
Acta Polytechnica Hungarica Vol. 17, No. 5, 2020

 – 189 –

The Residual Variable in Decision Diagrams

Jan Lucansky, Peter Pistek, Marian Maruniak

Institute of Computer Engineering and Applied Informatics, Slovak University of

Technology in Bratislava, Ilkovičova 2, 842 16 Bratislava 4, Slovak Republic,

jan.lucansky@stuba.sk, peter.pistek@stuba.sk, maruniak09@student.fiit.stuba.sk

Abstract: We propose a novel method for binary-based decision diagrams (DD) which uses

a residual variable. A new type of DD – Residual Variable in decision diagram (RViDD)

allows to work without the use of the lowest and the most numerous level of nodes but at

the same time preserves all the fundamental characteristics of DD. Thanks to these

properties, it allows the use of all existing algorithms for optimization with only slight or

no modification. In this paper we present the required characteristics for providing

compatibility between DD using different decompositions and RViDD as well as the

exchange of residual variable without the necessity of constructing a new RViDD.

Proposed method was experimentally validated on benchmark circuits with various types of

experiments. We use exhaustive (all input variable combination) comparative between

reduced and ordered DD and RViDD with the average improvement up to 17.55%. Since

optimization of DD is a NP-complete problem, we also include the usage of evolutionary

algorithm for RViDD in comparison to more effective algorithms.

Keywords: BDD; KFDD; decision diagrams; residual variable

1 Introduction

The idea to use Decision Diagrams (DDs) in computer science is a longstanding

one. The widespread use of DDs started with [1] when a set of algorithms for

constructing and operating on DDs as data structures was introduced. Since then,

DDs have come a long way and numerous applications have been found with the

byproduct of numerous forms of DDs [2]. Some of these applications, nowadays,

include, but are not limited to, formal verification, logic synthesis, test generation,

classification techniques or network security. One of the areas that has greatly

benefited from the use of DDs is circuit design. With conventional technologies

slowly approaching their physical limits and with continuous emphasis on high

speed and low power requirements, the need for optimizing circuits at design level

becomes more and more important and DDs are a natural way to achieve that. A

good example can be found in [3] where Binary DDs (BDD) have been used to

optimize logical circuits based on multiplexers (multiplexer trees) or in [4], where

BDDs are used for synthesis of optical circuits. Another example of their ongoing

J. Lucansky et al. The Residual Variable in Decision Diagrams

 – 190 –

importance can be found in [5], where DDs are used for the design of reversible

and quantum circuits. The problem of power consumption increased in importance

in the last years and is usually highlighted on system level. Today, as IoT devices

use many sensors, it is essential to lower energy consumption as much as possible

at any level of abstraction [6]. It is worth mentioning that DDs are not the only

alternative and several types of graphs can be used as SAT solvers [7].

An extensive research regarding the use of various types of DDs has already been

done. Among the most popular ones are BDDs, which are based on Shannon

decomposition of Boolean function. As mentioned in [8], only 2 types of

decomposition have an impact on DD area reduction – Shannon and Reed-Muller

(sometimes called Davio). DDs that make use of Davio decomposition, either its

positive or negative form, are called Functional DDs (FDD) and a combination of

both types of decomposition results in Kronecker Functional DD (KFDD).

Applying reduction techniques and respecting a certain order of variables for input

functions results in Reduced Ordered DD, which based on the decomposition used

can result in either ROBDD, ROFDD or ROKFDD. Keeping track of these

abbreviations becomes hard to remember and sometimes counterintuitive

(accurately called “alphabet soup” in [2]). The need for various types of DD

prevails as each type and mainly the decomposition used has its own advantages

with regards to the input function. Experimental results suggest that BDDs are

more suitable for reduction of control functions and KFDDs perform better with

symmetric data functions. Moreover, there are many types of logic gates

represented by DD, e.g. BDD nodes can be directly transformed into 2:1

multiplexers and used to construct a multiplexer tree. Several advanced techniques

with various different gates can also be found in [9] and [10]. For the purpose of

this paper, suppose the Reduced and Ordered notification to be implicit.

Scaling remains a major problem for all types of DD. The ordering complexity for

an input function with n variables is factorial, the input Boolean function contains

2n bits and was proven to be a NP-complete problem [11]. To be absolutely sure

that the chosen order is the most suitable one for reduction, all order combinations

should be tested. Several methods and heuristics from static variable ordering to

complex ordering algorithms were combined with DD in order to address scaling

problems. Promising results were achieved with Evolutionary Algorithms (EA),

which can be used not only for area reduction, but to simultaneously focus on

optimization of multiple parameters, such as Average Path Length (APL) or

power consumption. APL is critical for circuit’s delay when the majority of paths

have equal probability of being traversed. The delay can have the highest priority

among given parameters at all levels of abstraction [12].

To further increase the number of types of DD, we propose yet another type of

DD with yet another abbreviation – RViDD. This type of DD exploits the

advantages of Residual variable used at the lowest level of DD and effectively

decreases the complexity of n+1 variable input to that of n variable input by

replacing one variable with an exact logic value representation. We present the

experimental results achieved with a combination of Residual variable and EA.

