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Abstract: SLAM can be categorized into two groups: laser-based SLAM and visual-based 

SLAM. They are used to identify surrounded objects of a robot. This paper proposes a 

combination of visual-based SLAM algorithm and laser-based SLAM. The purpose is to 

reduce effort but still provides the high quality 3D-reconstructed map. First, this paper 

presents visual-based SLAM and laser-based SLAM separately. Then, two techniques are 

integrated into one system. In addition, bi-direction RRT* path planning algorithm is 

developed to create a feasible and optimal trajectory. A self-tuning Fuzzy-PID controller 

also is introduced for driving the robot to follow the trajectory precisely. The simulations 

and real experiments are conducted in order to illustrate the superiority of the proposed 

approach. 
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1 Introduction 

Simultaneous localization and mapping (SLAM) is one of the most important 

technique for localization and autonomous navigation of mobile robot [1].        

The essential principle of SLAM is to provide information of the surrounding 

environment based on its sensor system and to construct the map of the working 

space while estimate the robot localization and orientation. Recently, LiDAR-

SLAM (Light Detection and Ranging) and Visual-SLAM are two popular 
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practical approaches to build maps in 2D and 3D for the intelligent autonomous 

applications [2]. 

LiDAR is preferred to use to construct a grid map and to detect the obstacles [3]. 

Extended Kalman filter (EKF) is implemented to obtain the position and 

orientation of the robot [4]. However, this approach is very difficult to apply in 

real nonlinear systems as it has accumulated errors which may cause to inaccurate 

positioning and mapping. In [5], 2D LiDAR scanner is used for in-row robot 

navigation in orchards. A Particle Filter (PF) with a laser beam model and Kalman 

Filter (KF) are implemented for localization and a line-detection algorithm, 

respectively. Self Adaptive Monte Carlo Localization (SA-MCL) is implemented 

in [6] for autonomous navigation with 2D and 3D LiDARs. The advantage of this 

method is solving the kidnapping sub-problems. Cartographer methodology is 

proposed by applying the laser loop closing to both sub-map and global map. As a 

consequence, the accumulative error is smaller. As LiDAR emits infrared light, 

the objects that do not reflect infrared light such as matte-black, glasses, degrade 

the performance of the laser-based SLAM packages. In addition, long corridors, 

square-shaped rooms and open wide areas where no obstacle information can be 

acquired make the laser-based SLAM algorithms non-operational. 

Visual-based SLAM stirs up both scholar and commercial interests because of its 

effectiveness in the last decade. Compared to LiDAR-based SLAM, Visual-based 

SLAM is preferred as cameras have become much cheaper and also provide 

texture rich information about robot working environment. A survey of visual 

SLAM and Structure from Motion (SfM) in dynamic environments is introduced 

in [7]. This paper mentioned that Dynamic-SLAM is a robust visual SLAM.        

A study on 3D scenario reconstruction based on Growing Neural Gas (GNG) is 

investigated in [8]. The advantage of this method is accelerating the learning 

speed and reducing the noise from the capture system. In [9], a multi-level 

RANdom SAmple Consensus (RANSAC) approach is applied to segment and 

track moving objects. The problem of SLAM in a dynamic environment is studied 

in [10]. A Single Shot Detector (SSD) based on deep learning is constructed to 

detect dynamic objects. To improve the recall rate of detection, a proposed missed 

detection compensation algorithm is used. Then, the feature based visual SLAM 

system is produced using the feature points of dynamic objects to eliminate the 

pose estimation’s error. In [11], a fast Semi-direct monocular Visual Odometry 

(SVO) is implemented to integrate the feature point and direct tracking optical 

flow method. Other approaches such as DSO (Direct Sparse Odometry) [12], 

VINS-Mono (Monocular Visual-Inertial System) [13] are introduced to save 

computing resources in tracking and matching. The disadvantage is the 

insensitivity to features. 

In our previous study, we developed a robust six Degree of freedom (Dof) SLAM 

algorithm using an RGB-D (Depth Sensor) graph-based approach [14]. The RGB-

D camera-based SLAM of indoor environments is developed using plane features 

[15]. The STING-PE (Statistical Information Grid - Plane Extraction) and PAG-
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PM (Plane Association Graph based Plane Matching) have been integrated.      

The camera pose is calculated based on the matched plane feature. In [16], a 

solution to an active SLAM is applied within an MPC (Model Predict control) 

framework. In addition, a sub-map joining method is implemented to archive the 

effectiveness of the proposed method and improve the computation time. 

In [17], a deep CNN (Convolutional Neural Network) model is applied for terrain 

segmentation in wild environments. In similar approaches, RGB-D SLAMIDE 

(SLAM In Dynamic Environments) is investigated in [18-20]. The results are 

impressive by integrating SLAM framework with deep learning network. Many 

studies of SLAMIDE focused on the LiDAR SLAM and RGB-D SLAM as both 

information of the depth and surrounding environment are provided. In [21], a 

Learned Action SLAM, which combines path planning with SLAM is introduced. 

