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Abstract: We propose a novel method for binary-based decision diagrams (DD) which uses 

a residual variable. A new type of DD – Residual Variable in decision diagram (RViDD) 

allows to work without the use of the lowest and the most numerous level of nodes but at 

the same time preserves all the fundamental characteristics of DD. Thanks to these 

properties, it allows the use of all existing algorithms for optimization with only slight or 

no modification. In this paper we present the required characteristics for providing 

compatibility between DD using different decompositions and RViDD as well as the 

exchange of residual variable without the necessity of constructing a new RViDD. 

Proposed method was experimentally validated on benchmark circuits with various types of 

experiments. We use exhaustive (all input variable combination) comparative between 

reduced and ordered DD and RViDD with the average improvement up to 17.55%. Since 

optimization of DD is a NP-complete problem, we also include the usage of evolutionary 

algorithm for RViDD in comparison to more effective algorithms. 
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1 Introduction 

The idea to use Decision Diagrams (DDs) in computer science is a longstanding 

one. The widespread use of DDs started with [1] when a set of algorithms for 

constructing and operating on DDs as data structures was introduced. Since then, 

DDs have come a long way and numerous applications have been found with the 

byproduct of numerous forms of DDs [2]. Some of these applications, nowadays, 

include, but are not limited to, formal verification, logic synthesis, test generation, 

classification techniques or network security. One of the areas that has greatly 

benefited from the use of DDs is circuit design. With conventional technologies 

slowly approaching their physical limits and with continuous emphasis on high 

speed and low power requirements, the need for optimizing circuits at design level 

becomes more and more important and DDs are a natural way to achieve that. A 

good example can be found in [3] where Binary DDs (BDD) have been used to 

optimize logical circuits based on multiplexers (multiplexer trees) or in [4], where 

BDDs are used for synthesis of optical circuits. Another example of their ongoing 
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importance can be found in [5], where DDs are used for the design of reversible 

and quantum circuits. The problem of power consumption increased in importance 

in the last years and is usually highlighted on system level. Today, as IoT devices 

use many sensors, it is essential to lower energy consumption as much as possible 

at any level of abstraction [6]. It is worth mentioning that DDs are not the only 

alternative and several types of graphs can be used as SAT solvers [7]. 

An extensive research regarding the use of various types of DDs has already been 

done. Among the most popular ones are BDDs, which are based on Shannon 

decomposition of Boolean function. As mentioned in [8], only 2 types of 

decomposition have an impact on DD area reduction – Shannon and Reed-Muller 

(sometimes called Davio). DDs that make use of Davio decomposition, either its 

positive or negative form, are called Functional DDs (FDD) and a combination of 

both types of decomposition results in Kronecker Functional DD (KFDD). 

Applying reduction techniques and respecting a certain order of variables for input 

functions results in Reduced Ordered DD, which based on the decomposition used 

can result in either ROBDD, ROFDD or ROKFDD. Keeping track of these 

abbreviations becomes hard to remember and sometimes counterintuitive 

(accurately called “alphabet soup” in [2]). The need for various types of DD 

prevails as each type and mainly the decomposition used has its own advantages 

with regards to the input function. Experimental results suggest that BDDs are 

more suitable for reduction of control functions and KFDDs perform better with 

symmetric data functions. Moreover, there are many types of logic gates 

represented by DD, e.g. BDD nodes can be directly transformed into 2:1 

multiplexers and used to construct a multiplexer tree. Several advanced techniques 

with various different gates can also be found in [9] and [10]. For the purpose of 

this paper, suppose the Reduced and Ordered notification to be implicit. 

Scaling remains a major problem for all types of DD. The ordering complexity for 

an input function with n variables is factorial, the input Boolean function contains 

2n bits and was proven to be a NP-complete problem [11]. To be absolutely sure 

that the chosen order is the most suitable one for reduction, all order combinations 

should be tested. Several methods and heuristics from static variable ordering to 

complex ordering algorithms were combined with DD in order to address scaling 

problems. Promising results were achieved with Evolutionary Algorithms (EA), 

which can be used not only for area reduction, but to simultaneously focus on 

optimization of multiple parameters, such as Average Path Length (APL) or 

power consumption. APL is critical for circuit’s delay when the majority of paths 

have equal probability of being traversed. The delay can have the highest priority 

among given parameters at all levels of abstraction [12]. 