Acta Polytechnica Hungarica Vol. 17, No. 5, 2020

 – 191 –

2 Preliminaries

The input for DD is a Boolean function (B-function) f:Bn→B over a set of

variables Xn denoted as f(x0,x1,…,xn-1) = y. Variables are ordered based on

significance from left to right, denoted by their index, where the order of input

variables corresponds to the decreasing weights assigned to the variables from left

to right, starting from the weight of 2n-1 for variable x0 down to the weight of 20

for xn-1. Any B-function f specified by its binary vector y and a fixed variable

ordering can be easily expressed as a DD [3]. For easier transformation to residual

function, the given B-function can be represented by modified truth table shown in

Table 1.

Table 1

Modified truth table of B-function

1x 2x ... 2nx 1nx

y

0x
0x

0 0 ... 0 0 f(2n-1) f(0)

0 0 ... 0 1 f(2n-1+1) f(1)

0 0 ... 1 0 f(2n-1+2) f(2)

.

.

.

.

.

.

...

...

...

.

.

.

.

.

.

.

.

.

1 1 ... 1 0 f(2n-2) f(2n-1-2)

1 1 ... 1 1 f(2n-1) f(2n-1-1)

The modification of given function to a function of residual variables can be done

by representing the binary vector of function as a canonical matrix (1). Such

matrix [13] contains 2(n-1) columns of two rows. Each column represents a pair of

values 0x (bottom row) and 0x (top row) of the function.

)12()22()12()2(

)12()22()1()0(

)),...,,((

11

11

110













nnnn

nn

n

ffff

ffff

xxxB




 (1)

Decomposition of B-function takes the input binary vector y of length 2n and

produces an output of 2 vectors of length 2n/2. Shannon decomposition for

variable xi effectively splits the vector in half based on the value of variable, the

true half for)(xf
ix

 and the false half for)(xf
ix

. Similarly, positive Davio

decomposition outputs 2 vectors consisting of the false half and an eXclusive OR

(XOR) of both halves, and negative Davio decomposes the vector into the true

half and a logical XOR of both halves. Decomposition functions are shown in

formula (2), (3) and Figure 1.

J. Lucansky et al. The Residual Variable in Decision Diagrams

 – 192 –

Variable xi is a chosen variable with decomposition applied to it.

);(0 xff
ix

);(1 xff
ix)(102 fff  (2)

 ;. 10 ffS  ;. 20 fxfpD i
21 . fxfnD i (3)

Figure 1

Three types of decompositions – Shannon (S), positive Davio (pD) and negative Davio (nD) from

Formula 2 and 3

DD is a directed acyclic graph consisting of one root node, several intermediate

nodes and up to two terminal nodes representing logical values true and false,

usually labeled 1 and 0 respectively. Each non-terminal node is labeled by a

Boolean variable xi, depending on its position in the input order. Non-terminal

nodes in unoptimized DD have one ingoing edge (with the exception of root node)

and two outgoing edges labeled low and high representing the value of function fi

according to decomposition of the parent node. Each non-root non-terminal node

is a root to a separate diagram called subdiagram.

DD optimization methods can be divided into two categories [14]:

1. DD ordering – results in Ordered Decision Diagram (ODD), which

respects a given order of input variables. Variable ordering has a major

impact on effectiveness of DD reduction.

2. DD reduction – when applied on ODD, results in Reduced ODD

(ROBDD/ROKFDD) which has a lower node count than unreduced DD.

Completely reduced DD represents a canonical form of DD. RODD

respects three rules:

a. Uniqueness (Type I) – no two distinct nodes u and v represent

the same variable, have the same decomposition and have the

same left and right successor. Reduction is applied when var(u)

= var(v), dec(u) = dec(v), left(u) = left(v), right(u) = right(v)

which implies u = v.

b. Non-redundancy for Shannon node (Type S) – no variable node

u has identical left and right successor. Reduction is applied

when left(u) = right(u).

c. Non-redundancy for Davio node (Type D) – no variable node u

has the right successor equal to terminal node 0. Reduction is

applied when right(u) = 0.

Acta Polytechnica Hungarica Vol. 17, No. 5, 2020

 – 193 –

Figure 2

Exchange of adjacent variables in DD

As was already mentioned, the creation of an optimal DD has exponential increase

in complexity. To further optimize a DD, an optimal input variable ordering has to

be found. For circuits consisting of larger number input variables, searching the

entire space of possibilities becomes unrealistic in acceptable time. Several

methods were explored in ordering complexity mitigation with various degrees of

reduction in final node count (size) of RODD. These methods can be separated

into categories based on the complexity of underlying algorithm.

Basic methods are simple modifications in variable ordering. One such example is

the exchange of adjacent variables on the same level in DD. The goal of

exchanging variables at k and k +1 level for the DD G of function f is to transform

G to DD G‘ of function f. The only difference between variable ordering π and π'

is only at levels k and k +1 and can be expressed as π (k) = π '(k +1) and π (k +1)

= π' (k). Exchange of adjacent variables does not affect the upper and lower levels

in DD and is illustrated in Figure 2 [15].

In heuristic methods, the ordering of variables will be determined according to the

information available about the issue before the construction of DD itself. Force

algorithm [15] belongs among the best known algorithms in this category. The

idea behind Force is simple - the algorithm computes the forces acting upon each

variable and displaces the variables in the direction of the forces acting upon

them. In Force, a CNF formula is viewed as a hypergraph, where the formula’s

variables correspond to vertices and clauses correspond to hyperedges. The

algorithm itself determines two values during execution and iteratively uses them

to order the variables. Another heuristic method [16] is based on the proven

assumption that the number of nodes in a particular level of DD depends only on

the arrangement of variables at lower levels. The algorithm of this method

sequentially places all the variables to the first level and determines to which of

them it received the least number of nodes. This variable (or several variables) is

saved for the chosen level and the remaining variables are tested at upper levels.