In this approach, heterogeneous robots are able to share their learnt knowledge 

through Learning Classifier Systems (LCS). A sensor fusion-based indoor 

exploration approach is introduced in [22] to simultaneously optimize the map 

quality and the exploration speed. 

Unlike the existing approaches, in our work, a combination of visual-based SLAM 

algorithm and laser-based SLAM are proposed for autonomous navigation.          

In which, laser-based SLAM algorithm used a 3600 Laser Distance Sensor 

Rplidar-A1 and visual-based SLAM is implemented using a RGB-D camera, Intel 

RealSense. The combination of a 2D Occupancy Grid Map and 3D Point Cloud 

Map on Robot Operating System (ROS), is proposed to increase the accuracy.     

In addition, a RRT* (Rapidly Exploring Random Tree) path planning algorithm is 

also investigated to create a feasible and optimized trajectory for the mobile robot. 

A Self-tuning Fuzzy PID Controller also is proposed for driving the robot to track 

the trajectory accurately. 

This paper is organized as follows. The visual-based SLAM, laser-based SLAM 

and integrated algorithms are briefly outlined in Section II. Section III presents the 

RRT* path planning. Section IV introduces Fuzzy-PID controller. Section V 

demonstrates simulations and experiment results for our research. Lastly, the 

conclusions and future works are given in section VI. 

2 SLAM Implementation 

In this section, we introduce LiDAR-based SLAM, Visual-based SLAM and the 

integrated approach. The aim focuses on the following three objectives and 

contributions: 1) developing a 3D-reconstructed mapped point cloud using 

LIiDAR sensor and RGB-D camera, 2) reducing effort and time of the point cloud 

data collection and registration process for ensuring construction quality and 

safety, and 3) providing high resolution registered RGB-mapped point cloud. 
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2.1 LiDAR-based SLAM 

LiDAR-based SLAM can create fast two dimensions working space from a 

LiDAR with low computation resources. It has proven to generate very low-drift 

localization while mapping in real-world autonomous navigation scenarios. 

However, LiDAR-based SLAM is not exactly a full SLAM approach as it does 

not detect loop closures, and thus the map cannot be corrected when visiting back 

a previous localization. Loop closure detection can be implemented by combining 

the data of LiDAR and addition sensor (e.g. encoder, IMU, camera, …). 

The laser scans can be used to build a map by employing a probabilistic approach. 

For a given robot’s pose, each range measurement determines the coordinates of a 

cell. Cells that are behind the detected obstacles are registered as unknown cells 

whereas the cells that are between the sensor and the detected obstacles are 

registered as obstacle-free cells. The robot should be able to obtain the distance 

value from certain objects. The map (in Fig. 1) is the result of LiDAR-based 

SLAM experiment when the robot moved around a room. As mentioned above, 

LiDAR-based SLAM does not detect loop closure, so the bigger the environment 

the larger the error. To minimize this error, in this experiment, the new potion of 

the map can be updated and overwrote the map constantly. As a result, the largest 

linear error is 3 cm and the largest angular error is 5 degree. 

 

 

Figure 1 

LiDAR-based SLAM results 
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2.2 Visual-based SLAM 

In this study, RTAB-Map (Real-Time Appearance-Based Mapping) based on an 

incremental appearance-based loop closure detector is implemented. It consists of 

three stages: sensor measurement, frontend, and backend stages. In the frontend 

stage, the sensor data is processed and the geometric constraints between the 

successive RGB-D frames are extracted. The backend stage is focused on solving 

the accumulated drift problem and detecting the loop closure detection. To avoid 

the dead-reckoning problem, in our previous study, Explicit Loop Closing 

Heuristic (ELCH) [14] is implemented. This method updates the accumulated 

errors of the new frame’s constraint. The error is distributed to all previous frames 

with proper weights. Using the Intel Realsense D435 sensor, the generated 3D 

map has proper quality. In addition, the rtabrviz interface gives several 

information while making 3D map as shown in Fig. 2. Window 1 is the RGB 

image that camera received. Window 2 shows the loop closure detection. Window 

3 gives the image after applying SIFT algorithm and highlight points that will be 

used for feature matching. Window 4 shows 3D-point cloud map. 

