
Acta Polytechnica Hungarica Vol. 21, No. 9, 2024

 – 57 –

The Development of Fleet Management System
for Mobile Robots Delivering Medicine in
Healthcare Environments

Thi Thoa Mac, Anh Quan Pham, Xuan-Thuan Nguyen*
School of Mechanical Engineering, Hanoi University of Science and Technology,

No. 1 Dai Co Viet, 100000 Vietnam; thoa.macthi@hust.edu.vn,
quan.pa212654m@sis.hust.edu.vn, thuan.nguyenxuan@hust.edu.vn
*Corresponding author

Abstract: This paper focuses on implementing a Fleet Management System (FMS) in
hospitals, using autonomous mobile delivery robots. The primary aim is to enhance
efficiency and alleviate the workload of healthcare staff. The FMS plays a crucial role in
planning and controlling drug delivery tasks performed by a fleet of mobile robots, which
retrieve medications from storage. Operating on a centralized control architecture, the
FMS is a central hub for receiving, processing, and distributing user tasks to the multi-
robot system. It continuously monitors the status of robot systems and stores real-time data.
The FMS comprises a backend Application Programming Interface (API), a task scheduler
with algorithms to solve task allocation problems, and a robust database management
system.

Keywords: Mobile robots; path planning; Robot Operating System; vehicle routing
problem; web server

1 Introduction

In recent years, healthcare centres have focused on improving patient and staff
service quality. One key aspect is enhancing the mobility of medical personnel
within the hospital to increase productivity. Tasks that involve moving medicines,
equipment, samples, bedding, pharmaceuticals, packages, and medical waste can
be time-consuming and non-value-added. Bardram and Bossen (2005) [1] have
shown that medical staff can walk an average of 6.1 km during a 7.9-hour shift,
while on-call nurses and doctors walk an average of 6.1 km for 18.9 hours.
Deploying mobile robots in hospital environments can significantly improve
indoor mobility activities, as highlighted by Huang, Cao, and Zhu (2019) [2]. This
would bring numerous advantages to healthcare facilities. In the studies [3] and

mailto:thoa.macthi@hust.edu.vn
mailto:quan.pa212654m@sis.hust.edu.vn
mailto:thuan.nguyenxuan@hust.edu.vn

T. T. Mac et al. The Development of Fleet Management System for
 Mobile Robots Delivering Medicine in Healthcare Environments

 – 58 –

[4], the authors presented a web-based software tool that enables the visualization
of robot movements on a map and allows interaction with the robots through a
user interface. In the research described in [4], the authors also developed a
NodeJS server and a MySQL database to manage user and robot data. However,
both studies directly connect the graphical user interface (GUI) to the ROS
operating system on the robot. This approach is only suitable when all robots
share a common ROS Master (a ROS server responsible for managing and
operating the robots), which poses challenges in scalability and system
management when multiple robots need to collaborate and integrate with the
hospital's information system. Therefore, there is a need for a fleet management
system for robots that can effectively manage the robot system while seamlessly
exchanging information with the healthcare environment's infrastructure. This
fleet management system would provide centralized control and coordination of
multiple robots, allowing for efficient task allocation, resource optimization, and
real-time communication with the hospital's information system.

The main contribution of our work is to develop the implementation of a Fleet
Management System (FMS) for planning and controlling transportation tasks
using a fleet of mobile robots in a hospital environment. We also investigate the
design and implementation of a routing system, task scheduler, controller, and
backend application programming interface (API) at the core of the FMS.
The Rosbridge protocol for communication between the server and robot system is
developed in this paper. The FMS is implemented and evaluated using a virtual
hospital floor model to validate the proposed algorithm.

The paper structure on multi-task allocation focusing on Fleet Management
Systems (FMS) is as follows: Section 2 delves into the theoretical background
necessary to address the challenges and complexities associated with multi-task
allocation. Section 3 describes the critical components of the FMS architecture
and emphasizes how the described architecture contributes to the efficient
management of fleet tasks. Section 4 depicts critical findings from the
computational experiment and the implications of the results for the Fleet
Management System and multi-task allocation in general. Finally, conclusions and
future research lines are outlined in the last Section.

