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Abstract: In this paper we propose a Multilayer Perceptron Neural Network (MLP NN) 
consisting of fuzzy flip-flop neurons based on various fuzzy operations applied in order to 
approximate a real-life application, two input trigonometric functions, and two and six 
dimensional benchmark problems. The Bacterial Memetic Algorithm with Modified 
Operator Execution Order algorithm (BMAM) is proposed for Fuzzy Neural Networks 
(FNN) training. The simulation results showed that various FNN types delivered very good 
function approximation results. 
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1 Introduction 
Over the last few decades many different approaches to the hybridization of neural 
networks and fuzzy systems have been introduced and studied [9], [11], [22] as 
new neuro-fuzzy structures. Based on this idea, in this paper the concept of the 
fuzzy flip-flop neuron is introduced. The function approximation capability of the 
novel Fuzzy Flip-Flop-based Neural Networks (FNN), as a new type of neural 
networks is studied. A comparison of the effect of applying some selected fuzzy 
operations in the investigation of the fuzzy flip-flop (F3)-based neurons, and the 
Multilayer Perceptrons (MLPs) based on them, are presented. The proposed 
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network is a structure consisting of the same types of F3. The proposed training 
method is a particular combination of evolutionary and gradient based (global and 
local search) algorithms. The effect of fuzzy operations types and fuzzy neurons 
numbers are studied. Illustrative examples are presented in order to demonstrate 
the success of this work in terms of the function approximation capability of the 
proposed FNNs. 

The outline of this paper is as follows. In Section II we present the fuzzy J-K and 
D flip-flops in general. The Fuzzy Flip-Flop based Neural Network as a novel 
implementation possibility of multilayer perceptron neural networks is proposed 
in Section III. The FNNs neuron element may be any fuzzy flip-flop derived from 
the original F3 with two additional modifications (feedback and fixed internal 
state) with more or less sigmoid transfer characteristics. After simplifications the 
fuzzy J-K and D flip-flop neurons block diagram for a fix Q value is given. The 
Bacterial Memetic Algorithm with Modified Operator Execution Order (BMAM) 
is carried out in Section IV. We apply this method to demonstrate that the 
proposed FNNs built up from fuzzy J-K and D flip-flops based on algebraic, 
Łukasiewicz, Yager, Dombi and Hamacher operations can be used for learning 
and approximating a battery cell charging characteristics, two dimensional 
trigonometric functions, and two and six dimensional benchmark problems. The 
target activation function is tansig, a MATLAB built-in sigmoid transfer function. 
Finally, the FNNs function approximation performance comparison thought 
simulation results are discussed in Section V, followed by a brief Conclusion and 
References. 

2 Fuzzy J-K and D Flip-Flops 
The concept of fuzzy flip-flop was introduced in the middle of 1980’s by Hirota 
(with his students) [7]. The Hirota Lab recognized the essential importance of the 
concept of a fuzzy extension of a sequential circuit and the notion of fuzzy 
memory. From this point of view they proposed alternatives for “fuzzifying” 
digital flip-flops. The starting elementary digital units were the binary J-K flip-
flops. Their definitive equation was used both in the minimal disjunctive and 
conjunctive forms. As fuzzy connectives do not satisfy all Boolean axioms, the 
fuzzy equivalents of these equations resulted in two non-equivalent definitions, 
“reset and set type” fuzzy flip-flops, using the concepts of fuzzy negation, t-norm 
and t-conorm operations. In [8] Hirota et al. recognized that the reset and set 
equations cannot be easily used as elements of memory module, because of their 
asymmetrical nature. In their paper [19] Ozawa, Hirota and Kóczy proposed a 
unified form of the fuzzy J-K flip-flop characteristic equation, involving the reset 
and set characteristics, based on min-max and algebraic norms. A few years later, 
the hardware implementation of these fuzzy flip-flop circuits in discrete and 
continuous mode was presented in [20]. The next state outQ  of a fuzzy J-K flip-
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flop is characterized as a function of both the present state Q  and the two present 
inputs J  and K . The unified formula of the fuzzy J-K flip-flop was expressed as 
follows [19]: 

( ) ( ) ( )outQ J K J Q K Q= ∨ ∧ ∨ ∧ ∨  (1) 