To further increase the number of types of DD, we propose yet another type of 

DD with yet another abbreviation – RViDD. This type of DD exploits the 

advantages of Residual variable used at the lowest level of DD and effectively 

decreases the complexity of n+1 variable input to that of n variable input by 

replacing one variable with an exact logic value representation. We present the 

experimental results achieved with a combination of Residual variable and EA. 
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2 Preliminaries 

The input for DD is a Boolean function (B-function) f:Bn→B over a set of 

variables Xn denoted as f(x0,x1,…,xn-1) = y. Variables are ordered based on 

significance from left to right, denoted by their index, where the order of input 

variables corresponds to the decreasing weights assigned to the variables from left 

to right, starting from the weight of 2n-1 for variable x0 down to the weight of 20 

for xn-1. Any B-function f specified by its binary vector y and a fixed variable 

ordering can be easily expressed as a DD [3]. For easier transformation to residual 

function, the given B-function can be represented by modified truth table shown in 

Table 1. 

Table 1 

Modified truth table of B-function 

1x  2x  ... 2nx  1nx  

y  

0x  
0x  

0 0 ... 0 0 f(2n-1) f(0) 

0 0 ... 0 1 f(2n-1+1) f(1) 

0 0 ... 1 0 f(2n-1+2) f(2) 
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1 1 ... 1 0 f(2n-2) f(2n-1-2) 

1 1 ... 1 1 f(2n-1) f(2n-1-1) 

The modification of given function to a function of residual variables can be done 

by representing the binary vector of function as a canonical matrix (1). Such 

matrix [13] contains 2(n-1) columns of two rows. Each column represents a pair of 

values 0x  (bottom row) and 0x  (top row) of the function. 
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Decomposition of B-function takes the input binary vector y of length 2n and 

produces an output of 2 vectors of length 2n/2. Shannon decomposition for 

variable xi effectively splits the vector in half based on the value of variable, the 

true half for )(xf
ix

 and the false half for )(xf
ix

. Similarly, positive Davio 

decomposition outputs 2 vectors consisting of the false half and an eXclusive OR 

(XOR) of both halves, and negative Davio decomposes the vector into the true 

half and a logical XOR of both halves. Decomposition functions are shown in 

formula (2), (3) and Figure 1. 
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Variable xi is a chosen variable with decomposition applied to it. 

                        );(0 xff
ix

        );(1 xff
ix          )( 102 fff   (2) 

                         ;. 10 ffS      ;. 20 fxfpD i     
21 . fxfnD i  (3) 

 

Figure 1 

Three types of decompositions – Shannon (S), positive Davio (pD) and negative Davio (nD) from 

Formula 2 and 3 

DD is a directed acyclic graph consisting of one root node, several intermediate 

nodes and up to two terminal nodes representing logical values true and false, 

usually labeled 1 and 0 respectively. Each non-terminal node is labeled by a 

Boolean variable xi, depending on its position in the input order. Non-terminal 

nodes in unoptimized DD have one ingoing edge (with the exception of root node) 

and two outgoing edges labeled low and high representing the value of function fi 

according to decomposition of the parent node. Each non-root non-terminal node 

is a root to a separate diagram called subdiagram. 

DD optimization methods can be divided into two categories [14]: 

1. DD ordering – results in Ordered Decision Diagram (ODD), which 

respects a given order of input variables. Variable ordering has a major 

impact on effectiveness of DD reduction. 

2. DD reduction – when applied on ODD, results in Reduced ODD 

(ROBDD/ROKFDD) which has a lower node count than unreduced DD. 

Completely reduced DD represents a canonical form of DD. RODD 

respects three rules: 

a. Uniqueness (Type I) – no two distinct nodes u and v represent 

the same variable, have the same decomposition and have the 

same left and right successor. Reduction is applied when var(u) 

= var(v), dec(u) = dec(v), left(u) = left(v), right(u) = right(v) 

which implies u = v. 

b. Non-redundancy for Shannon node (Type S) – no variable node 

u has identical left and right successor. Reduction is applied 

when left(u) = right(u). 

c. Non-redundancy for Davio node (Type D) – no variable node u 

has the right successor equal to terminal node 0. Reduction is 

applied when right(u) = 0. 
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Figure 2 

Exchange of adjacent variables in DD 

As was already mentioned, the creation of an optimal DD has exponential increase 

in complexity. To further optimize a DD, an optimal input variable ordering has to 

be found. For circuits consisting of larger number input variables, searching the 

entire space of possibilities becomes unrealistic in acceptable time. Several 

methods were explored in ordering complexity mitigation with various degrees of 

reduction in final node count (size) of RODD. These methods can be separated 

into categories based on the complexity of underlying algorithm. 