2 Task Scheduler

2.1 Problem Description

In the given problem, the robot team can perform many logistics tasks related to
transporting goods such as drugs, medical equipment, biological samples,
bedding, pharmaceuticals, parcels, or medical waste within hospital premises.

Acta Polytechnica Hungarica Vol. 21, No. 9, 2024

 – 59 –

From an operational point of view, the Fleet Management System (FMS)'s
operational requirements involve determining each trolley's load, optimizing
routes between distinct locations, and allocating tasks to robots based on specific
criteria [5]. The load characteristics can also vary depending on the task,
encompassing properties such as size, weight, and type (e.g., food, sanitary
equipment, medicines).

The approach provides a systematic and efficient way to address the Fleet
Management System (FMS) operational challenges involving trolley loading,
robot routing, and task allocation. First, optimal paths between locations are
calculated, then tasks are allocated to robots based on these paths, and finally, the
load of each trolley is determined. Calculating the shortest path is computationally
efficient and can be done cheaply for all location pairs. Once the distances are
known, the task allocation problem becomes a Capacitated Vehicle Routing
Problem (CVRP), where the objective is to minimize the total distance while
considering constraints such as payload and battery. The optimal load of trolleys
can then be easily determined based on the solution to the CVRP problem.

2.2 Theoretical Background

In the FMS task scheduler, we rely on the Capacitated Vehicle Routing Problem
(CVRP) to address the robot path planning problem by picking up items from a
warehouse and transporting them to specified locations.

The classical CVRP has defined on an undirected graph a graph (), ,G V H c=

where { }0,1,2,...,V n= as the set of nodes (rooms), H is set of arcs, and ()ijC c= is

the distance matrix that associates each arc (),i j belonging to H. Node 0
represents a depot at which are located at most p identical robots of capacity Q.
The problem consists of determining routes for p robots (i) starting and ending at
the depot, and such that (ii) each node is visited by exactly one vehicle, (iii) the
total demand of any route does not exceed Q, and (iv) the total routing cost is
minimized [6].

The minimum number of robots needed to serve all customers is 1
min

n
ii

d
p

Q
=

 =

∑ .

The integer linear programming formulation (ILP) model is described next,
considering the nomenclature (Table 1) and the mathematical notation (Janacek
et.al. [7]).

T. T. Mac et al. The Development of Fleet Management System for
 Mobile Robots Delivering Medicine in Healthcare Environments

 – 60 –

Table 1

ILP for CVRP Multi Robot

Sets and Index
V set of nodes (vertices)

H set of arcs (),i j

i origin node
j destination node

Parameters
Q Maximum weight carrying limitation of each robot

ijc cost (distance) matrix is associated with each
arc (),i j H∈

p robot located at the depot 0

id The demand at the node { }\ 0i V∈ and id Q≤

Decision Variables

r
ijx

1 if the robot r traverses an arc (),i j in an optimal solution.

0 otherwise

Minimize

1 0 0,
min

p n n
r

ij ij
r i j i j

c x
= = = ≠
∑∑ ∑ (1)

Subject to

{ }
1 0,

1, 1,...,
p n

r
ij

r j i j
x j n

= = ≠

= ∀ ∈∑ ∑ (2)

{ }0
1

1, 1,...,
n

r
j

j
x r p

=

= ∀ ∈∑ (3)

{ } { }
0, 0

, 0,..., , 1,...,
n n

r r
ij ji

i i j i
x x j n r p

= ≠ =

= ∀ ∈ ∀ ∈∑ ∑ (4)

{ }
0 1,

, 1,...,
n n

r
j ij

i j i j
d x Q r p

= = ≠

≤ ∀ ∈∑ ∑ (5)

{ }
1 ,

1, 1, 2,..., , 2
p

r
ij

r i S j S i j
x S S n S

= ∈ ∈ ≠

≤ − ∀ ⊆ ≥∑∑ ∑ (6)

{ } { }0,1 , 1,..., , , ,r
ijx r p i j V i j∈ ∀ ∈ ∀ ∈ ≠ (7)