The over bar denotes the standard negation (e.g. 1K K= − ); furthermore, 
 and∧ ∨  denote fuzzy operations (t-norm and t-conorm, labeled in the next as i 

and u). [ ], , , 0,1outJ K Q Q ∈ . In [12] a F3 derived from fuzzy J-K flip-flop where 

Q  is fed back to K (K = 1 - Q) is proposed. The characteristic equation of a fuzzy 
J-K flip-flop with feedback is 

( ) ( ) ( )( )1outQ J  u Q  i J  u Q  i Q u Q= −  (2) 

The concept of a novel fuzzy D flip-flop type was introduced in [13]. Connecting 
the inputs of the fuzzy J-K flip-flop in a particular way, namely by applying an 
inverter in the connection of the input J to K, case of K = 1 - J, a fuzzy D flip-flop 
is obtained. Substitute =K J  in equation (1) and let J = D, the fundamental 
equation of fuzzy D flip-flop is 

( ) ( ) ( )( )1outQ D u D  i D u Q  i D u Q= −  (3) 

In our previous papers [13], [14] the unified fuzzy J-K flip-flop based on various 
norms combined with the standard negation was analyzed in order to investigate, 
whether and to what degree they present more or less sigmoid (s-shaped) 

outJ Q→  characteristics in particular cases, when K = 1 - Q (unified fuzzy J-K 
flip-flop with feedback), K = 1 - J (new fuzzy D flip-flop derived from the unified 
fuzzy J-K one) with fixed value of Q. We conducted extensive investigations and 
found that the outJ Q→  transfer characteristics of fuzzy J-K flip-flops with 
feedback based on Łukasiewicz, Yager, Dombi and Hamacher norms, as well as 
the outD Q→  characteristics of (new) fuzzy D flip-flops of Łukasiewicz, Yager 
and Hamacher operations, show quasi sigmoid curvature for selected Q values. 
The fuzzy J-K and D F3s based on algebraic norms as well as the fuzzy D F3s 
based on Dombi norms have non-sigmoid behavior. 
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3 Fuzzy Neural Networks 

3.1 Fuzzy Flip-Flop Neurons 
We proposed the construction of a neuron unit, a combinational sigmoid generator 
derived from arbitrary fuzzy J-K flip-flop where Q  is fed back to K and (old) Q is 

fixed (Figure 1). In this approach, the output of fuzzy J-K flip-flop neuron 
depends from the value of Qfix and input values of J. Substitute K Q=                 
(1 - K = Q) in the unified formula of the fuzzy J-K flip-flop (equation 1), for a fix 
Q value, the characteristic equation of fuzzy J-K flip-flop neuron is 

( )( )fix fix fix fix( ) ( ) 1outQ J  u Q  i J  u Q  i Q  u Q= −  (4) 

where i and u denotes various t-norms and t-conorms. 
 

 

 

 

 

 

Figure 1 
Fuzzy J-K flip-flop neuron  

The clocked fuzzy J-K flip-flop neuron circuit can be implemented using 
hardware blocks (denoted by i, u and n symbols) to realize various t-norms, t-
conorms and fuzzy negations [24]. Since t-norms and t-conorms are functions 
from the unit square into the unit interval, the fuzzy J-K flip-flop neuron block 
diagram differs from the binary J-K flip-flop structure. The input J is driven by a 
synchronized clock pulse in the sample-and-hold (S/H) circuit (Figure 2) which 
could be a simple D flip-flop used as register. 

We proposed the construction of the fuzzy D flip-flop neuron (Figure 3), which is 
a combinational sigmoid generator. This unit is derived from arbitrary fuzzy J-K 
flip-flop by connecting the inputs of the fuzzy J-K flip-flop in a particular way, 
namely by applying an inverter in the connection of the input J to K. 
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Figure 2 
Fuzzy J-K flip-flop neuron block diagram 

Starting from the fundamental equation of the fuzzy J-K flip-flop and substituting 
K J=  in equation (1) and letting D = J for a fix Q value, the characteristic 
equation of fuzzy D flip-flop neuron is 

( )( )fix fix( ) ( ) 1outQ D u D  i D u Q  i D u Q= −  (5) 

 

 

 

 

 

 

Figure 3 
Fuzzy D flip-flop neuron 

Interconnecting the blocks of fuzzy operations in a different way, the fuzzy D flip-
flop neuron block diagram is obtained (Figure 4). 

