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Abstract: Neurological diseases pose a significant public health challenge, leading to 

disability and mortality globally. Current diagnostics for neuroinflammatory diseases are 

complex and lack efficacy, necessitating invasive procedures. Calcium signaling dynamics 

in astrocytes and microglia play pivotal roles in central nervous system (CNS) function and 

dysfunction. This study curates time-series data on calcium transients in astrocytes and 

microglia, employing live-cell imaging techniques and preprocessing methodologies. Using 

k-means clustering, we analyze the data, revealing optimal clustering solutions between 2 to 

6 clusters. This research offers valuable insights for understanding CNS disorders and 

highlights the potential of clustering techniques in neurological research. 
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1 Introduction 

Neurological diseases are a major public health challenge worldwide, affecting 

millions of people and causing significant disability and death. According to the 

Global Burden of Disease (GBD) 2016 study, neurological disorders were the 

leading cause of disability-adjusted life years (DALYs) globally and the second 

cause of death after cardiovascular diseases [1]. 

Currently, the diagnosis of neuroinflammatory diseases is inadequate and generally 

entails complicated and costly procedures to rule out other conditions. These 

diagnostic methods are frequently invasive for the patient. Diagnosis typically 

occurs only after the disease's symptoms have become apparent. The diagnostic 

protocol for neuroinflammatory diseases is a long-term and demanding process that 

requires a multidisciplinary approach and the cooperation of various specialists. 

Currently, there is no single test that can confirm or rule out any of these diseases 

[2]. 

When astrocytes, a type of non-neuronal cells, fail to function normally, there is a 

disruption in the neuron-supportive activities they typically perform, leading to 

neuron degeneration. It is understood that signaling by intracellular calcium (Ca2+) 

plays multiple distinct roles in a wide range of physiological and pathophysiological 

processes within the nervous system [3-5]. In astrocytes, the concentration of 

intracellular calcium increases in response to a range of stimuli, a process enabled 

by the combined activity of various molecular pathways. Moreover, in the 

investigation of potential mechanisms underlying a specific neurodegenerative 

disease (with a neuroinflammatory component), researchers observed an increase 

in the transient levels of intracellular Ca2+ within cultured rat cortical astrocytes. 

This increase was a response to certain treatments, as highlighted in a previous study 

by our colleagues [6]. We employed a comparable set of raw data with the aim of 

conducting a more thorough analysis and identifying a method to cluster these data 

based on their temporal patterns. 

The method for monitoring intracellular Ca2+ signaling relies solely on using 

indicators that emit fluorescence when they bind to the ion. These indicators are 

either chemical molecules, typically structured based on Ca2+ buffers, or proteins 

introduced into cells either through genetic expression or vectors [7]. The large 

somatic region of astrocytes is easily identifiable under a fluorescent microscope, 

designated as the so-called Region of Interest (ROI), simplifying the process of 

tracking Ca2+ fluctuations originating from the astrocytic soma [8]. In the observed 

field of view, every individual cell has the potential to react to a particular chemical 

treatment or set of successive treatments. The reaction of each cell is captured in the 

recording, creating a series of data points over time – a time-series, which represents 

each cell’s response. 

Complexity of the recorded time-series call for the application of Artificial 

Intelligence (AI) methods. Astrocytes have been shown to respond very differently, 
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even to the same stimulus - only once immediately after stimulation, or exhibit Ca2+ 

oscillations with generally constant frequency and constant amplitude, or 

oscillations with decreasing frequency or decreasing amplitude [9]. A major 

challenge in studying astrocyte Ca2+ behavior is the spatial and temporal buildup 

of Ca2+ fluctuations. This accumulation manifests as intracellular and intercellular 

Ca2+ waves occurring over time frames that range from a few hundred milliseconds 

to several seconds. These waves are often observed, particularly in cell cultures, as 

noted in previous studies [10, 11]. 