Acta Polytechnica Hungarica Vol. 21, No. 9, 2024

 – 61 –

The function (1) defines the objective function (Objective Function (1)) that aims
to minimize the total travel cost incurred by the robots and (2) the degree
constraints ensuring that each node is visited by exactly one robot. The flow
constraints (3) and (4) ensure that each robot departs from the depot only once,
and these constraints maintain balance in the number of robots arriving at and
leaving each customer and the depot. Constraints (5) articulate the capacity
constraints to ensure that the sum of demands from nodes visited in a route is at
most the capacity of the robot providing the service, managing the load, and
ensuring the feasibility of the assigned tasks. Sub-tour elimination constraints (6)
guarantee that the solution contains no cycles disconnected from the depot and
prevents inefficient or disconnected routes. The constraints (7) specify the
definition domains of the variables. This model is recognized as a three-index
vehicle flow formulation [7].

The VRP is NP-hard because it includes the Traveling Salesman Problem (TSP)
as a particular case when and [6]. Most exact approaches are often developed from
precise algorithms for the TSP, including Naddef and Rinaldi [8], Baldacci et al.
[9]. Additionally, some heuristic algorithms to solve CVRP include Clarke and
Wright [10], Fisher and Jaikumar [11]. In this study, Google OR-tools is
employed for solving the CVRP, wherein the Euclidean distance determines the
weights of edges between adjacent nodes. Figure 1 illustrates the solution to the
CVRP with 16 delivery points and four vehicles with a maximum capacity based
on the dataset of Google Or-tools [12].

Figure 1

Google Or-tools solution for CVRP with n = 16, p = 4 and Q = 15

T. T. Mac et al. The Development of Fleet Management System for
 Mobile Robots Delivering Medicine in Healthcare Environments

 – 62 –

2.3 Task Allocation

To address a collection of pre-arranged or immediately triggered transportation
tasks, this section introduces a task allocation strategy using a queuing
mechanism, encompassing two categories: task queue and backlog queue. Let's
assume there are p identical robots in the warehouse, each with a maximum
capacity of Q. Each transportation task consists of a set of n destinations that the
robot needs to reach. Each destination requires transporting id items from the
warehouse.

Let 'p p≤ be the number of remaining robots that have not yet accepted the task.
A new task will be pushed into the main queue. When it's time to execute the task,
the server will dequeue tasks one by one for processing. If the total transportation
demand of task k is less than the maximum capacity of a robot, the server will use
the solution to the TSP problem to find the optimal route for a robot. If the

remaining number 'p of robots is insufficient to execute the task , this task will
be placed in the backlog queue (Figure 2).

Figure 2

Algorithm diagram of task queue processing

Acta Polytechnica Hungarica Vol. 21, No. 9, 2024

 – 63 –

Figure 3

Algorithm processes and merges backlog tasks

The FMS system will monitor the backlog queue on a regular cycle. When a
sufficient number of robots is available, the server will consolidate a batch of
stalled tasks by aggregating tasks with the exact delivery location into a more
significant task suitable for execution by a group of robots. After that, it will push
this consolidated task back into the task queue (Figure 3).

3 Fleet Management System

3.1 Overview Fleet Management System

In this study, the Fleet Management System (FMS) comprises a Nodejs server
communicating with the database, implementing authentication mechanisms, and
algorithms for task allocation and optimal route computation for the transportation
robot system (Figure 4). A web interface allows end-users to interact directly with
the server and command the robots. FMS uses both MySQL and Redis databases,

T. T. Mac et al. The Development of Fleet Management System for
 Mobile Robots Delivering Medicine in Healthcare Environments

 – 64 –

where MySQL is employed to store user information to serve the authorization
authentication mechanism. Simultaneously, it stores and manages data,
configurations of Robots, map information, and details of each transport order.
These data can then be analyzed and used for statistical purposes. Concurrently,
Redis is used to store and create a cache memory to support the Robot task
allocation mechanism, processing queued tasks.