 

Figure 2 

Visual- based SLAM result 

An advantage feature of Visual-based SLAM over LiDAR-based SLAM is that 

the time of relocalization is significantly smaller. However, Visual-based SLAM 

works poorly or in some case fail in featureless environment. As shown in Fig. 3, 

the input data is a corner of the room which has no distinctive features for the 

detection algorithm. As a consequence, the system fails to conduct a reliable 

odometry. 
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Figure 3 

Visual-based SLAM in featureless environment 

2.3 Integrated LiDAR Visual-based SLAM 

In this study, the sensors are configured competitively to improve the output 

odometry. Visual-based SLAM provides loop closure detection to increase 

localization accuracy. LiDAR-based SLAM provides wider range of data to 

increase the field of view (FOV) of the system to overcome featureless 

environment. Both sensors provide point cloud data with the information of a 

surrounding environment. Then, feature-matching algorithm will be applied to 3D 

point cloud to update the map and 2D point cloud will be used to deduce the 

odometry information. The pose information of the robot is obtained based on 

integrated information. The sensor fusion flow chart is presented in Fig. 4. 

 

Figure 4 

Sensor fusion flow chart 
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When the robot starts its program, both RGB-D camera and LiDAR sensor 

provide point cloud: one is 3D, the other is 2D. The transformation tree is 

predefined by user and provides coordinate information. When 3D point cloud is 

received, it will be scanned to detect some key features. The feature detection 

method used in this study is SIFT/ BRIEF. The SIFT (the Scale Invariant Feature 

Transform) is used to transform image data into scale-invariant coordinates 

relative to local features. It generates large numbers of features that densely cover 

the image over the full range of scales and locations. 

The SIFT algorithm has four operations. Firstly, it estimates a scale space extreme 

based on the Difference of Gaussian (DoG). Secondly, it finds the key point 

localization by eliminating the low contrast points. Thirdly, a key point 

orientations are obtained based on local image gradient. Finally, it computes a 

descriptor for the local image region. For more detail, please refer to [24]. Binary 

Robust Independent Elementary Features (BRIEF) is another alternative method, 

which is applied in this study as requests less complexity than SIFT with similar 

matching performance. Feature Matching algorithm is implemented using Fast 

Approximate Nearest Neighbor Search (FLANN) [25]. Then, PnP (perspective-n-

point) and RANSAC (Random Sample Consensus) are applied to enhance motion 

estimation [26]. Those features will be used to compare the older frame with 

newer frame to deduce the robot position and update the map. Iterationately, the 

closest neighbor of each point in the source is found by using a search algorithm 

and the rigid body transformation between the target points and their closest 

neighbors. The entered target point cloud is then transformed using the rigid body 

transformation estimation and a new closest neighbor search is performed.       

This process is iterated until convergence. The 2D point cloud also gives 

information of the robot position using ICP (Iterative Closest Point) to minimize 

the difference between two point-clouds. In ICP algorithm, the target is fixed 

while the source is transformed. The data from LiDAR and 3D camera are 

configured competitively to improve the odometry. 

 
Figure 5 

Combining 3D point cloud with 2D grid map. a) 3D view; b) top view 
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The mapping process using ROS provides a graphical user interface named as 

rtabmapviz, which visualizes visual odometry, output of the loop closure detector, 

and a point cloud that is a 3D dense map. The reconstructed map is shown in 

Figure 5. In this experiment, the largest linear error/angular error of the 

combination method is smaller than sole methods. 

3 Path Planning 

The robot path planning problem is divided into classical methods and heuristics 

methods [28, 29]. Planning methods based on sampling-based motion planning 

(SBP) algorithms have applied on robot systems because of their capability in 

complex and/or time-consuming. SBP includes probabilistic roadmap (PRM) and 

rapidly-exploring random trees (RRT) [30]. Basicly, the path is generated by 

connecting points sampled randomly. This method is able to archive a feasible 

robot path relatively quickly, even in high-dimensional space [31-32]. 

In this paper, Bi-directional RRT* is proposed and implemented. Essentially, Bi-

directional RRT* is variant RRT* algorithm in which the tree grows from both the 

starting point and the ending point. In other world, there will be two trees grow in 

the space. When two trees’ nodes meet or close enough, a path is generated. 

Figure 6 compares the time-consuming of three path planning algorithms RRT*, 

extended RRT* and Bi-directional RRT* and the number of sampling nodes they 

need to generate. As can be seen from this figure, the Bi-directional RRT* only 

needs fewer than 150 sampling nodes to find the path in many trials while the 

RRT* need approximately 600 sampling nodes and the extend RRT* took over 

800 nodes. 

 

Figure 6 

Comparing each variation of RRT* algorithm 
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At first, when the sampling node number is smaller than 180 nodes, three 

algorithms have an insignificant difference in time. The Bi-directional RRT*, 

however, always find a path within 5 seconds meanwhile the RRT* could need up 

to 20 seconds and the time for extended RRT* could over 1 minute with more 

than 1000 nodes generated. The actual execution time by the technique reveals 

that Bi-directional RRT* is dramatically fast in generating path, leading to a 

decrease in computational burden. Therefore, it can state that, the Bi-directional 

RRT* algorithm is reliable and satisfactory for our autonomous navigation 

application. 