The curation of time-series data involves a systematic process encompassing the 

collection, organization, and analysis of temporal changes in Ca2+ concentrations 

within these cell cultures. Following data acquisition, meticulous preprocessing 

steps, including background subtraction, noise reduction, and normalization, are 

employed to accurately represent calcium fluctuations over time. Subsequently, 

data analysis tools and algorithms extract critical information from the time-series, 

encompassing amplitude, frequency, duration, and spatial distribution of calcium 

transients. 

Therefore, in our comprehensive review article [12], we have identified a spectrum 

of methodologies currently in use for time series analysis within the Machine 

Learning paradigm and identified a clear gap between the application of state-of-

the-art AI methods in the classification and clustering of Ca2+ signals and the 

application in the classification and clustering of other biomedical signals. In this 

article, we examine the possibility of applying unsupervised learning methods for 

k-means clustering of Ca2+ signals. The effectiveness of various time-series 

analysis methods, such as clustering, largely depends on choosing an appropriate 

distance measure. This selection is often deemed more crucial than the choice of the 

clustering algorithm itself in time-series analysis. Ideally, clustering based on shape 

should group patterns that are similar, regardless of differences in amplitude and 

phase. However, since “shape” is a vague concept, a variety of distance measures 

have been developed to accommodate different types of data distortions. Hence, 

employing appropriate clustering methods assists in comprehending which features 

of the data are most used by the ML algorithms to categorize time-series. 

In this article we examine the possibility of applying unsupervised learning methods 

for k-means clustering of Ca2 signals. 

2 Time-Series Curation 

Primary cultures of astrocytes and microglia are pivotal tools in elucidating the 

pathophysiology of Amyotrophic Lateral Sclerosis (ALS), a progressive 

neurodegenerative disorder primarily impacting motor neurons. These primary cell 

cultures provide valuable insights into the intricate interplay between different cell 



I. Lorencin et al. K-means Clustering of Intracellular Calcium Signal Transients 

‒ 76 ‒ 

types within the central nervous system (CNS), shedding light on the underlying 

mechanisms associated with ALS. 

Astrocytes, a type of glial cell, and microglia, the immune cells of the CNS, are 

essential for maintaining CNS homeostasis and responding to pathological stimuli. 

In ALS, alterations in these cell types contribute significantly to disease 

progression. Primary cultures derived from brain tissue offer an in vitro platform to 

isolate and propagate pure populations of astrocytes and microglia. 

These primary cell cultures serve as critical models to study the roles of astrocytes 

and microglia in ALS pathogenesis. Researchers use these cultures to explore the 

cellular responses of astrocytes and microglia to ALS-related pathological factors, 

such as inflammation, oxidative stress, and excitotoxicity. Understanding how these 

cells release inflammatory mediators and neurotoxic factors provides crucial 

insights into their contributions to neuronal degeneration in ALS. 

Furthermore, primary cultures enable investigations into the intricate interactions 

between astrocytes, microglia, and neurons. By deciphering the communication 

pathways and molecular signaling involved in these interactions, researchers can 

elucidate how astrocytes and microglia contribute to neuroinflammation, glial 

reactivity, and neuronal loss observed in ALS. 

Additionally, these cell cultures are instrumental in drug screening and therapeutic 

development. Researchers use these models to assess potential therapeutic agents 

targeting astrocyte and microglial dysfunctions associated with ALS. Identifying 

compounds that modulate inflammatory responses or enhance neuroprotection 

holds promise for developing interventions that could potentially slow the 

progression of ALS or alleviate its symptoms. 

Moreover, primary cultures provide a platform to explore the impact of genetic and 

environmental factors associated with ALS. Incorporating cells from ALS models 

or patient-derived samples allows researchers to investigate specific genetic 

mutations or environmental triggers, shedding light on their effects on astrocyte and 

microglial behavior and their contributions to ALS pathology. 

Calcium signaling in primary cultures of astrocytes and microglia serves as a pivotal 

aspect in understanding the intricate dynamics of cellular responses within the 

central nervous system (CNS). These cultures, derived from astrocytes and 

microglia offer an invaluable platform for studying the dynamics of calcium 

signaling, which play crucial roles in intercellular communication, homeostasis 

maintenance, and responses to pathological stimuli [12]. 
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3 Data Set Description 

The curation of time-series data involves a systematic process encompassing the 

collection, organization, and analysis of temporal changes in calcium ion (Ca2) 

concentrations within these cell cultures. Initial acquisition of time-series data 

involves the use of live-cell imaging techniques like fluorescence microscopy, often 

using calcium-sensitive fluorescent dyes or genetically encoded calcium indicators. 