In this study, the Fleet Management System (FMS) comprises a Nodejs server
communicating with the database, implementing authentication mechanisms and
algorithms for task allocation and optimal route computation for the transportation
robot system (Figure 4). A web interface allows end-users to interact directly with
the server and command the robots. FMS uses MySQL and Redis databases,
where MySQL stores user information to serve as the authorization authentication
mechanism. Simultaneously, it stores and manages data, configurations of Robots,
map information, and details of each transport order. These data can then be
analyzed and used for statistical purposes. Concurrently, Redis stores and creates a
cache memory to support the Robot task allocation mechanism, processing queued
tasks.

Figure 4

Communication Diagram in FMS System

Protocols used in the system: HTTP protocol is a hypertext transfer protocol that
operates on a request-response mechanism, facilitating communication between
the server and clients. WebSocket protocol: a full-duplex communication protocol
that enables real-time data transmission and interactive connections between the
server and clients over the internet. MQTT protocol: a lightweight, reliable
messaging protocol based on the publish/subscribe mechanism, used to connect
remote devices in bandwidth-constrained environments. This protocol is used for
the Nodejs server to communicate with Internet of Things (IoT) devices, such as
robot charging stations, robot call stations, or goods collection stations.

Acta Polytechnica Hungarica Vol. 21, No. 9, 2024

 – 65 –

Additionally, the FMS is developed on top of the ROS platforms, and model
Mir100 is used to validate the FMS in real-world scenarios. ROS is an open-
source meta-operating system designed to enable scheduling and planning
activities in industrial environments [13]. From the side of the ROS, the rosbridge
server [14] was used, a middleware abstraction layer that provides the
communication protocol used by the ROSbridge server to enable seamless
interaction between ROS and the Node.js server. The ROS Master will control and
operate an AMR unit (Mir100). The NodeJS server distinguishes between AMR
units based on the static IP address of the robot within the network. Each robot
can listen and receive assignments from the server via Rosbridge protocols, and
then they will automatically move to the specified destination locations to perform
the required task.

3.2 Software Architecture

Initially, the Robot is able to scan and build a map describing the boundaries and
fixed objects in the environment (Figure 5) based on the SLAM algorithm. Once
completed, this map will be stored in a pair of files: PNG and YAML file
corresponding to the map_server package in ROS, where the YAML file describes
the map meta-data and names the image file, and the image file encodes the
occupancy data. It is then shared and synchronized with AMR Robots via FMS.
Based on this map, engineers determine the coordinates of the destination points
(locations of rooms, pharmacies, elevators, warehouses) that the Robot needs to
go to and store them in the MySQL database. The FMS server will receive
transportation tasks from users, perform task allocation mechanisms for the Robot
system, and send corresponding destination coordinates to the navigation system
of each Robot.

Figure 5

Simulating the hospital environment based on the AWS Robot Maker package

T. T. Mac et al. The Development of Fleet Management System for
 Mobile Robots Delivering Medicine in Healthcare Environments

 – 66 –

In Figure 6 the system architecture of the proposed FMS is presented. ReactJS
Client (1) implements the interface for managing transportation tasks and tracking
the location of each AMR Robot on the map. ReactJS, an open-source JavaScript
library, is used to construct a user interface based on individual UI components.
The functionality of the Node.js Server is to add clarity to the role it plays in
managing the master data of the Fleet Management System (FMS) and facilitating
various tasks.

NodeJS Server (2) provides a REST interface to manage the master data of the
FMS, calculate an optimal assignment of a set of tasks to a group of robots to be
executed on a specific date and time, and add a new task to be executed in the
current shift.

Figure 6

System Architecture

These APIs enable end-users to register tasks, schedule deliveries, and monitor the
progress of Robot tasks through the user interface. The NodeJS server use the
BullMq library, which implements a fast and robust queue system built on top of
Redis. Task Handler (worker) listens to the task queue, and when a new task is
registered, they dequeue it and execute the algorithm to allocate tasks and
optimize routes for the robot fleet, as described in section 2.3 (Task Handler).
Subsequently, they accurately send the coordinates of the destination points for
each robot using the ROSLIBJS library (a library that transforms the ROS
messages into a JSON format and transmits them to the ROS environment through
the rosbridge module [4]). Figure 7 illustrates the web interface for managing task
queues and robot locations.