The use of four-layered (that have two sigmoid hidden layers) neural network as 
universal approximators of continuous functions have been investigated by 
Funahashi [4] and Hecht-Nielsen [6]. Kurkova [10] studied the function 
approximation capabilities of multilayer feedforward networks with sigmoid 
activation, analyzing also their computational complexity issues. 
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Figure 4 
Fuzzy D flip-flop neuron block diagram 

The neuro-fuzzy system proposed is based on two hidden layers where the 
approximation process becomes more manageable. The first hidden layer neurons 
are used to partition the input space into regions and learn the local features. A 
neuron in the second layer learns the global features for a particular region of the 
input space and outputs zero elsewhere [4]. The FNNs constituted from fuzzy flip-
flop neurons are supervised feedforward network, applied in order to approximate 
various test functions. The functions to be approximated are represented by a set 
of input/output pairs. 

In this approach the weighted input values are connected to input J of the fuzzy 
flip-flop neuron based on a pair of t-norm and t-conorm, having quasi sigmoid 
transfer characteristics. The output signal is then computed as the weighted sum of 
the input signals transformed by the transfer function. Based on previous hardware 
implementation results [19], FNNs with fixed structure can be stated as easily 
implemented in real hardware neural networks. 

The nonlinear characteristics exhibited by fuzzy neurons are represented by quasi 
sigmoid transfer functions given by fuzzy J-K and D flip-flop neurons based on 
algebraic, Łukasiewicz, Yager, Dombi and Hamacher operations. The proposed 
network activation function is the same at each hidden layer, from unit to unit. 
The function approximation goodness is strongly dependent on the number of 
fuzzy neurons in the hidden layers [15], [16]. 
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4 Bacterial Memetic Algorithm with Modified 
Operator Execution Order 

The process of biological evolution has inspired a large amount of optimization 
algorithms. It has been shown that evolutionary algorithms work efficiently for 
solving nonlinear and constrained optimization problems. These methods do not 
use derivatives of the functions, such as the gradient-based training algorithms. 
Similarly to biological recombination, these methods are based on the search for a 
large number of solutions. 

In particular, the Bacterial Memetic Algorithm with Modified Operator Execution 
Order (BMAM) [5] evolutionary approach is proposed for FNNs training. This 
chapter presents how the bacterial evolutionary algorithm [18] can be improved 
with another optimization method, the Levenberg-Marquardt (LM) technique, to 
achieve better results in the function approximation process, developing an 
effective hybrid combination. 

The BMAM is a memetic algorithm which eliminates the imperfection of 
traditional evolutionary and LM algorithm. The evolutionary algorithm is able to 
find the global optimum region but miss the local optimum solution. The LM 
algorithm is fast and efficient for training feedforward neural networks and is able 
to find the local optimum, but is very sensitive to the initial position of the search 
space. 

The learning of the FNNs is formulated as a parameter optimization problem, 
using the mean square error as the fitness evaluation set-up. The algorithm starts 
with a random population of initial solutions to the optimization problem. The 
solutions are coded as an array of floating point or integer values. The basic steps 
embrace the bacterial mutation operation and the LM method. In this application 
the population number was initialized according to the network size. 

During simulations 30 generations of 5 individuals with 5 clones were chosen to 
obtain the best fitting variable values, with the lowest performance. Then the same 
part, or parts, of the chromosome is chosen and mutated randomly. The LM 
method nested into evolutionary algorithm is applied 3 times for each individual. 
The selection of the best clone is made and transfers its mutated parts to the other 
clones. The part choosing-mutation-LM method-selection-transfer cycle is 
repeated until all the parts are mutated, improved and tested. The best individual 
remains in the population and all other clones are deleted. This process is repeated 
until all individuals have gone through the modified bacterial mutation. Then the 
Levenberg-Marquardt method is applied 7 times for each individual executing 
several LM cycles during the bacterial mutation after each mutation step. 

Gene transfer operation is done 3 times for a partial population. The number of the 
gene transfers in a generation is the algorithm parameter; it could be 0. The quasi 
optimal values can be identified at the end of the BMAM training algorithm. 