These techniques enable real-time visualization and recording of intracellular 

calcium dynamics in response to specific experimental conditions or stimuli. 

Following data acquisition, meticulous preprocessing steps, including background 

subtraction, noise reduction, and normalization, are employed to accurately 

represent calcium fluctuations over time. Subsequently, data analysis tools and 

algorithms extract critical information from the time-series, encompassing 

amplitude, frequency, duration, and spatial distribution of calcium transients. 

In primary astrocyte cultures, calcium signaling often manifests as propagating 

waves or localized elevations in response to neurotransmitters or neuronal activity. 

Curating time-series data from astrocytic cultures enables the characterization of 

calcium wave propagation patterns and their influence on neuronal function. 

Similarly, calcium signaling in microglial cultures plays a crucial role in immune 

surveillance and responses to neuronal injury or inflammation. Curating time-series 

data from microglia allows the exploration of calcium dynamics associated with 

various cellular activities, such as microglial activation, migration, and cytokine 

release, in response to different stimuli. The curated time-series data serves as a 

fundamental resource for quantitative analysis, statistical modeling, and machine-

learning approaches. It aids in deciphering spatiotemporal properties and functional 

implications of calcium signaling events in astrocytes and microglia. Furthermore, 

this curated data provides insights into cellular interactions within the CNS, 

contributing to a comprehensive understanding of CNS function and dysfunction in 

health and disease conditions, including neuroinflammatory disorders and 

neurodegenerative diseases like Alzheimer's 

The dataset was collected from patients across diverse regions of interest, ensuring 

representation across different biological contexts. Each time series was 

meticulously recorded to capture the intensity of calcium transients over time.  

To facilitate comparative analyses and ensure data integrity, normalization 

procedures were applied to standardize the datasets, minimizing variations arising 

from experimental conditions and individual differences. The dataset comprises 670 

time series, each representing the temporal evolution of calcium transients within 

specific biological samples. Examples of curated time-series are given in Figures 1, 

2, 3, and 4. 
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Figure 1 

Plot of Time series marked as ROI 1.1 

Figure 2 

Plot of Time series marked as ROI 2.14 
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Figure 3 

Plot of Time series marked as ROI 6.8 

Figure 4 

Plot of Time series marked as ROI 8.2 

When examining various time series, it becomes evident that they exhibit diverse 

patterns and behaviors. Each time series may demonstrate unique trends, 

fluctuations, or periodicities, reflecting the underlying dynamics and characteristics 

of the phenomena being observed. 
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4 K-means Clustering 

Clustering stands as a foundational technique within machine learning and data 

mining, serving the purpose of grouping data points based on similarities. Among 

the clustering algorithms, K-means stands out due to its popularity and efficiency. 

The primary objective of the K-means algorithm involves partitioning a dataset into 

k clusters, assigning each data point to the nearest cluster centroid [13]. Initially, k 

centroids representing cluster centers are placed randomly in the feature space. 

These centroids can be chosen randomly from the dataset or using techniques like 

k-means++ for improved convergence and result quality. The subsequent step 

involves assigning each data point to the nearest centroid, typically calculated 

through Euclidean distance. Based on these assignments, data points are clustered 

accordingly. Iteratively, centroids are updated by computing the mean of the data 

points within each cluster, recalculating their positions [14]. This assignment and 

update process continues until convergence, where either there is no significant 

change in centroids' positions or the maximum iteration limit is reached.  

An illustration of the K-means clustering procedure is given in Figure 6.

 

Figure 5 

Illustration of k-means clustering procedure 
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5 K-Means Clustering for Time-Series Data 

Clustering time-series data involves categorizing sequential observations recorded 

over successive time intervals into meaningful groups or clusters. K-means 

clustering, primarily designed for static data has been adapted to address the unique 

characteristics of time-series data [15]. 

