risk was often higher than the risk obtained when using the classic
and the RMT methods. It can be observed that each method provided better ex-
pected returns and smaller risk ratio (i.e. better reliability) for the smaller values
of T (T = 50,100, see Tab. 1). The results show that the James-Stein return esti-
mation, although it increases the deviation of the realized returns, provides smaller
risk ratios and improvements on the Sharpe ratio. The Sharpe-ratio of the minimum
variance portfolio (see Tab. 1 last four column) was the highest due to very small
expected risk the method estimated, while its reliability is significantly smaller than
using the other return estimators.

For the Yahoo data set similar is true for the realized returns as in the case of BSE
data set. Here, the smallest risk ratio was obtained when T = 100 days (Fig. 3
middle left and right). It can also be observed, that usage the James-Stein return
estimator provided better results (realized returns, Sharpe ratio), while the usage
minimum variance estimator decreased the risk ratio in some cases.

2 We used ‘doParallel’ and its dependencies to create a parallel back end for the loop
construction provided by the ‘forEach’ package.
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Conclusions
In this paper, we investigated the Markowitz portfolio selection problem using fil-
tered correlation matrices obtained using different filtering procedures, namely a
random matrix theory approach and hierarchical clustering approaches. Further-
more, we used several estimators to determine the expected return of a portfolio.
A large set of experiments have shown that using filtered covariance matrices the
classic Markowitz solution can be outperformed in terms of realized returns and re-
liability, meaning that the realized risk and the estimated risk are closer to each other
in case of filtering. Our simulations show that the different filtering procedures pro-
vide different portfolio optimization results: the most useful method can be different
depending on the risk level of the portfolio, the investment period size and reliabilty
of the risk and return estimation. We think that other filtering procedures combined
with different return estimators could also provide interesting or better results for
different parameters (e.g. expected returns, portfolio size, investment period length)
of the optimization problem.
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Figure 2
The ratio of the realized risk σ2

p and the predicted risk σ̂2
p as the function of expected portfolio return

(continuous line) and realized return (dashed line) for the different procedures as T = 50,100,500
(top-down) using the maximum likelihood estimator (left panels) and the James-Stein estimator (right

panel). The data set contains 40 BSE stocks in the period 1995-2016.
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Figure 3
The ratio of the realized risk σ2

p and the predicted risk σ̂2
p as the function of expected portfolio return

(continuous line) and realized return (dashed line) for the different procedures as T = 50,100,500
(top-down) using the maximum likelihood estimator (left panels) and the James-Stein estimator (right
panel). The data set contains 48 IT sector companies with available historical time series data in the

Yahoo finance page in the period 1995-2016
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