Basic methods are simple modifications in variable ordering. One such example is 

the exchange of adjacent variables on the same level in DD. The goal of 

exchanging variables at k and k +1 level for the DD G of function f is to transform 

G to DD G‘ of function f. The only difference between variable ordering π and π' 

is only at levels k and k +1 and can be expressed as π (k) = π '(k +1) and π (k +1) 

= π' (k). Exchange of adjacent variables does not affect the upper and lower levels 

in DD and is illustrated in Figure 2 [15]. 

In heuristic methods, the ordering of variables will be determined according to the 

information available about the issue before the construction of DD itself. Force 

algorithm [15] belongs among the best known algorithms in this category. The 

idea behind Force is simple - the algorithm computes the forces acting upon each 

variable and displaces the variables in the direction of the forces acting upon 

them. In Force, a CNF formula is viewed as a hypergraph, where the formula’s 

variables correspond to vertices and clauses correspond to hyperedges. The 

algorithm itself determines two values during execution and iteratively uses them 

to order the variables. Another heuristic method [16] is based on the proven 

assumption that the number of nodes in a particular level of DD depends only on 

the arrangement of variables at lower levels. The algorithm of this method 

sequentially places all the variables to the first level and determines to which of 

them it received the least number of nodes. This variable (or several variables) is 

saved for the chosen level and the remaining variables are tested at upper levels. 

This process is repeated until the final DD is obtained. Algorithm complexity 

remains exponential, but provides better parameters than iterating through all 

possible variable orderings. 
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The third and final category consists of alternative methods based on evolutionary 

algorithms (EA). EA belong to a state-of-art in optimization algorithms. The core 

term of EA is population, which represents a set of chromosomes. Chromosome 

can be either the input order of variables or decompositions represented as a 

vector of genes, such as {x0,x5,x6,x3,x2,x1,x4,x7}. In this case, each gene is a variable 

in particular order (chromosome) of given population of orders. A population of a 

specific stage of EA is called generation. Initial population, or the first generation, 

is created using randomly generated chromosomes, which are then sorted through 

based on their fitness value to form a new generation. 

After creating a population, a fitness value is calculated for each chromosome. 

The underlying algorithm of fitness calculation depends on the targeted problem. 

An example of multi-parametric fitness formula can be seen in (4) where Ar, Pw 

and Ap are the coefficients setting percentage weights of optimized parameters and 

their sum Ar + Pw + Ap should be equal to 1 at all the times. The formula also 

contains 3 parameters (area, power consumption and APL) that have their 

orderings normalized to range (0,1). 

normalizedaplAnormalizedpowerP

normalizedareaAfitness

pw

r

__

_



  (4) 

Most fit chromosomes, then have a certain probability of genetic operations being 

applied to them to increase the diversity of current generation and decrease the 

chance of getting stuck in a local optimum. Some forms of EA also introduce a 

technique called elitism which ensures the preservation of the best chromosomes 

across generations in order to make sure subsequent generations never provide 

worse, and therefore useless, results than the previous generations. 

Chromosomes of the current generation are selected based on their fitness value. 

At this point, EA starts to populate a new generation by selecting chromosomes 

from current generation and applying genetic mutation and crossover. A genetic 

mutation in vector of variables (chromosome) is to invert a random gene in 

chromosome. This operation is implemented as a swap of the variable on a 

random position and the variable positioned on the complementary position. For 

example, a mutation in chromosome of length 8, at position 2, is illustrated in 

Figure 3. 

 

Figure 3 

Mutation example 

The second genetic operation called crossover causes two selected chromosomes 

to be cut at the same randomly chosen point and exchange their segments. In some 

variations, two points can be randomly selected in one chromosome and the 
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segment between these two points is then replaced with the segment on the same 

position in paired chromosome. Since a simple exchange of the parts of variable 

orderings can violate the uniqueness of each variable, this operation usually has to 

be corrected. Variables that are already present in the unchanged part of 

chromosome are replaced with unused variables. Crossover is illustrated in Figure 

4, where variable 5 in the first chromosome and variable 6 in the second were 

corrected. 

Figure 4 

Crossover example 

EA starts with the creation of a new population (in this work we also reuse 

previous generations several times) and keeps applying mutation and crossover on 

selected chromosomes with predefined probability. The size of population as well 

as the probability of EA operations are a subject to research themselves and can 

vary depending of the application of EA. 