5.1 Characteristics of Time-Series Data 

Observations in time-series data are not independent; they exhibit dependencies 

across time points. This characteristic requires clustering methods capable of 

considering these temporal relationships while forming clusters. Furthermore, time-

series sequences often have varying lengths, which traditional k-means struggles to 

handle. Adapting clustering techniques or employing distance measures 

accommodating variable lengths becomes essential. Time-series data may contain 

irregular patterns or noise, influencing the clustering process. Ensuring robustness 

in clustering algorithms to handle such irregularities is crucial. 

5.2 Approaches in Clustering Time-Series Data 

To apply k-means clustering to time-series data, appropriate representations and 

adaptations are necessary [16]. 

Feature-based representations involve extracting pertinent features from time-series 

data, such as statistical measures like mean, variance, skewness, and kurtosis, 

spectral features including Fourier coefficients or wavelet energies, or domain-

specific attributes like trend slopes or periodicity indicators. These features are used 

to transform the raw time-series data into feature vectors suitable for clustering 

analysis, enabling the representation of complex temporal patterns in a format 

conducive to clustering algorithms. 

Symbolic Aggregate Approximation (SAX) is a technique used to represent time-

series data as sequences of symbols based on predefined breakpoints. By employing 

SAX, time-series patterns can be effectively represented while reducing the 

dimensionality of the data. This reduction in dimensionality aids in mitigating the 

curse of dimensionality and computational complexity often encountered in 

clustering large-scale time-series datasets, thus facilitating more efficient and 

scalable clustering analysis. 

Shapelets, a concept derived from time-series data mining, are discriminative 

subsequences identified within time-series data that capture significant temporal 

characteristics. These shapelets serve as representatives for clustering purposes, 

enabling the identification of meaningful patterns and clusters within complex time-

series datasets. By leveraging shapelets, clustering algorithms can effectively 

capture the intrinsic structure and variability present in time-series data, leading to 

more accurate and interpretable clustering results. 
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6 Used Metrics 

Assessing the quality and performance of clustering algorithms is essential to 

determine their effectiveness in partitioning data into meaningful clusters. Various 

evaluation metrics are employed to measure the goodness of clustering results. 

6.1 Silhouette Score 

A widely used metric for clustering is the silhouette score, which quantifies the 

cohesion and separation of clusters [17]. The Silhouette Score is a metric used to 

calculate the goodness of a clustering technique on a dataset. It quantifies how well 

each data point fits into its assigned cluster, based on both the distance from the data 

point to other points in the same cluster (cohesion) and the distance from the data 

point to points in other clusters (separation). The Silhouette Score ranges from -1 to 

1, where a high value indicates that the data point is well matched to its cluster and 

poorly matched to neighboring clusters. It is calculated for each data point i as [18]: 

                     𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 =
𝑏(𝑖)−𝑎(𝑖)

(𝑎(𝑖),𝑏(𝑖)) 
                      (1) 

where: 

●    a(i) represents the average distance of point i to other data points within 

the same cluster, and 

●     b(i) is the smallest average distance of point i to points in any other 

cluster, minimizing the inter-cluster distance for point i. 

The silhouette score is a measure used to evaluate the quality of clustering results 

by quantifying how similar an object is to its cluster compared to other clusters.  

It ranges from -1 to 1, where a score close to +1 indicates good clustering, around 

0 suggests boundary cases, and close to -1 indicates possible misclassification.  

A high positive score suggests strong and compact cluster structures, while low 

negative scores indicate potential misclassifications or poor clustering performance. 

Interpreting silhouette scores should consider specific dataset characteristics, 

distance metrics, and clustering algorithms employed. 

6.2 Davies-Bouldin Index 

The Davies-Bouldin Index (DB) is a measure of cluster separation and cohesion.  