This process is repeated until the final DD is obtained. Algorithm complexity

remains exponential, but provides better parameters than iterating through all

possible variable orderings.

J. Lucansky et al. The Residual Variable in Decision Diagrams

 – 194 –

The third and final category consists of alternative methods based on evolutionary

algorithms (EA). EA belong to a state-of-art in optimization algorithms. The core

term of EA is population, which represents a set of chromosomes. Chromosome

can be either the input order of variables or decompositions represented as a

vector of genes, such as {x0,x5,x6,x3,x2,x1,x4,x7}. In this case, each gene is a variable

in particular order (chromosome) of given population of orders. A population of a

specific stage of EA is called generation. Initial population, or the first generation,

is created using randomly generated chromosomes, which are then sorted through

based on their fitness value to form a new generation.

After creating a population, a fitness value is calculated for each chromosome.

The underlying algorithm of fitness calculation depends on the targeted problem.

An example of multi-parametric fitness formula can be seen in (4) where Ar, Pw

and Ap are the coefficients setting percentage weights of optimized parameters and

their sum Ar + Pw + Ap should be equal to 1 at all the times. The formula also

contains 3 parameters (area, power consumption and APL) that have their

orderings normalized to range (0,1).

normalizedaplAnormalizedpowerP

normalizedareaAfitness

pw

r

__

_



 (4)

Most fit chromosomes, then have a certain probability of genetic operations being

applied to them to increase the diversity of current generation and decrease the

chance of getting stuck in a local optimum. Some forms of EA also introduce a

technique called elitism which ensures the preservation of the best chromosomes

across generations in order to make sure subsequent generations never provide

worse, and therefore useless, results than the previous generations.

Chromosomes of the current generation are selected based on their fitness value.

At this point, EA starts to populate a new generation by selecting chromosomes

from current generation and applying genetic mutation and crossover. A genetic

mutation in vector of variables (chromosome) is to invert a random gene in

chromosome. This operation is implemented as a swap of the variable on a

random position and the variable positioned on the complementary position. For

example, a mutation in chromosome of length 8, at position 2, is illustrated in

Figure 3.

Figure 3

Mutation example

The second genetic operation called crossover causes two selected chromosomes

to be cut at the same randomly chosen point and exchange their segments. In some

variations, two points can be randomly selected in one chromosome and the

Acta Polytechnica Hungarica Vol. 17, No. 5, 2020

 – 195 –

segment between these two points is then replaced with the segment on the same

position in paired chromosome. Since a simple exchange of the parts of variable

orderings can violate the uniqueness of each variable, this operation usually has to

be corrected. Variables that are already present in the unchanged part of

chromosome are replaced with unused variables. Crossover is illustrated in Figure

4, where variable 5 in the first chromosome and variable 6 in the second were

corrected.

Figure 4

Crossover example

EA starts with the creation of a new population (in this work we also reuse

previous generations several times) and keeps applying mutation and crossover on

selected chromosomes with predefined probability. The size of population as well

as the probability of EA operations are a subject to research themselves and can

vary depending of the application of EA.

Several variations of EAs exist. For example, Particle Swarm Optimization (PSO)

[17] is a population-based stochastic technique inspired by social behavior of bird

flocking or fish schooling. In PSO, the potential solutions called particles fly

through the problem space by following the current optimum particles. Particles

learn from their past experiences, learn from experience of others and finally

converge near the solution, which may be the best or a suitably good solution after

satisfying a definite termination criterion. The particles sense their proximity to a

good solution using a fitness function [18]. Another variation of EA with

interesting results is modified memetic algorithm (MMA) [18]. The key feature of

MMA is the use of various techniques of local search. While the gene that passes

on the offspring cannot be changed (except for mutations) in the classic EA,

memes transmit information among themselves so as to best suit the evaluation

function (for example through local searches) in MMA which happens through

knowledge of the solution’s local space.

All the previously mentioned, algorithms share the same feature, which is that

they primarily focus on size reduction. Number of nodes in DD is directly

proportional to the size of represented circuit and has impact on other parameters

as well, e.g. if the DD (and most notably BDD) is used as representation of a

multiplexer tree, each node corresponds to a multiplexer and the dynamic power

consumption of entire circuit can be easily estimated [19].

J. Lucansky et al. The Residual Variable in Decision Diagrams

 – 196 –

3 Residual Variable

If n variable B-function is to be implemented using the complexity of DD with n-1

variables, one of the input variables must to be available in both direct and

complemented form. The input variable order has to be modified in a way where

this particular variable has the highest weight in binary vector.

Definition 1 – If the presences in a function of n variables are identified (e.g. by

their order in truth table), it is possible to assign a weight to these variables. The

variable with the highest weight can then be removed from the vector of variables

and replaced with logic value in direct and complemented form. Such variable is

called a residual variable (RV). An arbitrary variable may be a RV if it is

available both in direct and complemented form, otherwise the transformation of

RViDD to a specific circuit would require an additional NOT logic gate.