Acta Polytechnica Hungarica Vol. 21, No. 9, 2024

 – 67 –

Figure 7

Monitors the robot's task queue and localization via the frontend interface

Simultaneously, the NodeJS server provides APIs that can apply CRUD (Create,
Read, Update, or Delete) operations to manage MySQL data, including user
information (user roles), core data of the robot fleet (robot types, robot groups,
and robot members), navigation information (navigation maps, location marker,
etc.), and task information (types, task execution plans, etc.) [5]. The MySQL
database design for the Fleet Management Robot system is divided into three main
groups of tables:

T. T. Mac et al. The Development of Fleet Management System for
 Mobile Robots Delivering Medicine in Healthcare Environments

 – 68 –

Group 1 is designed for authentication and authorization purposes, including the
user's table, which contains columns for storing user information and permissions.
The roles table is used to store the roles available in the system.

Group 2 consists of tables that store data related to maps and locations: the maps
table holds information about maps that have been scanned using the SLAM
algorithm. The position_goals table is used to store information and coordinates of
destination points.

Group 3 stores data related to tasks and robots: the tasks table contains
information about tasks users request. The robots table is used to store information
and configurations of AMR (Autonomous Mobile Robot) models. The subTasks
table stores information about deliveries at corresponding destination points that a
robot needs to perform during a mission.

The structure and relationships between the desired locations are illustrated in
Figure 8.

Figure 8

Database design on MySQL

4 Computational Experiments
The simulations were carried out on an HP zBook G3 laptop equipped with an
Intel® Core™ i7-6820HQ CPU 2.7GHz (8 CPUs). Using Gazebo software and
the Mir100 robot model developed by DFK in the ROS Noetic environment on

Acta Polytechnica Hungarica Vol. 21, No. 9, 2024

 – 69 –

Ubuntu 20.04, we simulated the collaborative work of four Mir100 Robots with a
maximum load capacity of 100 kg in a hospital environment created by AWS
Robot Maker (5). The coordinates of the depot and delivery points are depicted in
Figure 9. The closed-loop coloured paths with arrows represent the routes of each
robot. Below each destination node is the cargo the robot needs to transport to that
node. Their task is to transport medical supplies from the warehouse to the
registered locations and then return to the warehouse.

In Table 2, four Mir100 Robots are assigned identifiers (robotId) from 1 to 4, and
transportation tasks are numbered as taskId. Each task represents the total
transportation demand, initialization time, and allocation time for the AMR Robot
system. Here, tasks 1 and 2 are allocated immediately after initialization since
they both have transportation demands of 200 kg and 120 kg, respectively,
requiring two Mir100 Robots each. Transportation tasks initiated later must be put
into the backlog queue and postponed until the list of available Robots is sufficient
to perform the next task. This is why their allocation time is greater than the
initialization time.

Figure 9

Result of CVRP based on Google Or-tools in the simulation environment

The data indicates that when Robot 1 completes its transportation route, it will be
allocated the next task at the front of the queue (Task 3 with a total transportation
demand of 100 kg). Similarly, Task 4, requiring two Robots for execution, will be
allocated when there are two available Robots (Robots 3 and 4). The remaining
tasks are also allocated according to the strategy outlined in Section 2.3.

T. T. Mac et al. The Development of Fleet Management System for
 Mobile Robots Delivering Medicine in Healthcare Environments

 – 70 –

Table 2
Task allocation results from the MySQL database

Conclusions and Future Work

The FMS (Fleet Management System) integrates a task allocation strategy based
on a queue processing mechanism using solutions from two problems, TSP
(Traveling Salesman Problem) and CVRP (Capacitated Vehicle Routing
Problem). This integration holds significant potential for optimizing the
distribution of medical supplies in healthcare environments, leading to increased
efficiency and cost savings. Based on these results, the research demonstrates
practical applications for optimizing shared resources within healthcare systems.