Several variations of EAs exist. For example, Particle Swarm Optimization (PSO) 

[17] is a population-based stochastic technique inspired by social behavior of bird 

flocking or fish schooling. In PSO, the potential solutions called particles fly 

through the problem space by following the current optimum particles. Particles 

learn from their past experiences, learn from experience of others and finally 

converge near the solution, which may be the best or a suitably good solution after 

satisfying a definite termination criterion. The particles sense their proximity to a 

good solution using a fitness function [18]. Another variation of EA with 

interesting results is modified memetic algorithm (MMA) [18]. The key feature of 

MMA is the use of various techniques of local search. While the gene that passes 

on the offspring cannot be changed (except for mutations) in the classic EA, 

memes transmit information among themselves so as to best suit the evaluation 

function (for example through local searches) in MMA which happens through 

knowledge of the solution’s local space. 

All the previously mentioned, algorithms share the same feature, which is that 

they primarily focus on size reduction. Number of nodes in DD is directly 

proportional to the size of represented circuit and has impact on other parameters 

as well, e.g. if the DD (and most notably BDD) is used as representation of a 

multiplexer tree, each node corresponds to a multiplexer and the dynamic power 

consumption of entire circuit can be easily estimated [19]. 
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3 Residual Variable 

If n variable B-function is to be implemented using the complexity of DD with n-1 

variables, one of the input variables must to be available in both direct and 

complemented form. The input variable order has to be modified in a way where 

this particular variable has the highest weight in binary vector. 

Definition 1 – If the presences in a function of n variables are identified (e.g. by 

their order in truth table), it is possible to assign a weight to these variables. The 

variable with the highest weight can then be removed from the vector of variables 

and replaced with logic value in direct and complemented form. Such variable is 

called a residual variable (RV). An arbitrary variable may be a RV if it is 

available both in direct and complemented form, otherwise the transformation of 

RViDD to a specific circuit would require an additional NOT logic gate. 

Definition 2 – If RV is identified in a function of n variables, the circuit 

representation of this function can be transformed into a circuit representation of 

function with n-1 variables where the RV is connected to the data input. 

Definition 3 – DD for the function f with n variables is called RViDD (Residual 

Variable in DD), if one variable is the residual variable and it is also a terminal 

node of RViDD. 

To create a DD with n-1 variables, the existing procedure repeats decomposition 

until it reaches the level defined by the formula 5 with chosen variable xn 

)),1((:),,( 101
cnvectorfxxf ncxn


  (5) 

In formula 5, c is a constant, xn-1 = c, (c ∈ {0, 1}) and (vector n-1) contains 

corresponding substitution of 0s and 1s according to the given order of variables 

x0,…xn-1 in the upper levels of DD and its particular propagation path. for given 

variables x0,…xn-1 is obtained. 

In the case where the decomposition of input function is stopped one iteration 

earlier, formula 5 is transformed into formula 6. 

),),2((:),,,( 11202  
 nnncx xcnvectorfxxxf

n
  (6) 

In formula 6, c is a constant, xn-2 = c, (c ∈ {0, 1}) and (vector n-2) contains 

corresponding substitution of 0s and 1s according to the given order of variables 

x0,…xn-2 in the upper levels of DD and its particular propagation path. It is possible 

by using this method to achieve up to four final states, or rather substitution rules, 

which depend on the value c and xn-1. Substitution rules take 2 input values and 

provide 1 output value, which represents RV, as shown in Table 2, where v1 

represents )),2(( 1 nxnvectorf , v2 represents )),2(( 1 nxnvectorf  

and ui represents value of i-th leaf in RViDD. 
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Table 2 

Substitution rules for residual functions 

Rule 
1v  2v  iu  

0 0 0 0 

1 0 1 1nx  

2 1 0 
1nx  

3 1 1 1 

Using formula (2), (3) and rules in Table 2, final states of RV obtained with every 

decomposition are shown in Table 3 for any chosen residual variable (xi). 

Table 3 

Final states of residual variable xi for every decomposition 

f0 f1 
f2 

(f0f1) 

Function value Final state 

S pD nD S pD nD 

0 0 0 0.0 0.0 ix  0.0 ix  0 0 0 

0 1 1 0.1 1.0 ix  1.1 ix  
ix  

ix  
ix  

1 0 1 1.0 1.1 ix  1.0 ix  
ix  

ix  
ix  

1 1 0 1.1 0.1 ix  0.1 ix  1 1 1 

Example 1: Suppose the input B-function f1 with 4 variables in given order 

f1(x2,x0,x1,x3)=1000010001011011 where variable x2 is chosen as RV. For 

simplicity, only Shannon decomposition is used. Truth table and its modified 

version for f1 are shown in Table 4. Results in column y can be expressed as a 

canonical matrix B1 of resulting values (7). The first row represents vector v1 from 

Table 2 and the second row represents values from vector v2. 