Definition 2 – If RV is identified in a function of n variables, the circuit

representation of this function can be transformed into a circuit representation of

function with n-1 variables where the RV is connected to the data input.

Definition 3 – DD for the function f with n variables is called RViDD (Residual

Variable in DD), if one variable is the residual variable and it is also a terminal

node of RViDD.

To create a DD with n-1 variables, the existing procedure repeats decomposition

until it reaches the level defined by the formula 5 with chosen variable xn

)),1((:),,(101
cnvectorfxxf ncxn


 (5)

In formula 5, c is a constant, xn-1 = c, (c ∈ {0, 1}) and (vector n-1) contains

corresponding substitution of 0s and 1s according to the given order of variables

x0,…xn-1 in the upper levels of DD and its particular propagation path. for given

variables x0,…xn-1 is obtained.

In the case where the decomposition of input function is stopped one iteration

earlier, formula 5 is transformed into formula 6.

),),2((:),,,(11202  
 nnncx xcnvectorfxxxf

n
 (6)

In formula 6, c is a constant, xn-2 = c, (c ∈ {0, 1}) and (vector n-2) contains

corresponding substitution of 0s and 1s according to the given order of variables

x0,…xn-2 in the upper levels of DD and its particular propagation path. It is possible

by using this method to achieve up to four final states, or rather substitution rules,

which depend on the value c and xn-1. Substitution rules take 2 input values and

provide 1 output value, which represents RV, as shown in Table 2, where v1

represents)),2((1 nxnvectorf , v2 represents)),2((1 nxnvectorf

and ui represents value of i-th leaf in RViDD.

Acta Polytechnica Hungarica Vol. 17, No. 5, 2020

 – 197 –

Table 2

Substitution rules for residual functions

Rule
1v 2v iu

0 0 0 0

1 0 1 1nx

2 1 0
1nx

3 1 1 1

Using formula (2), (3) and rules in Table 2, final states of RV obtained with every

decomposition are shown in Table 3 for any chosen residual variable (xi).

Table 3

Final states of residual variable xi for every decomposition

f0 f1
f2

(f0f1)

Function value Final state

S pD nD S pD nD

0 0 0 0.0 0.0 ix 0.0 ix 0 0 0

0 1 1 0.1 1.0 ix 1.1 ix
ix

ix
ix

1 0 1 1.0 1.1 ix 1.0 ix
ix

ix
ix

1 1 0 1.1 0.1 ix 0.1 ix 1 1 1

Example 1: Suppose the input B-function f1 with 4 variables in given order

f1(x2,x0,x1,x3)=1000010001011011 where variable x2 is chosen as RV. For

simplicity, only Shannon decomposition is used. Truth table and its modified

version for f1 are shown in Table 4. Results in column y can be expressed as a

canonical matrix B1 of resulting values (7). The first row represents vector v1 from

Table 2 and the second row represents values from vector v2.

11011010

00100001
)),,,((31021 xxxxB (7)

Using substitution rules in Table 2, canonical matrix (7) can be expressed as a

vector Z1 of residual functions (8). Notice that the length of vector Z1 is half the

length of input vector f1. Same steps apply for all decomposition types (Table 3).

),,,,,0,,()),,,((222222231021 xxxxxxxxxxxZ  (8)

3.1 Replacement of Residual Variable

Since RViDD is a new type of DD, it is important to maintain properties for basic

reduction rules in order to reuse existing reduction and optimization algorithms

developed mainly for BDD or KFDD. As a consequence, main features of DD

J. Lucansky et al. The Residual Variable in Decision Diagrams

 – 198 –

with any type of decomposition are preserved and the DD can be directly

compared to RViDD in terms of various factors, such as size (node count).

Table 4

Modified truth table for f1 from Example 1

2x 0x
1x 3x y

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0x
1x 3x

y

0 0 1 1 0
2x

2x

0 1 0 0 0 0 0 0 0 1

0 1 0 1 1 0 0 1 1 0

0 1 1 0 0 0 1 0 0 0

0 1 1 1 0 0 1 1 1 0

1 0 0 0 0 1 0 0 1 0

1 0 0 1 1 1 0 1 0 1

1 0 1 0 0 1 1 0 1 0

1 0 1 1 1 1 1 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

Transformation of DD node at the first level to RViDD node is done according to

rules in Table 3 where the residual functions are replaced with corresponding final

state of RV (Figure 5). This transformation applies to all decompositions since

their final states are equal for each input. Upper levels of RViDD remain

unchanged and identical to their DD counterpart.

Figure 5

Example of transformation of DD node to RViDD node

Acta Polytechnica Hungarica Vol. 17, No. 5, 2020

 – 199 –

An important feature in reduction, is the exchange of adjacent variables. Although

the exchange itself is not very efficient, it serves as the basis for many algorithms.

If adjacent variables are exchanged (levels i and j) then variable ordering of given

function is modified from f(x0,…,xi,xj,…,xn-1) to f(x0,…,xj,xi,…,xn-1) without

disrupting upper and lower levels. This approach remains unchanged if none of

the variables is positioned at the first level, i.e. none of the variables is a RV.