It evaluates the quality of clustering by considering the average similarity between 

each cluster and its most similar cluster, normalized by the average dissimilarity 

within clusters [19]. Lower values of the DB indicate better clustering, with each 

cluster being well-separated from others and internally cohesive. It can be defined 

as: 

                        𝐷𝐵  =  
1

𝑛
∑𝑛

𝑖=1 (
𝜎𝑖+ 𝜎𝑗

𝑑(𝑐𝑖,𝑐𝑗)
) ,         (2)                   
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where: 

● 𝑛 is the total number of clusters, 

● 𝜎𝑖 is the average distance between each point in cluster i and the centroid 𝑐𝑖 

of that cluster, and 

● 𝑑(𝑐𝑖 , 𝑐𝑗) is the distance between centroids 𝑐𝑖 and 𝑐𝑗, typically calculated 

using Euclidean distance. 

The Davies-Bouldin Index is a metric used to evaluate clustering results by 

measuring the average similarity between each cluster and its most similar cluster, 

relative to the compactness of each cluster. A lower Davies-Bouldin Index indicates 

better clustering performance, suggesting well-separated clusters with high intra-

cluster similarity. Conversely, a higher index suggests poorer clustering, indicating 

less distinct clusters with lower intra-cluster similarity or potential overlap. When 

comparing multiple clustering solutions, the solution with the lower Davies-Bouldin 

Index is generally preferred as it signifies more cohesive and well-separated 

clusters. 

6.3 Calinski-Harabasz Index 

The Calinski-Harabasz Index (CH), also known as the Variance Ratio Criterion, is 

a measure of cluster separation and compactness. It calculates the ratio of the sum 

of between-cluster dispersion to the sum of within-cluster dispersion for all clusters. 

Higher values of CH indicate better-defined and more compact clusters [20]. This 

index is particularly useful for determining the optimal number of clusters in a 

dataset. CH index can be defined as: 

                    𝐶𝐻 =
𝐵

𝑊
  ×

𝑛 − 𝑘

𝑘 − 1
                         (3) 

where: 

• B is the between-cluster dispersion, 

• W is the within-cluster dispersion, 

• k is the number of clusters, and 

• n is the total number of data points. 

A higher Calinski-Harabasz Index indicates better clustering performance, 

suggesting more distinct and well-separated clusters. Conversely, a lower index 

may indicate less effective clustering, potentially with clusters that are less distinct 

or more overlapping. When comparing multiple clustering solutions, the one with 

the higher Calinski-Harabasz Index is generally preferred as it signifies stronger and 

more compact clusters. Overall, the Calinski-Harabasz Index helps in assessing the 

effectiveness of clustering algorithms and parameter settings, aiding in the 

identification of solutions that yield more meaningful and interpretable clusters. 



I. Lorencin et al. K-means Clustering of Intracellular Calcium Signal Transients 

‒ 84 ‒ 

7 Results and Discussion 

When the silhouette score is around 0.5 for cluster numbers ranging from 2 to 6, it 

suggests that the clusters are well-separated and distinct, with objects exhibiting 

relatively high cohesion within their clusters and significant separation from 

neighboring clusters. As the number of clusters increases beyond 6, the silhouette 

score begins to decline, dropping to around 0.35, indicating a decrease in cluster 

quality. This decline suggests that increasing the number of clusters may lead to 

clusters that are less well-defined or more overlapping. Furthermore, as the number 

of clusters exceeds 10, the silhouette score decreases further to approximately 0.2, 

as presented in Figure 7. 

Figure 6 

Change of sillouethe score with an increasing number of clusters 

This decline indicates diminishing cluster quality, with clusters becoming even less 

distinct and exhibiting reduced cohesion and separation. Overall, these results 

suggest that the optimal number of clusters lies within the range of 2 to 6, where 

clusters are well-separated and exhibit high cohesion, while increasing the number 

of clusters beyond this range may result in less effective clustering with reduced 

cluster quality. 

When the Davies-Bouldin Index ranges between 1.5 and 1.2 for cluster numbers up 

to 5, it suggests that the clustering solution may not be optimal, with clusters 

exhibiting moderate to high overlap or insufficient separation. However, as the 

number of clusters increases to 5 and 6, the Davies-Bouldin Index drops to 1 and 

0.9, respectively, indicating improved clustering quality. This decrease suggests 
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that the clustering solution with six clusters is more favorable, with clusters showing 

greater distinctiveness and separation. On the other hand, for a larger number of 

clusters beyond 6, the Davies-Bouldin Index starts to rise again, reaching values 

between 1.2 and 1.55, as presented in Figure 8. 

