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Abstract: This paper presents a novel approach to the design of robust multimodal 
biometric cryptosystems. The design objectives behind the system are robustness, privacy of 
user’s biometric templates and stable cryptographic key generation. The framework 
presented in this paper employs two modalities and a look-up table. The hashes of 
cryptographic keys generated from a biometric template during the enrollment phase are 
stored in the look-up table with cancelable templates generated from the sample belonging 
to different modality of the same subject. During the operation phase, the system releases 
the key, only if the hash of the key generated from the provided biometric sample is found 
in the look-up table, and the similarity score between corresponding cancelable templates 
is less than a predefined threshold. The implementation of the proposed framework with 
iris and fingerprint biometrics is evaluated with the CASIA biometric template database. 
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1 Introduction 

“Biometrics is the science of establishing the identity of an individual based on 
physical, chemical or behavioral attributes of the person” [1]. Due to the 
distinctive nature of biometric traits [2] and the non-repudiation it offers [3], 
biometry is frequently used to enhance the overall security of the system in which 
it is implemented: the authentication system or the biometric cryptosystem. 

Biometric authentication is the process of validating the uniqueness of individuals 
according to their physiological or behavioral qualities [4]. Physiological qualities, 
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such as a fingerprint, an iris or a face, refer to something that an individual is. 
Behavioral qualities, such as speech, signature and keystroke dynamics refer to 
something that an individual can do. According to Biggio [5], the generic modular 
biometric authentication system operates as follows. A user who wants to access 
some resources provides his identity. The sensor acquires the biometric sample of 
the user. Features are extracted from the sample and a similarity score is 
calculated between the provided biometric sample and the one stored in the 
biometric template database corresponding to the provided user identity. The 
similarity score is compared with the threshold and the user is identified as 
genuine or an impostor. According to this decision, the access to resources is 
granted or denied. 

There are several advantages of biometric authentication over traditional 
authentication methods, such as difficulties in stealing, sharing and reproduction 
of biometric samples, tolerance to brute force attacks, and non-repudiation (an 
authenticated user cannot deny his activities) [6]. 

There are two types of biometric systems: a unimodal, which employs a single 
biometric sample acquired from the user, and a multimodal, which employs two or 
more modalities, e.g. an iris and a fingerprint. Multimodal systems prevail over 
some drawbacks of unimodal systems, such as large false rejection rates (FRR) 
and unacceptable false acceptance rates (FAR): additional information provided to 
the classifier increases the recognition accuracy and decreases error rates, while 
the identity proof is strengthened as data is acquired from different sources [7]. 
When compared to unimodal, multimodal systems are less prone to spoof attacks 
[8] and carefully crafted attacks targeted towards modular biometric 
authentication systems (replaying old data, feature extractor overriding, stored 
template modification, communication channel interception and providing 
synthetic vectors to the matching module) [9, 10]. 

The basis of multimodal biometric authentication systems is the information 
fusion. The decision level fusion [11] is the initial approach to information fusion 
in multimodal biometric authentication systems. This approach is based on 
majority vote scheme that is used to combine classification results from different 
modalities and make the final decision [12]. At the matching score level [13], the 
system calculates similarity scores between the sample and the corresponding 
template for each modality and combines them to verify the identity of an 
individual. At the feature level, feature vectors extracted from different modalities 
are integrated into a new vector that represents the identity of the individual [14]. 

Biometric cryptosystems, such as, key generation and key binding systems, 
combine a high level of security that is provided by cryptography and non-
repudiation provided by biometry. Key generation systems are systems that 
produce a stable cryptographic key that is extracted from biometric data [15, 16]. 
Key binding systems are systems that bind a randomly generated cryptographic 
key to the biometric template [17, 18]; the bound key is released to the application 
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upon a valid presentation of the appropriate biometric template. Stored biometric 
samples pose a risk to users' privacy. If stored in an insecure manner, an adversary 
may carry out an identity theft attack on the cryptosystem. Defense strategies 
include the protection of stored templates with cancelable biometrics (intentional 
distortion of biometric features with non-invertible transforms) and the usage of 
multimodal biometrics. 