Replacing RV with another variable requires a few more steps. While terminal

nodes in DD can only have 2 values {0,1}, which lead up to 4 possible states

{00,01,10,11}, RViDD has 4 values {0,1, ii xx , }, which lead up to 16 possible

states. Exchanging residual variable therefore has to follow rules in Table 2 and

the final state after exchange can be achieved by simply deconstructing the RV

into B-functions, swap the variables as in DD and construct RViDD again by

substituting the terminal level functions with newly chosen RV. Rules for

exchanging RV are shown in Table 5, where only different outcomes are

displayed, rules with identical outcomes or outcomes where RV is simply replaced

by a new one (while maintaining position and negation of RV) are omitted.

Table 5

Rules for exchanging residual variable

Before exchange After exchange Before exchange After exchange

Binary vector

),,,(4321 vvvv

Binary vector

),,,(4231 vvvv
Values),(21 uu Values),(21 uu 

10,00 00,01
ix,0 0,jx

11,00 01,01 1,0 jj xx ,

00,01 10,00 0,ix
jx,0

01,01 11,00
ii xx , 1,0

10,10 00,11
ii xx , 0,1

11,10 01,11 1,ix
jx,1

00,11 10,10 0,1
jj xx ,

01,11 11,10
ix,1 1,jx

J. Lucansky et al. The Residual Variable in Decision Diagrams

 – 200 –

Figure 6

Replacement of residual variable in RViBDD

Replacing RV allows the modification of existing RViDD, which is more efficient

than constructing a new one with a different RV. Since the replacement of RV

needs to perform more operations than a common exchange of variables at

adjacent levels in DD, it can be used in conjunction with basic methods to find the

variable that appears to be most suitable for the position of RV. Although it

requires more steps, this appears to be the only drawback in computation time of

synthesis in RViDD. Example of RV replacement is shown in Figure 6.

3.2 RViDD Construction

Important advantage of RV is the fact that the final states (Table 3) are equal for

every decomposition. This automatically preserves the ability to apply reduction

rules to nodes in RViDD. Reduction rule I can still be applied to any 2 nodes with

2 identical successors. Reduction rule S can be used on any Shannon node that has

2 identical successors, even if both of them are RV, e.g. the right successor of x2

node in RViBDD in Figure 6. Reduction rule D applies to any Davio node whose

right successor is equal to terminal value 0.

Example 2: Suppose the input B-function f2 with 4 variables

f2(x2,x1,x3,x0)=0101011010011001. Unreduced BDD for f2 is shown in Figure 7.

Figure 7

BDD for f2 from Example 2

Acta Polytechnica Hungarica Vol. 17, No. 5, 2020

 – 201 –

Variable x0 is chosen as RV. Following the same steps presented in Section 2 -

Example 1, a modified truth table is constructed with vector of residual functions

Z2 (9). For simplicity, only Shannon decomposition is used. Unreduced RViBDD

for f2 is shown in Figure 8. Recursively applying reduction rules results in reduced

RViBDD shown in Figure 9.

),,,,,,,()),,,((0000000003122 xxxxxxxxxxxxZ  (9)

Figure 7 shows all nodes for the complete unreduced DD. With top-to-bottom

construction approach (synthesis) of DD, reduction rule I can be applied on any

node which shares characteristics with an already existing node – the same level,

variable, decomposition and identical successors. This eliminates the need to

synthesize entire subdiagram of the reduced node.

Figure 8

Unreduced RViBDD for f2 from Example 2

From Figure 7 and 8 it can be seen that RViBDD has half the node count of BDD

thanks to omitting the most numerous first level and replacing it with RV.

Reducing RViBDD is subject to the same reduction approach as DD but with

lower node count, therefore the time of reduction should be, in theory, halved.

Figure 9

Reduced RViBDD for f2 from Example 2

J. Lucansky et al. The Residual Variable in Decision Diagrams

 – 202 –

Constructing RViDD follows the same steps as a regular DD construction with

any decomposition. Thanks to properties of RV, reduction rules remain unchanged

and can be applied equally to DD and RViDD, which makes RV an important

contributor to size reduction in binary-based DDs. For DDs using only Shannon

decomposition, terminal values can be directly derived and the input B-function

can be immediately replaced with vector of residual functions, even before DD

construction. Thus the construction cost is minimized right after ordering phase.

Davio decompositions have a slight disadvantage, since the terminal values cannot

be directly estimated from the input function. The DD has to be constructed first

and only once the state of the first level is known can the RV be applied. Although

it has virtually no impact on construction time, it still lowers the number of nodes

to check for reduction rules by removing the most numerous level.

4 Experimental Results

The advantages RV brings to DD optimization were verified on benchmark

circuits LGSynth’93 [20]. The use of RV shows significant improvement in size

reduction as well as the expected improvement in synthesis time. As was already

mentioned in Section 3.2, RV effectively halves the size of DD and therefore

lowers the number of nodes that need to be checked for reduction suitability in

each iteration. Table 6 shows results achieved using only Shannon decomposition

so the use of different decomposition methods does not obscure the actual impact

of RV itself. Columns BDD and RViBDD show the number of nodes of reduced

and ordered DD and columns Size imp. and Time imp. indicate the improvement

in size and synthesis time respectively. Benchmarks marked with * used n orders

instead of n!, where n is the number of variables.