11011010

00100001
)),,,(( 31021 xxxxB  (7) 

Using substitution rules in Table 2, canonical matrix (7) can be expressed as a 

vector Z1 of residual functions (8). Notice that the length of vector Z1 is half the 

length of input vector f1. Same steps apply for all decomposition types (Table 3). 

),,,,,0,,()),,,(( 222222231021 xxxxxxxxxxxZ   (8) 

3.1 Replacement of Residual Variable 

Since RViDD is a new type of DD, it is important to maintain properties for basic 

reduction rules in order to reuse existing reduction and optimization algorithms 

developed mainly for BDD or KFDD. As a consequence, main features of DD 
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with any type of decomposition are preserved and the DD can be directly 

compared to RViDD in terms of various factors, such as size (node count). 

Table 4 

Modified truth table for f1 from Example 1 

2x  0x  
1x  3x  y        

0 0 0 0 1      

0 0 0 1 0      

0 0 1 0 0 

0x  
1x  3x  

y  

0 0 1 1 0 
2x  

2x  

0 1 0 0 0 0 0 0 0 1 

0 1 0 1 1 0 0 1 1 0 

0 1 1 0 0 0 1 0 0 0 

0 1 1 1 0 0 1 1 1 0 

1 0 0 0 0 1 0 0 1 0 

1 0 0 1 1 1 0 1 0 1 

1 0 1 0 0 1 1 0 1 0 

1 0 1 1 1 1 1 1 1 0 

1 1 0 0 1      

1 1 0 1 0      

1 1 1 0 1      

1 1 1 1 1      

Transformation of DD node at the first level to RViDD node is done according to 

rules in Table 3 where the residual functions are replaced with corresponding final 

state of RV (Figure 5). This transformation applies to all decompositions since 

their final states are equal for each input. Upper levels of RViDD remain 

unchanged and identical to their DD counterpart. 

 

Figure 5 

Example of transformation of DD node to RViDD node 
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An important feature in reduction, is the exchange of adjacent variables. Although 

the exchange itself is not very efficient, it serves as the basis for many algorithms. 

If adjacent variables are exchanged (levels i and j) then variable ordering of given 

function is modified from f(x0,…,xi,xj,…,xn-1) to f(x0,…,xj,xi,…,xn-1) without 

disrupting upper and lower levels. This approach remains unchanged if none of 

the variables is positioned at the first level, i.e. none of the variables is a RV. 

Replacing RV with another variable requires a few more steps. While terminal 

nodes in DD can only have 2 values {0,1}, which lead up to 4 possible states 

{00,01,10,11}, RViDD has 4 values {0,1, ii xx , }, which lead up to 16 possible 

states. Exchanging residual variable therefore has to follow rules in Table 2 and 

the final state after exchange can be achieved by simply deconstructing the RV 

into B-functions, swap the variables as in DD and construct RViDD again by 

substituting the terminal level functions with newly chosen RV. Rules for 

exchanging RV are shown in Table 5, where only different outcomes are 

displayed, rules with identical outcomes or outcomes where RV is simply replaced 

by a new one (while maintaining position and negation of RV) are omitted. 

Table 5 

Rules for exchanging residual variable 

Before exchange After exchange Before exchange After exchange 

Binary vector 

),,,( 4321 vvvv  

Binary vector 

),,,( 4231 vvvv  
Values ),( 21 uu  Values ),( 21 uu   

10,00  00,01  
ix,0  0,jx  

11,00  01,01  1,0  jj xx ,  

00,01  10,00  0,ix  
jx,0  

01,01  11,00  
ii xx ,  1,0  

10,10  00,11  
ii xx ,  0,1  

11,10  01,11  1,ix  
jx,1  

00,11  10,10  0,1  
jj xx ,  

01,11  11,10  
ix,1  1,jx  
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Figure 6 

Replacement of residual variable in RViBDD 

Replacing RV allows the modification of existing RViDD, which is more efficient 

than constructing a new one with a different RV. Since the replacement of RV 

needs to perform more operations than a common exchange of variables at 

adjacent levels in DD, it can be used in conjunction with basic methods to find the 

variable that appears to be most suitable for the position of RV. Although it 

requires more steps, this appears to be the only drawback in computation time of 

synthesis in RViDD. Example of RV replacement is shown in Figure 6. 

3.2 RViDD Construction 

Important advantage of RV is the fact that the final states (Table 3) are equal for 

every decomposition. This automatically preserves the ability to apply reduction 

rules to nodes in RViDD. Reduction rule I can still be applied to any 2 nodes with 

2 identical successors. Reduction rule S can be used on any Shannon node that has 

2 identical successors, even if both of them are RV, e.g. the right successor of x2 

node in RViBDD in Figure 6. Reduction rule D applies to any Davio node whose 

right successor is equal to terminal value 0. 