Again, the main thrust of this paper is a novel approach to robust biometric 
cryptosystem design. The proposed system is the hybrid multimodal system that 
employs one biometric sample to generate a stable cryptographic key and another 
sample belonging to a different modality to authenticate the user. The design 
objectives are a stable bitstream, improved robustness, biometric template privacy 
and the reduction of false acceptance rates. According to the design objectives, the 
system employs a look-up table that stores the hashes of keys generated during the 
enrollment phase and cancelable biometric templates used for identity verification. 
This increases the overall security of the system – an adversary cannot obtain the 
biometric key or the authentication template as the data stored in the look-up table 
is processed with non-invertible transformations. The implementation of the 
proposed framework that employs an iris as the key generation biometrics and a 
fingerprint as the user authentication biometrics has been experimentally 
evaluated with the samples from the CASIA biometric template database. 

2 Related Work 

Chang et al. [16] proposed a framework for stable cryptographic key generation 
from unimodal biometric traits that are unstable in nature. The main contribution 
of their research is the approach to generating distinguishable biometric features, 
resulting in a stable cryptographic key. Although the performance of the proposed 
framework is evaluated with the face database containing facial expressions and 
head motion variations, the authors have stated that the framework is applicable to 
other biometric modalities as well. 

Many studies that examine the usage of fingerprints in key generation systems and 
cancelable biometrics are reported in the literature. Tuyls et al. [19] have extracted 
consistent and reliable information bits from fingerprint samples using a set of 
four complex Gabor filters and BCH (Bose-Chaudhuri-Hocquenghem) error 
correction codes. However, FAR ranging from 2.5% to 3.2% is an unacceptable 
result for generated 45 bit and 89 bit keys. According to Solanki and Patel [20] it 
is possible to generate a 128 bit cryptographic key from fingerprint biometrics 
using Gabor filtering, but no FRR or FAR rates are reported. Ratha et al. [21] 
presented several methods to generate multiple cancelable identifiers from 
fingerprint images. Authors compared the performance of Cartesian, polar, and 
surface folding transformations of the minutiae positions and provided a proof that 
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the transforms are non-invertible. The fingerprint authentication system presented 
by Ang et al. [22] employs a key-dependent transformation of biometric data. 
Key-dependent transforms allow different templates to be stored for different 
applications, reducing the chance to link biometric template to an individual. 

Hao et al. [23] developed a two-layer error correction technique that merges 
Hadamard and Reed-Solomon codes, thus providing a secure way to incorporate 
the iris biometrics into cryptographic applications. According to authors, an error-
free 140 bit key can be reproduced from biometric samples with acceptable 0.47% 
FRR and 0% FAR rates, while a 192 bit key can be reproduced with 3.65% FRR 
and 0% FAR rates. Bae et al. [24] presented a novel feature extraction algorithm, 
based on independent component analysis for iris recognition. According to the 
authors, the proposed method has a similar Equal Error Rate (EER) to 
conventional methods based on Gabor wavelets, while the iris code size and 
feature extraction time have been significantly reduced. 

Wu et al. [25] have developed a novel face biometric cryptosystem that uses a 
128-dimensional principal component analysis vector and error correction codes 
(ECC) generated by Reed-Solomon algorithm. During the decryption phase, a 
biometric key is generated using the look-up table created at the encryption stage 
and the final key is obtained using both the biometric key and ECC. Sashank 
Singhvi et al. [26] developed a technique that exploits an entropy dependent 
feature extraction process coupled with Reed-Solomon error correction, resolving 
an issue resulting from the different acquisition of similar biometric samples. The 
authors have evaluated this technique with 3D face data and have concluded that 
the technique reliably produces 128 bit AES keys. The non-conventional methods 
of face feature extraction are presented by Ban et al. in [27]: HLO (hidden layer 
output) images are generated by the feature extraction of the multilayer perceptron 
in auto-association mode, while INDEX images are formed by a self-organized 
map used for image vector quantization. 

Although the majority of research in multimodal biometrics is related to 
authentication, there are several researches related to cryptographic key generation 
reported in the literature, e.g. the feature fusion of an iris and minutiae [6], 
combining biometric features of an iris and a retina [28], or an iris and a face [29]. 

3 Proposed Framework 

The main idea behind our approach is to combine a unimodal key generation 
system and a unimodal biometric authentication system into a robust multimodal 
biometric cryptosystem that will generate a stable bitstream with a 0% false 
acceptance rate. The framework of the proposed system that employs a strict 
decision level fusion approach is presented in Figure 1 (enrollment phase) and 
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Figure 2 (operating phase). During the enrollment phase, a user provides two 
biometric samples to the system. One sample is used to generate the key and 
another (belonging to different modality) is used to authenticate the user. In the 
enrollment phase the following steps are performed: 

1) Biometric data used to generate the key is acquired by the sensor. 