The average improvement in time needed for synthesis of reduced and ordered

RViBDD compared to BDD is 40.7% and in some cases rises up to 81.38%. The

size reduction shows improvement between 6.06% and 33.33%. It is important to

mention the possibility where the initial check on the most numerous level will not

apply any RV and the computation time may slightly increase. As can be seen,

this does not happen often and average computation time is lower in almost every

case. Presented results were achieved using a new algorithm that combines RV,

basic reduction rules and EA with following parameters:

 Check all possible orders and decomposition for functions with < 8 input

variables

 Population size: 500 (< 12 input variables), 200 (>= 12 and < 21 input

variables) or 100 (>= 21 input variables)

 Crossover probability: 80%

 Mutation probability: 20%

Acta Polytechnica Hungarica Vol. 17, No. 5, 2020

 – 203 –

 Elitism: 1%

 Iterations (population count): 100

Table 6

Residual variable impact on BDD

Benchmark BDD RViBDD Size imp. [%] Time imp. [%]

parity* 31 29 6.45 -

cm151a* 44 30 31.82 -

cm152a* 21 14 33.33 -

sao2 103 96 6.8 45.13

9sym 33 31 6.06 41.28

sqrt8 35 32 8.57 40.45

rd84 71 64 9.86 43.13

misex1 62 49 20.97 20.41

Inc 96 81 15.63 43.15

5xp1 76 59 22.37 34.94

xor5 9 7 22.22 30.64

con1 15 12 20 81.38

squart5 47 34 27.66 31.64

rd53 29 24 17.24 39.41

majority 7 6 14.29 29.23

Average 45.27 37.87 17.55 32.05

The overall percentage improvement in size reduction in RViDD for chosen

benchmarks is shown in Table 7. Columns S, pD and nD show the improvement

of reduced and ordered RViDD against unreduced and unordered DD with the

respective decomposition. Column RViKFDD shows the improvement when all 3

decompositions are combined with RV. It is obvious that the combination of all

decomposition methods provides the best results with average of 87.24% in

comparison to single decomposition used. RViKFDD takes advantage of EA not

only for population of orders, but for vector of decompositions as well (each

variable has exactly 1 decomposition assigned) using the same parameters

mentioned above with 2 exceptions – no fitness function and no elitism.

Table 7

Residual variable impact on size reduction in [%] with various decompositions

Benchmark S pD nD RViKFDD

misex1 89.64 85.62 89.43 90.7

Inc 92.02 89.46 89.66 92.12

5xp1 90.13 87.58 87.58 90.92

xor5 77.42 80.65 80.65 87.1

con1 87.23 84.04 85.11 88.3

squart5 86.29 85.48 84.27 87.5

J. Lucansky et al. The Residual Variable in Decision Diagrams

 – 204 –

rd53 74.19 78.49 78.49 80.65

majority 80.65 77.42 77.42 80.65

Average 84.70 73.59 84.08 87.24

Table 8

Comparison of various algorithms in size reduction

Benchmark BDD RViBDD RViKFDD PSO MMA Sifting

cordic 209 144 102 105 - 93

cm150a 32 31 31 32 - 33

mux 32 31 31 32 - 33

cm151a 32 30 29 32 - 34

sao2 103 96 96 91 85 92

9sym 33 31 25 - 33 33

sqrt8 35 32 31 33 33 42

rd84 71 64 46 - 59 59

misex1 62 49 44 36 36 41

Inc 96 81 80 79 61 68

5xp1 76 59 56 68 68 82

con1 15 12 11 16 15 18

squar5 47 34 31 37 37 38

rd53 29 24 18 - 23 23

Subsequent generations of decomposition chromosomes were chosen randomly.

Choosing the fitness of a certain decomposition is dependent on the input function

and order of variables, which is not known during population creation.

Newly proposed algorithm with RV was compared in matter of size with PSO,

MMA and Sifting, a method presented in [21]. This comparison is shown in Table

8 (using the same EA parameters as in Table 6). Column BDD shows reduced and

ordered BDD and is a clear indication that on its own, the Shannon decomposition

is not sufficient enough to achieve optimal results. Columns RViBDD and

RViKFDD show reduced and ordered results for their respective DD with RV

applied. It is again proved that a combination of all decompositions provides

better results than using a single decomposition. Applying RV provides

improvement not only in comparison to BDD, but also to other current methods in

field. Combination of RV and several decompositions shows better results in 10

out of 14 cases.

RV improvement in multi-parametric optimization of underlying circuits is shown

in Table 9. Since the number of nodes has usually the highest priority among all

parameters, input values for fitness functions were chosen accordingly:

 Number of nodes: 98%

 Average Path Length (APL): 1%

 Power Consumption (PC): 1%

Acta Polytechnica Hungarica Vol. 17, No. 5, 2020

 – 205 –

Achieved results could be optimized in other ways choosing different parameter,

e.g. if power consumption holds a higher level of importance in comparison to

area of circuit, its impact value could be higher and that of a size parameter could

be lower (the sum always has to add up to 100%).

Table 9

RV impact on Power Consumption and Average Path Length using Shannon decomposition

Benchmark In Out Size
PC

min.

PC

max.

PC

diff.

APL

min.

APL

max.