The current limitation in the Fleet Management System's experimental setup is
insightful, considering the actual path length instead of the Euclidean distance,
which can enhance the cost matrix's accuracy.

In future work, we will expand the Fleet Management System (FMS) by
partitioning the map into zones and incorporating restrictions based on human
activities as a strategic move to enhance functionality. In addition, human-robot
interaction within zones, considering safety, communication, and collaboration, is
another development direction. Furthermore, the mechanisms for robots to
respond to human activities and adapt their behaviour are also considered.

Acknowledgment

This research is funded by Hanoi University of Science and Technology (HUST)
under project number T2022-PC-023.

Acta Polytechnica Hungarica Vol. 21, No. 9, 2024

 – 71 –

References

[1] Bardram, J., Bossen, C., "Mobility Work: The Spatial Dimension of
Collaboration at a Hospital" Computer Supported Cooperative Work
(CSCW), An International Journal, Vol. 14, No. 2, pp. 131-160, 2005

[2] Huang, X., Cao, Q., & Zhu, X., "Mixed path planning for multi-robots in
structured hospital environment" The Journal of Engineering, pp. 512-516,
2019

[3] Artem I.; Aufar Z.; Tatyana T.; Kuo-Hsien H., "Online Monitoring and
Visualization with ROS and ReactJS" 2021 International Siberian
Conference on Control and Communications (SIBCON), 2021

[4] Sidiropoulos A., Sidiropoulos V., Bechtsis D., Vlachos D., "An industry 4.0
tool to enhance human-robot collaboration" the 32nd International
DAAAM Virtual Symposium ''Intelligent Manufacturing & Automation'',
2021

[5] Eduardo Guzmán O., Beatriz A., Francisco F., Raul P.r, Ángel Ortiz B.,
"Fleet management system for mobile robots in healthcare environments"
Journal of Industrial Engineering and Management, Vol. 14, No. 1, 2021

[6] Laporte G., "What You Should Know about the Vehicle Routing Problem"
NavalResearch Logistics, No. 54, pp. 811-819, 2007

[7] Janacek J., Janosikova L., Kohani M., "Modelovanie a optimalizacia"
EDISvydavatelstvo ZU, in Slovak, 2013

[8] Augerat P., Belenguer J. M., Benavent E., Corberan A., Naddef D.,
Computational results with a branch-and-cut code for the capacitated
vehicle routing problem" 1998

[9] Baldacci R., Christofides N., and Mingozzi A., "An exact algorithm for the
vehicle routing problem based on the set partitioning formulation with
additional cuts," Mathematical Programming, Vol. 115, No. 2, pp. 351-368,
2008

[10] Clarke G. and Wright J. V., "Scheduling of vehicles from a central depot to
a number of delivery points," Oper Res, No. 12, pp. 568-581, 1964

[11] Fisher M. L. and Jaikumar R., "A generalized assignment heuristic for the
vehicle routing problem," Networks, No. 11, pp. 109-124, 1981

[12] "Google Optimization Tools," [Online] Available:
https://developers.google.com/optimization/routing/cvrp [Accessed 05 08
2023]

[13] Karamanos, X.; Mallioris, P.; Poulimenos, D.; Bechtsis, D. & Vlachos, D.,
"A ROS Tool for Optimal Routing in Intralogistics," Proceedings of the
30th DAAAM International Symposium, 2019

T. T. Mac et al. The Development of Fleet Management System for
 Mobile Robots Delivering Medicine in Healthcare Environments

 – 72 –

[14] Toris, R.; Kammerl, J.; Lu, D. V.; Lee, J.; Jenkins, O. C.; Osentoski, S.;
Wills, M. & Chernova, S., "Robot Web Tools: Efficient messaging for
cloud robotics," IEEE International Conference on Intelligent Robots and
Systems, pp. 4530-4537, 2015

	1 Introduction
	2 Task Scheduler
	2.1 Problem Description
	2.2 Theoretical Background
	2.3 Task Allocation

	3 Fleet Management System
	3.1 Overview Fleet Management System
	3.2 Software Architecture

	4 Computational Experiments