R. Lovassy et al. Function Approximation Performance of Fuzzy Neural Networks 

 – 32 – 

5 Numerical Simulation and Results 
The FNNs architecture is predefined, depending on the input function complexity. 
In this approach the choice of an optimal network design for a given problem is a 
guessing process. In particular, the application of a recently improved BMAM 
algorithm is applied for training various FNNs with different structures. This new, 
complex software is able to train all the FNNs parameters, eliminating completely 
the imprecision caused by training them with the LM algorithm. The simulation 
results published in our previous papers obtained under the same conditions could 
turn out to be different because the LM method is very sensitive to the initial 
values of the search space. The FNNs approximate a one-dimensional real-life 
application, two dimensional trigonometric functions, two benchmark problems 
whose dates were selected from the input/output test points of a gas furnace 
benchmark data set, and a six dimensional non-polynomial function. The test 
functions are arranged in the order of complexity. 

A Simple Real - Life Application: Approximation of a Nickel-Metal Hydride 
Battery Cell Charging Characteristics 

In this particular case, the FNNs approximate a Nickel-Metal Hydride (NiMH) 
Battery Cell charging characteristics [2], a one-input real-life application. 

The nickel-metal hydride batteries can be repeatedly charged and discharged for 
more than 500 cycles. The charging process duration can be different, from 15 
minutes to 20 hours. The charge characteristics are affected by current, time and 
temperature. In this experiment it was more than 1 hour. The test function is a 
characteristic between the battery capacity input and the cell voltage. The battery 
type was GP 3.6V, 300 mAH, 3x1.2V NiMH, charged for 1.5 hours with 300 mA 
and 25˚C. 

B The Box-Jenkins’ Gas Furnace Benchmark Data Set 

The gas furnace data set presented by Box and Jenkins in 1970 is a frequently 
used benchmark data set. The set consists of 296 input-output data; a pair is 
sampled at every 9 seconds. The input signal represents the flow rate of the 
methane in a gas furnace, while the output of the model corresponds to the CO2 
concentration in the gas mixture flowing out of the furnace under a steady air 
supply [17]. We used as the most studies [21], [23] the inputs y(k-1) and u(k-4) 
which have the highest correlation with the output y(k). 

C Two - Input Trigonometric Functions  

We used the next two two-dimensional polynomial input functions as test 
functions 

( ) ( )( )5 3
1 1 1 2 2sin cos / 2 0.5y c x c x= ⋅ ⋅ ⋅ +  (6) 
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2

100
2 cos

2

r ry e
− ⎛ ⎞= ⋅ ⎜ ⎟

⎝ ⎠
; where 2 2

1 2 ,r x x= +  (7) 

[ ]1, 20,202x  x ∈ −  

D Six Dimensional Non-Polynomial Function 

This widely used target function originates from paper [1] and is given by the 
following expression 

( )5 620.5
3 1 2 3 4 2 x xy x x x x e −= + + +  (8) 

where [ ] [ ] [ ]1 2 3 4, 1, 5 , 0, 4 , 0, 0.6 ,x  x   x   x   ∈ ∈ ∈ [ ] [ ]5 60, 1 , 0, 1.2 .x   x  ∈ ∈  

The real-life application (denoted by 1D) is approximated with a 1-2-2-1 FNN 
size, described by a set of 543 input/output samples selected equidistantly from a 
set of 2715 test points. To approximate the gas furnace benchmark data set we 
proposed a 1-2-2-1 FNN (2D-gas) size given by 296 dates. A 1-20-20-1, 
respectively a 1-15-15-1 feedforward neural networks structure based on F3 

neurons were proposed to approximate the two two-input trigonometric functions, 
(equations (6) and (7), labeled as 2D-trig and 2D-hat), represented by 1600 
input/output samples. To approximate the six-dimensional benchmark problem we 
proposed a 1-10-10-1 FNN (6D) size given by 200 samples. 

The number of neurons was chosen after experimenting with different size hidden 
layers. Smaller neuron numbers in the hidden layer result in worse approximation 
properties, while increasing the neuron number in a complex FNN structure 
results in better performance, but longer simulation time. 

In [15] we proposed a method to find the optimal Q and fuzzy operation parameter 
pairs for J-K and D type F3 neurons based on algebraic, Yager, Dombi and 
Hamacher norms by training a 1-8-8-1 FNN with the Bacterial Memetic 
Algorithm. The optimal variable values depend on the fuzzy flip-flop neuron and 
fuzzy operation types. A change of the operations and parameter values in the 
characteristic equations of the fuzzy J-K and D flip-flops leads to the modification 
of the slope of the transfer function, which will affect the learning rate in the 
implementation of neural networks. In the next, the algebraic, Łukasiewicz, 
Yager, Dombi and Hamacher operations and two different fuzzy flip-flop neuron 
types will be compared from the point of view of the respective fuzzy-neural 
networks approximation capability. 