APL

diff.

cordic 23 2 144 28.36 30.38 6.66 11.75 14.09 16.63

cm150a 21 1 31 11.63 15.38 24.39 3.06 4.13 25.85

mux 21 1 31 15.38 15.38 0 3.06 3.06 0

t481 16 1 36 14.86 14.86 0 4.15 4.15 0

parity 16 1 29 14.5 14.5 0 15 15 0

cm151a 12 2 30 11.25 14.75 23.73 5.25 6.5 19.24

cm152a 11 1 14 7 7 0 3.25 3.25 0

sao2 10 4 96 23.52 28.88 18.54 10.33 12.36 16.44

9sym 9 1 31 10.22 11.22 8.92 7.13 8.13 12.31

sqrt8 8 4 32 13.43 14.23 5.65 9.94 11.31 12.15

rd84 8 4 64 24.52 24.52 0 22.36 22.36 0

misex1 7 7 49 18.91 20.44 7.49 16.75 19.06 12.13

inc 7 9 81 30.06 33.27 9.63 20.75 25.16 17.52

5xp1 7 10 59 27.82 29.5 5.69 21.66 23.34 7.23

con1 6 2 12 5.26 5.26 0 4.25 4.56 6.85

xor5 5 1 7 3.5 3.5 0 4 4 0

squar5 5 8 34 13.7 14.65 6.5 15.38 17 9.56

rd53 5 3 24 10.1 10.1 0 11.25 11.25 0

Columns In, Out and Size represent the number of inputs and outputs for each

benchmark and the size of RViBDD (only Shannon decomposition was used in

this table). Columns PC min., PC max. and PC diff. display the minimal and

maximal achievable power consumption (PC) and their difference in [%]. PC is

shown in relative value independent of technology used in circuit synthesis and is

directly proportional to the number of switches performed in circuit. This value

was estimated based on formulas presented in [19]. The final trinity of columns

marked as APL min., APL max. and APL diff. display the minimal and maximal

achievable values for APL and their difference in [%]. The highest achieved

improvement was 24.39% in PC and 25.58% in APL, while the average

improvement for all tested benchmarks comes down to 6.24% in PC and 9.47% in

APL. It can be observed that symmetric functions have little to no improvement in

both parameters due to limited changes in structure of DD during variable

reordering.

J. Lucansky et al. The Residual Variable in Decision Diagrams

 – 206 –

Conclusions

We have proposed a novel solution for the optimization of binary-based Decision

Diagrams (DD), by introducing new type of DD. Our RViDD (Residual Variable

in Decision Diagrams) uses one input variable as a residual variable which can be

utilized as another type of a terminal node. Thanks to this modification, the

optimized RViDD has almost half the nodes, compared to unoptimized DD with

the same variable ordering.

We proved that the same basic reduction rules can be used as well for RViDD as

for DD without any modification. Another well-known rule ‒ exchange of

adjacent variables ‒ remains also applicable with only a small modification in the

level of terminal nodes. We called this procedure “replacement of residual

variable” where residual variable (RV) can be replaced by any other input variable

which might prove to be necessary during optimization phase. Replacement of RV

leads up to 16 different possible states (compared to 4 in DD) out of which only 8

lead to other than simple 1:1 swapping of the old RV for a new one.

During experimental phase we chose several known types of DD (BDD, FDD,

KFDD) and created their equivalents with residual variable (RViBDD, RViFDD,

RViKFDD). Our focus was on comparison of three parameters, primarily on

number of nodes, but also on energy consumption and average path length (APL).

In average our solution (residual variable in DD) has 17.55% less nodes than the

solution without residual variable. Because RV can change the most suitable

decomposition for given benchmark circuit, a test comparing its impact on various

decompositions is presented. It is not a surprise that the best solution is based on

RViKFDD which uses all types of decompositions. Based on the previous

experiment, we were able to tell that residual variable is suitable for all types of

decomposition, because there were no exceptions (results with smaller

improvement).

We also tried to use more complicated optimization process by involving

evolutionary algorithm. We compared it with Sifting method (as reference),

Particle swarm optimization (PSO) and Modified memetic algorithm (MMA).

Even though evolutionary algorithm is not superior for PSO and MMA in every

case, our solution (RViBDD) was better in 8 cases (10 for RViKFDD) out of 14

benchmarks with improvement up to 22.51%. This proves the impact residual

variable has in optimization process.

The Residual variable also shows the positive impact on multi-parametric

optimization (number of nodes, power consumption and Average Path Length

(APL)). In average, dynamic power consumption of any underlying circuit should

be decreased by 6.24%. This is achieved by lowering the number of switches

performed in the circuit when traversing the diagram. APL improvement moves

around 9.47% for all tested benchmarks, which also shows RV can (positively)

affect the symmetry of the circuit, should it be one of the desired attributes.

Acta Polytechnica Hungarica Vol. 17, No. 5, 2020

 – 207 –

While all the presented results display a positive influence of residual variable on

DD optimization, there is still room for improvement. One such case would be to

introduce the logic of Free DDs [22] where the rule that each path from root to

terminal nodes has to follow the same order of variables is relaxed. Although this

greatly increases the complexity of the used algorithm, it is expected to bring an

even further decrease, in all observed parameters.

Acknowledgement

This work was supported by the Cultural and Educational Grant Agency of the

Slovak Republic (KEGA 011STU-4/2017) and ITMS 26240220084.

References

[1] R. Bryant, "Graph-Based Algorithms for Boolean Function Manipulation,"

in IEEE Transactions on Computers, Vol. C-35, No. 8, pp. 677-691, Aug.