Figure 7 

Change of Davies-Bouldin Index with an increasing number of clusters 

This increase implies a deterioration in clustering quality as the number of clusters 

increases further, possibly due to increased overlap or fragmentation of clusters. 

Davies-Bouldin Index provides insights into the effectiveness of the clustering 

solution, with lower values indicating better cluster separation and distinctiveness, 

particularly evident when the index decreases to 0.9 for six clusters before rising 

again with additional clusters. 

When the Calinski-Harabasz Index ranges between 400 and 500 for 2 to 4 clusters, 

it indicates that the clustering solution exhibits high cohesion within clusters and 

significant separation between clusters. As the number of clusters increases to 5, the 

Calinski-Harabasz Index rises to 575, suggesting even stronger clustering 

performance with improved cluster separation. Similarly, for 6 clusters, the index 

remains relatively high at 548, indicating continued effectiveness in clustering. 

However, with further increases in the number of clusters, the index gradually 

declines with each additional cluster, eventually reaching 300 for 19 clusters, as 

presented in Figure 9. 

This decline implies diminishing clustering quality as the number of clusters 

increases beyond a certain point, likely due to increased fragmentation or overlap 

between clusters. Overall, the Calinski-Harabasz Index provides insights into the 
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optimal number of clusters, with higher values indicating better cluster separation 

and cohesion, particularly evident in the range of 2 to 6 clusters before declining 

with additional clusters. 

 

Figure 8 

Change of Calinski-Harabasz Index with an increasing number of clusters 

Conclusions 

In conclusion, the analysis conducted in this research sheds light on the 

effectiveness of the k-means clustering method for the clustering of Intracellular 

Calcium Signal Transients, a crucial aspect in the study of neurological diseases. 

Through the evaluation of clustering performance using silhouette score, Davies-

Bouldin Index, and Calinski-Harabasz Index, key insights have been gained 

regarding the optimal number of clusters and the quality of the clustering solution. 

The findings suggest that for the dataset under examination, the optimal number of 

clusters lies within the range of 2 to 6, where clusters exhibit high cohesion and 

separation. Beyond this range, the clustering quality diminishes, with clusters 

becoming less distinct and showing increased overlap. These results provide 

valuable guidance for researchers and practitioners in the field of neuroscience, 

enabling more effective analysis and interpretation of Intracellular Calcium Signal 

Transients data. Given the substantial burden imposed by neurological diseases on 

global health, the utilization of robust clustering techniques such as k-means holds 

promise for advancing our understanding of disease mechanisms and facilitating the 

development of targeted interventions to improve patient outcomes. Further 

research and refinement of clustering methodologies are warranted to enhance the 

accuracy and reliability of clustering analyses in the context of neurological 

research. The insights from our study extend beyond neuroscience to various fields. 
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In neuroimmunology, understanding calcium signaling dynamics in glial cells 

informs research on neuroinflammatory processes. Pharmacologically, identifying 

distinct clusters of calcium transients aids in targeted therapeutic interventions for 

CNS disorders. Our findings also contribute to computational biology by offering a 

model for analyzing similar cellular systems. Moreover, in systems neuroscience, 

elucidating calcium dynamics enhances understanding of brain function. Overall, 

our research has broad implications across disciplines, fostering interdisciplinary 

collaborations and innovative approaches to address biomedical challenges beyond 

the scope of neuroscience. Furthermore, the insights gained from our study have 

practical implications in clinical settings. By elucidating the clustering patterns of 

calcium signaling dynamics, our research may facilitate the development of 

biomarkers for diagnosing and monitoring neurological disorders. Additionally, the 

identification of novel therapeutic targets based on these clustering patterns holds 

promise for the development of more effective treatments, ultimately improving 

patient outcomes in real-world healthcare settings. 
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