Example 2: Suppose the input B-function f2 with 4 variables 

f2(x2,x1,x3,x0)=0101011010011001. Unreduced BDD for f2 is shown in Figure 7. 

 

Figure 7 

BDD for f2 from Example 2 
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Variable x0 is chosen as RV. Following the same steps presented in Section 2 - 

Example 1, a modified truth table is constructed with vector of residual functions 

Z2 (9). For simplicity, only Shannon decomposition is used. Unreduced RViBDD 

for f2 is shown in Figure 8. Recursively applying reduction rules results in reduced 

RViBDD shown in Figure 9. 

),,,,,,,()),,,(( 0000000003122 xxxxxxxxxxxxZ   (9) 

Figure 7 shows all nodes for the complete unreduced DD. With top-to-bottom 

construction approach (synthesis) of DD, reduction rule I can be applied on any 

node which shares characteristics with an already existing node – the same level, 

variable, decomposition and identical successors. This eliminates the need to 

synthesize entire subdiagram of the reduced node. 

 

Figure 8 

Unreduced RViBDD for f2 from Example 2 

From Figure 7 and 8 it can be seen that RViBDD has half the node count of BDD 

thanks to omitting the most numerous first level and replacing it with RV. 

Reducing RViBDD is subject to the same reduction approach as DD but with 

lower node count, therefore the time of reduction should be, in theory, halved. 

 

Figure 9 

Reduced RViBDD for f2 from Example 2 
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Constructing RViDD follows the same steps as a regular DD construction with 

any decomposition. Thanks to properties of RV, reduction rules remain unchanged 

and can be applied equally to DD and RViDD, which makes RV an important 

contributor to size reduction in binary-based DDs. For DDs using only Shannon 

decomposition, terminal values can be directly derived and the input B-function 

can be immediately replaced with vector of residual functions, even before DD 

construction. Thus the construction cost is minimized right after ordering phase. 

Davio decompositions have a slight disadvantage, since the terminal values cannot 

be directly estimated from the input function. The DD has to be constructed first 

and only once the state of the first level is known can the RV be applied. Although 

it has virtually no impact on construction time, it still lowers the number of nodes 

to check for reduction rules by removing the most numerous level. 

4 Experimental Results 

The advantages RV brings to DD optimization were verified on benchmark 

circuits LGSynth’93 [20]. The use of RV shows significant improvement in size 

reduction as well as the expected improvement in synthesis time. As was already 

mentioned in Section 3.2, RV effectively halves the size of DD and therefore 

lowers the number of nodes that need to be checked for reduction suitability in 

each iteration. Table 6 shows results achieved using only Shannon decomposition 

so the use of different decomposition methods does not obscure the actual impact 

of RV itself. Columns BDD and RViBDD show the number of nodes of reduced 

and ordered DD and columns Size imp. and Time imp. indicate the improvement 

in size and synthesis time respectively. Benchmarks marked with * used n orders 

instead of n!, where n is the number of variables. 

The average improvement in time needed for synthesis of reduced and ordered 

RViBDD compared to BDD is 40.7% and in some cases rises up to 81.38%. The 

size reduction shows improvement between 6.06% and 33.33%. It is important to 

mention the possibility where the initial check on the most numerous level will not 

apply any RV and the computation time may slightly increase. As can be seen, 

this does not happen often and average computation time is lower in almost every 

case. Presented results were achieved using a new algorithm that combines RV, 

basic reduction rules and EA with following parameters: 

 Check all possible orders and decomposition for functions with < 8 input 

variables 

 Population size: 500 (< 12 input variables), 200 (>= 12 and < 21 input 

variables) or 100 (>= 21 input variables) 

 Crossover probability: 80% 

 Mutation probability: 20% 
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 Elitism: 1% 