1986, doi:10.1109/TC.1986.1676819

[2] R. E. Bryant, "Binary decision diagrams and beyond: enabling technologies

for formal verification," Proceedings of IEEE International Conference on

Computer Aided Design (ICCAD), San Jose, CA, USA, 1995, pp. 236-243,

doi:10.1109/ICCAD.1995.480018

[3] P. Pistek, “New multiplexer-based switching circuits synthesis methods.” in

Information Sciences and Technologies, Vol. 7, No. 1, pp 19-27, 2015

[4] A. Deb, et al, “Synthesis of Optical Circuits Using Binary Decision

Diagrams.” Integration, Vol. 59, pp. 42-51, May 2017,

doi:https://doi.org/10.1016/j.vlsi.2017.05.001

[5] R. Wille, P. Niemann, A. Zulehner and R. Drechsler, "Decision diagrams

for the design of reversible and quantum circuits," 2018 International

Symposium on Devices, Circuits and Systems (ISDCS), Howrah, 2018, pp.

1-6, doi:10.1109/ISDCS.2018.8379626

[6] Technology Roadmap for Semiconductors: Design. 2015:

https://www.semiconductors.org/resources/2015-international-technology-

roadmap-for-semiconductors-itrs/ (accessed June 1, 2016)

[7] B. Nagy, “Optimal Boolean Programming with Graphs.” in Acta

Polytechnica Hungarica, Vol. 16, No. 4, 2019,

doi:10.12700/APH.16.4.2019.4.12

[8] B. Becker and R. Drechsler, "How many decomposition types do we need?

[decision diagrams]," Proceedings the European Design and Test

Conference. ED&TC 1995, Paris, France, 1995, pp. 438-443, doi:

10.1109/EDTC.1995.470359

[9] L. Amarú, P. Gaillardon and G. De Micheli, "Majority-Inverter Graph: A

New Paradigm for Logic Optimization," in IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol. 35, No. 5,

pp. 806-819, May 2016, doi: 10.1109/TCAD.2015.2488484

[10] L. Amarú, P. Gaillardon and G. De Micheli, "BDS-MAJ: A BDD-based

logic synthesis tool exploiting majority logic decomposition," 2013 50th

https://www.semiconductors.org/resources/2015-international-technology-roadmap-for-semiconductors-itrs/
https://www.semiconductors.org/resources/2015-international-technology-roadmap-for-semiconductors-itrs/

J. Lucansky et al. The Residual Variable in Decision Diagrams

 – 208 –

ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX,

2013, pp. 1-6, doi: 10.1145/2463209.2488792

[11] B. Bollig and I. Wegener, "Improving the variable ordering of OBDDs is

NP-complete," in IEEE Transactions on Computers, Vol. 45, No. 9, pp.

993-1002, Sept. 1996, doi: 10.1109/12.537122

[12] R. Gerov, Z. Jovanovic, “Parameter Estimation Method for the Unstable

Time Delay Process.” In Acta Polytechnica Hungarica, Vol. 16, No. 3,

2019, doi: 10.12700/APH.16.3.2019.3.6

[13] P. Pistek, M. Kolesar and K. Jelemenska, "Optimization of multiplexer

trees using modified truth table," 2010 International Conference on Applied

Electronics, Pilsen, 2010, pp. 1-4

[14] R. Ebendt, G. Fey, R. Drechsler, ”Advanced BDD Optimization” (1. ed.).

Netherlands: Springer, 2005, 222p, ISBN 978-0-387-25453-, doi:

10.1007/b107399

[15] M. Rice, S. Kulhari, “A Survey of Static Variable Ordering Heuristics for

Efficient BDD/MDD Construction”. University of California, CA, USA,

Tech. Rep., 2008 [Online] Available: shorturl.at/cCGMR

[16] S. J. Friedman and K. J. Supowit, "Finding the optimal variable ordering

for binary decision diagrams," in IEEE Transactions on Computers, Vol.

39, No. 5, pp. 710-713, May 1990, doi: 10.1109/12.53586

[17] A. Mitra and S. Chattopadhyay, "Variable ordering for shared binary

decision diagrams targeting node count and path length optimisation using

particle swarm technique," in IET Computers & Digital Techniques, Vol. 6,

No. 6, pp. 353-361, November 2012, doi: 10.1049/iet-cdt.2011.0051

[18] S. Rehan, M. Bansal, “Performance Comparison among Different

Evolutionary Algorithms in terms of Node Count Reduction in BDDs” in

International Journal of VLSI and Embedded Systems, Vol. 4, pp. 491-496,

July 2013

[19] R. Marcolescu, R. Marculescu, M. Pedram, "Efficient Power Estimation for

Highly Correlated Input Streams," 32nd Design Automation Conference,

San Francisco, CA, 1995, pp. 628-634, doi: 10.1145/217474.217601

[20] K. McElvain, “LGSynth93 Benchmark Set: Version 4.0”, 1993. Distributed

by NC State University. Available:

https://ddd.fit.cvut.cz/prj/Benchmarks/IWLS93.7z

[21] R. Rudell, "Dynamic variable ordering for ordered binary decision

diagrams," Proceedings of 1993 International Conference on Computer

Aided Design (ICCAD), Santa Clara, CA, USA, 1993, pp. 42-47, doi:

10.1109/ICCAD.1993.580029

[22] J. Bern, J. Gergov, C. Meinel and A. Slobodova, "Boolean manipulation

with free BDD's. First experimental results," Proceedings of European

Design and Test Conference EDAC-ETC-EUROASIC, Paris, France, 1994,

pp. 200-207, doi: 10.1109/EDTC.1994.326915