4 PID-Fuzzy Controller 

Compared with advanced algorithms, Fuzzy-PID method is relatively easy 

implemented in the practical applications. Therefore, in this research, Fuzzy 

controller is applied to find optimal parameters of the PID controller. In which, the 

proportional parameter and integral parameter are continuously tuned by Fuzzy 

logic, based on feedback signal as shown in Figure 7. 

 

Figure 7 

Self-tuning Fuzzy PID Controller 

Figures 8-11 present the comparison of Left/Right wheel’s velocities and 

Left/Right wheel’s errors respectively among PID, Fuzzy and Fuzzy-PID 

controllers. The gain Ku and ultimate period Pu then create two separately 

controller by Ziegler-Nichols method - basic type and non-overshoot (no OS) type 

as in Table 1. 

Table 1 

The optimal parameters of the PID controller 

Specification Kp Ki Kd 

Basic 0.60×Ku 2×Kp / Pu Kp× Pu /8  

Non overshoot 0.2×Ku 2×Kp / Pu Kp× Pu /3 
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For basic-PID controller, with the calculated Ku = 1.35 and Pu = 0.083, the 

overshoot is low (about 3%). Settling time is around 0.25 second, peek time is 

about 0.2 second. In the same parameters, the non-overshoot PID controller has no 

overshoot, however, peek time - nearly 0.5 second is two-times slower than other 

controllers. The fuzzy controller has smaller overshoot than PID controller.         

In addition, the peak time and settling time that is faster than PID’s ones.           

For Fuzzy-PID controller, the overshoot is smaller (about 2%), the peak time and 

settling time are slightly decrease comparing with Fuzzy controller. The wind-up 

problem is also minimized, and the system working process is smoothly.              

In conclude, a self-tuning Fuzzy-PID controller has better performance compared 

with sole Fuzzy and PID controllers. Therefore, this controller is applied for the 

mobile robot in this project. 

 

Figure 8 

The comparision of PID and Fuzzy/PID controllers for Left wheel’s velocities 

 

Figure 9 

The comparision of PID and Fuzzy/PID errors Left wheel’s error 
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Figure 10 

The comparision of PID and Fuzzy/PID controllers for right wheel’s velocities 

 

Figure 11 

The comparision of PID and Fuzzy/PID errors right wheel’s error 

5 Experiment Results 

We used Robot Operating System (ROS) for simulation environment.               

The experimental setup consists a mobile robot equipped with a Rplidar-A1 sensor 

and an Intel Realsense D435 sensor. The RPLIDAR A1 operates clockwise to 

generate an outline map for the robot working environment within 12 meters.    

The D435 sensor provides 3D real-time information precisely. The test cases is 

indoor environment with the approximate area 30 m2. The robot traveled with a 
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speed of 2 m/s. Figures 12 shows the robot mapping results using LiDAR-based 

SLAM and RRT* algorithm to avoid obstacle and reach the goal. By using 

LiDAR-based SLAM, the robot is able to conduct 2D map, however, the 

information of the robot working environment is quite simple. 

 

Figure 12 

Robot navigation by RRT* algorithm and Fuzzy-PID controller 

The results for the robot autonomous navigation using visual-based SLAM, and 

the integrated method are shown in Figures 13, 14, respectively. Compare to 

visual-based SLAM, integrated SLAM provides high resolution registered RGB-

mapped point cloud. Furthermore, this methodology is able to reduce effort and 

time of the point cloud data collection. Based on the generated map, the robot 

performs its autonomous navigation with bi-directional RRT* and Fuzzy-PID 

controller and find the optimal path. 

 

Figure 13 

Visual-based SLAM autonomous navigation 
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Figure 14 

Hybrid LiDAR, Visual-based SLAM autonomous navigation 

Conclusion and Future Work 

In this paper, we have presented a full solution for integrated SLAM with LiDAR 

sensor and RGB-D camera. The solution is a combination of LiDAR, RGB-D 

camera data. LiDAR-based SLAM, can generate 3D point cloud with a little 

computational burden. However, in some scenarios such as long corridors, square-

shaped rooms and open wide areas where no obstacle information can be acquired 

make the laser-based SLAM algorithms non-operational. On the other hand, visual 

SLAM with Rtabmap package comes with feature-matching and a 3D map that 

provide richer information on the surrounding environment. However, the 

computation time is large. The integrated SLAM reduces effort and time of the 

point cloud data collection, but still provides the high quality 3D-reconstructed 

map. In addition, we have implemented bi-direction RRT* path planning and 

Fuzzy-PID controller for the autonomous navigation purpose. Future work 

includes the development of the collaborations multiple mobile robot. The robot 

swarms can share information about their working environments for others.      

The proposed approach can be implemented in many real-life applications such as 

service robots in buildings, surveillance operations, agricultural robots, space 

exploration missions. 
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