 Iterations (population count): 100 

Table 6 

Residual variable impact on BDD 

Benchmark BDD RViBDD Size imp. [%] Time imp. [%] 

parity* 31 29 6.45 - 

cm151a* 44 30 31.82 - 

cm152a* 21 14 33.33 - 

sao2 103 96 6.8 45.13 

9sym 33 31 6.06 41.28 

sqrt8 35 32 8.57 40.45 

rd84 71 64 9.86 43.13 

misex1 62 49 20.97 20.41 

Inc 96 81 15.63 43.15 

5xp1 76 59 22.37 34.94 

xor5 9 7 22.22 30.64 

con1 15 12 20 81.38 

squart5 47 34 27.66 31.64 

rd53 29 24 17.24 39.41 

majority 7 6 14.29 29.23 

Average 45.27 37.87 17.55 32.05 

The overall percentage improvement in size reduction in RViDD for chosen 

benchmarks is shown in Table 7. Columns S, pD and nD show the improvement 

of reduced and ordered RViDD against unreduced and unordered DD with the 

respective decomposition. Column RViKFDD shows the improvement when all 3 

decompositions are combined with RV. It is obvious that the combination of all 

decomposition methods provides the best results with average of 87.24% in 

comparison to single decomposition used. RViKFDD takes advantage of EA not 

only for population of orders, but for vector of decompositions as well (each 

variable has exactly 1 decomposition assigned) using the same parameters 

mentioned above with 2 exceptions – no fitness function and no elitism. 

Table 7 

Residual variable impact on size reduction in [%] with various decompositions 

Benchmark S pD nD RViKFDD 

misex1 89.64 85.62 89.43 90.7 

Inc 92.02 89.46 89.66 92.12 

5xp1 90.13 87.58 87.58 90.92 

xor5 77.42 80.65 80.65 87.1 

con1 87.23 84.04 85.11 88.3 

squart5 86.29 85.48 84.27 87.5 
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rd53 74.19 78.49 78.49 80.65 

majority 80.65 77.42 77.42 80.65 

Average 84.70 73.59 84.08 87.24 

Table 8 

Comparison of various algorithms in size reduction 

Benchmark BDD RViBDD RViKFDD PSO  MMA Sifting 

cordic 209 144 102 105 - 93 

cm150a 32 31 31 32 - 33 

mux 32 31 31 32 - 33 

cm151a 32 30 29 32 - 34 

sao2 103 96 96 91 85 92 

9sym 33 31 25 - 33 33 

sqrt8 35 32 31 33 33 42 

rd84 71 64 46 - 59 59 

misex1 62 49 44 36 36 41 

Inc 96 81 80 79 61 68 

5xp1 76 59 56 68 68 82 

con1 15 12 11 16 15 18 

squar5 47 34 31 37 37 38 

rd53 29 24 18 - 23 23 

Subsequent generations of decomposition chromosomes were chosen randomly. 

Choosing the fitness of a certain decomposition is dependent on the input function 

and order of variables, which is not known during population creation. 

Newly proposed algorithm with RV was compared in matter of size with PSO, 

MMA and Sifting, a method presented in [21]. This comparison is shown in Table 

8 (using the same EA parameters as in Table 6). Column BDD shows reduced and 

ordered BDD and is a clear indication that on its own, the Shannon decomposition 

is not sufficient enough to achieve optimal results. Columns RViBDD and 

RViKFDD show reduced and ordered results for their respective DD with RV 

applied. It is again proved that a combination of all decompositions provides 

better results than using a single decomposition. Applying RV provides 

improvement not only in comparison to BDD, but also to other current methods in 

field. Combination of RV and several decompositions shows better results in 10 

out of 14 cases. 

RV improvement in multi-parametric optimization of underlying circuits is shown 

in Table 9. Since the number of nodes has usually the highest priority among all 

parameters, input values for fitness functions were chosen accordingly: 

 Number of nodes: 98% 

 Average Path Length (APL): 1% 

 Power Consumption (PC): 1% 
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Achieved results could be optimized in other ways choosing different parameter, 

e.g. if power consumption holds a higher level of importance in comparison to 

area of circuit, its impact value could be higher and that of a size parameter could 

be lower (the sum always has to add up to 100%). 

Table 9 

RV impact on Power Consumption and Average Path Length using Shannon decomposition 

Benchmark In Out Size 
PC 

min. 

PC 

max. 

PC 

diff. 

APL 

min. 

APL 

max. 

APL 

diff. 