Figures 5 and 6 compare the function approximation performance of J-K and D 
FNNs in case of various test functions. Tables I and II present the 10 runs average 
approximation goodness, by indicating the median MSE (mean squared error) of 
the various FNNs training values. During evaluation we compared the median 
MSE values, considering them as the most important indicators of trainability. The 
median is a robust estimate of the center of a data sample, since outliers have little 
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effect on it. According to the numerical illustrations the average of 10 runs MSE 
values the sequence is almost the same in every test function cases. By extensive 
simulation experiments it is proved that the function approximation goodness of 
FNNs based on fuzzy J-K flip-flop neuron with Dombi and Łukasiewicz norms 
are the best ones. 

The error of approximation of the battery cell and Box-Jenkins’ gas furnace 
benchmark dates characteristics obtained by traditional tansig function is 
irrelevantly less than that obtained in our simulations. As can be seen from Figure 
6, and comparing the simulation results from Table II the function approximation 
by D FNNs may be considered sufficiently good in case of Łukasiewicz and 
Yager type fuzzy operations. 

Conclusions 

In this paper, we found that the fuzzy J-K flip-flop neurons based on Dombi and 
Łukasiewicz as well as the fuzzy D flip-flop neurons based on Łukasiewicz and 
Yager norms are the most suitable ones for constructing FNNs in order to 
approximate various test functions. As these FNN types produced more or less 
low MSE values in all simulation experiments. Thus, we proposed the 
construction of real hardware fuzzy neural networks constructed of the above-
mentioned F3 neuron types. The accuracy of the approximations not only depends 
on the network structures and parameters selected, such as the number of layers, 
and of the hidden units, but is strongly influenced by the fuzzy flip-flop neuron 
and fuzzy operation type. In the future we intend to propose new types of fuzzy 
flip-flop based on pliant inequality [2], and to improve the function approximation 
capability of FNNs. 
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Figure 5 
Function approximation capabilities of J-K FNNs 

 

Table I 
Training Median MSE Values for J-K Type FNNs 

Fuzzy op. 
Bat. cell  
1-2-2-1  

FNN 

2D-gas  
1-2-2-1 
  FNN 

2D-trig 
1-20-20-1 

FNN 

2D-hat 
1-15-15-1 

FNN 

6D 
1-10-10-1 

FNN 

tansig 1.32x10-5 7.71x10-2 9.07x10-7 4.26x10-7 1.12x10-4 
Algebraic  3.32x10-4 1.07x100 4.32x10-2 3.17x10-2 9.69x10-1 
Łukasiewicz  7.11x10-5 7.27x10-2 3.71x10-4 9.46x10-4 5.78x10-1 
Yager  1.47x10-4 8.23x10-1 1.53x10-2 1.49x10-2 5.92x10-1 
Dombi  3.52x10-5 7.30x10-2 8.75x10-6 1.76x10-4 2.98x10-1 
Hamacher  2.59x10-4 8.27x10-1 2.18x10-2 2.86x10-2 7.43x10-1 
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Figure 6 
Function approximation capabilities of D FNNs 

 

Table II 
Training Median MSE Values for D Type FNNs 

Fuzzy op. 
Bat. cell  
1-2-2-1  
FNN 

2D-gas  
1-2-2-1 
  FNN 

2D-trig 
1-20-20-1 

FNN 

2D-hat 
1-15-15-1 

FNN 

6D 
1-10-10-1 

FNN 
tansig 1.32x10-5 7.71x10-2 9.07x10-7 4.26x10-7 1.12x10-4 
Algebraic  1.38x10-4 1.18x100 2.71x10-2 2.94x10-2 6.56x10-1 
Łukasiewicz 4.95x10-5 7.26x10-2 7.48x10-4 1.52x10-3 7.15x10-1 

Yager  1.09x10-4 7.69x10-2 8.21x10-3 1.86x10-2 1.45x10-1 
Dombi  6.41x10-4 1.25x100 2.93x10-2 3.23x10-2 1.58x100 
Hamacher  1.12x10-4 7.91x10-2 5.25x10-3 1.48x10-2 2.52x10-1 
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