cordic 23 2 144 28.36 30.38 6.66 11.75 14.09 16.63 

cm150a 21 1 31 11.63 15.38 24.39 3.06 4.13 25.85 

mux 21 1 31 15.38 15.38 0 3.06 3.06 0 

t481 16 1 36 14.86 14.86 0 4.15 4.15 0 

parity 16 1 29 14.5 14.5 0 15 15 0 

cm151a 12 2 30 11.25 14.75 23.73 5.25 6.5 19.24 

cm152a 11 1 14 7 7 0 3.25 3.25 0 

sao2 10 4 96 23.52 28.88 18.54 10.33 12.36 16.44 

9sym 9 1 31 10.22 11.22 8.92 7.13 8.13 12.31 

sqrt8 8 4 32 13.43 14.23 5.65 9.94 11.31 12.15 

rd84 8 4 64 24.52 24.52 0 22.36 22.36 0 

misex1 7 7 49 18.91 20.44 7.49 16.75 19.06 12.13 

inc 7 9 81 30.06 33.27 9.63 20.75 25.16 17.52 

5xp1 7 10 59 27.82 29.5 5.69 21.66 23.34 7.23 

con1 6 2 12 5.26 5.26 0 4.25 4.56 6.85 

xor5 5 1 7 3.5 3.5 0 4 4 0 

squar5 5 8 34 13.7 14.65 6.5 15.38 17 9.56 

rd53 5 3 24 10.1 10.1 0 11.25 11.25 0 

Columns In, Out and Size represent the number of inputs and outputs for each 

benchmark and the size of RViBDD (only Shannon decomposition was used in 

this table). Columns PC min., PC max. and PC diff. display the minimal and 

maximal achievable power consumption (PC) and their difference in [%]. PC is 

shown in relative value independent of technology used in circuit synthesis and is 

directly proportional to the number of switches performed in circuit. This value 

was estimated based on formulas presented in [19]. The final trinity of columns 

marked as APL min., APL max. and APL diff. display the minimal and maximal 

achievable values for APL and their difference in [%]. The highest achieved 

improvement was 24.39% in PC and 25.58% in APL, while the average 

improvement for all tested benchmarks comes down to 6.24% in PC and 9.47% in 

APL. It can be observed that symmetric functions have little to no improvement in 

both parameters due to limited changes in structure of DD during variable 

reordering. 
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Conclusions 

We have proposed a novel solution for the optimization of binary-based Decision 

Diagrams (DD), by introducing new type of DD. Our RViDD (Residual Variable 

in Decision Diagrams) uses one input variable as a residual variable which can be 

utilized as another type of a terminal node. Thanks to this modification, the 

optimized RViDD has almost half the nodes, compared to unoptimized DD with 

the same variable ordering. 

We proved that the same basic reduction rules can be used as well for RViDD as 

for DD without any modification. Another well-known rule ‒ exchange of 

adjacent variables ‒ remains also applicable with only a small modification in the 

level of terminal nodes. We called this procedure “replacement of residual 

variable” where residual variable (RV) can be replaced by any other input variable 

which might prove to be necessary during optimization phase. Replacement of RV 

leads up to 16 different possible states (compared to 4 in DD) out of which only 8 

lead to other than simple 1:1 swapping of the old RV for a new one. 

During experimental phase we chose several known types of DD (BDD, FDD, 

KFDD) and created their equivalents with residual variable (RViBDD, RViFDD, 

RViKFDD). Our focus was on comparison of three parameters, primarily on 

number of nodes, but also on energy consumption and average path length (APL). 

In average our solution (residual variable in DD) has 17.55% less nodes than the 

solution without residual variable. Because RV can change the most suitable 

decomposition for given benchmark circuit, a test comparing its impact on various 

decompositions is presented. It is not a surprise that the best solution is based on 

RViKFDD which uses all types of decompositions. Based on the previous 

experiment, we were able to tell that residual variable is suitable for all types of 

decomposition, because there were no exceptions (results with smaller 

improvement). 

We also tried to use more complicated optimization process by involving 

evolutionary algorithm. We compared it with Sifting method (as reference), 

Particle swarm optimization (PSO) and Modified memetic algorithm (MMA). 

Even though evolutionary algorithm is not superior for PSO and MMA in every 

case, our solution (RViBDD) was better in 8 cases (10 for RViKFDD) out of 14 

benchmarks with improvement up to 22.51%. This proves the impact residual 

variable has in optimization process. 

The Residual variable also shows the positive impact on multi-parametric 

optimization (number of nodes, power consumption and Average Path Length 

(APL)). In average, dynamic power consumption of any underlying circuit should 

be decreased by 6.24%. This is achieved by lowering the number of switches 

performed in the circuit when traversing the diagram. APL improvement moves 

around 9.47% for all tested benchmarks, which also shows RV can (positively) 

affect the symmetry of the circuit, should it be one of the desired attributes. 
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While all the presented results display a positive influence of residual variable on 

DD optimization, there is still room for improvement. One such case would be to 

introduce the logic of Free DDs [22] where the rule that each path from root to 

terminal nodes has to follow the same order of variables is relaxed. Although this 

greatly increases the complexity of the used algorithm, it is expected to bring an 

even further decrease, in all observed parameters. 
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