2) Data is preprocessed, features are extracted, and a cryptographic key is 
generated from the biometric template. 

3) The hash of the cryptographic key is calculated. 

4) Biometric data used for the authentication is acquired by another sensor. 

5) Data is preprocessed and a cancelable biometric template is generated 
with non-invertible transforms. 

6) The hash of the generated key and a cancelable biometric template are 
stored in the look-up table. 

 

 
Figure 1 

Robust multimodal biometric key generation framework (enrollment phase) 

At the operating phase, a user provides two biometric samples to the system. The 
system performs the same 1-5 operations, as in the enrolment phase. Once the 
hash of the generated key and the cancelable biometric template are generated 
from the provided biometric samples, the system seeks the corresponding hash in 
the look-up table. If no hash matching the calculated one is found in the table, the 
system releases no key to the application and the user must provide his biometric 
sample again. If the matching hash is found, the system calculates the similarity 
score between the generated cancelable biometric template and the one stored in 
the look-up table corresponding to the hash. According to the similarity score, the 
system decides whether to release the key to the application or not. 
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Figure 2 

The operating phase of the proposed system 

To sum up, the key is released to the application only if: 

• The hash calculated from the key produced from the provided biometric 
sample is found in the look-up table, and 

• The similarity score calculated between the generated cancelable biometric 
template and the one stored in the look-up table is less than the predefined 
threshold. 

3.1 Security Evaluation of the Proposed Framework 

Before we present one possible implementation of the framework, some general 
observations regarding the stability of a generated bitstream and overall system 
security are discussed. 

The system stores hashes of generated keys for each user of the system in the 
look-up table. A slight modification in results obtained from a key generation 
process during the operation phase will result in a different calculated hash. As the 
key is released to the application only if the corresponding hash is found, it can be 
concluded that the system releases identical keys from the same biometric sample 
every time the user provides it. According to that, we conclude that the system 
produces the stable key. 
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The security of the system and the privacy of biometric templates are provided by 
one-way hash functions and non-invertible transforms. If an adversary obtains 
access to the look-up table, it is still impossible for them to regenerate the key or 
biometric templates that are produced during the enrollment phase. This results in 
a robust system with a 0% false acceptance rate (excluding brute force attacks). 
According to the attack taxonomy of Barreno et al. [30], the system cannot be 
compromised by targeted attacks: even if an adversary obtains access to the look-
up table, he cannot select the user ID whose integrity he wants to compromise, as 
user identities are not stored in the table. The only drawback of the system is 
possible indiscriminate availability violations, as an adversary might randomly 
change stored hashes and cancelable templates, which could result in DoS to 
genuine users. However, all authentication systems are vulnerable during the 
enrollment phase and the aforementioned conclusions apply only to systems that 
are not compromised during that phase. 

4 Implementation of the Proposed Framework: Iris 
and Fingerprint 

This section presents the implementation of the proposed framework. Iris 
biometrics is used to generate the cryptographic key and a fingerprint to 
authenticate the user. Conventional methods are used to generate the key from an 
iris and extract minutiae points from a fingerprint. A cancelable template is 
generated by simple and effective non-invertible cell shuffling proposed by 
authors, which is a key-less modification of Ratha et al. Cartesian transform [21]. 

4.1 Generating Cryptographic Key from Iris Biometrics 

More than 250 distinguishing characteristics of an iris (degrees of freedom) can be 
used in biometrics, resulting in six times more identifiers than the fingerprint [31]. 
Before the key is generated from extracted features, the acquired iris image must 
be preprocessed. The outer radius of iris patterns and pupils are first localized with 
Hough transform that involves a canny edge detector to generate an edge map. A 
poorly localized iris will result in unsuccessful segmentation and poor 
reproducibility of the key. This step is crucial in the enrollment phase, as extreme 
FRR may result in DoS to legitimate users. A Hough transform identifies the 
positions of circles and ellipses [32]: it locates contours in an n-dimensional space 
by examining whether they lie on curves of a specified shape. Hough transform 
for outer iris and pupil boundaries and a set of n recovered edge points (xi, yi) is 
defined by: 

( ) ( )
1

, , , , , ,
n

c c i i c c
i

H x y r h x y x y r
=

= ∑ , (1) 
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The circle (xc, yc, r) through each edge point (xi, yi) is defined as: 

( ) ( )2 2 2

i c i cx x y y r− + − = . (3) 

The triplet that maximizes H (xc, yc, r) is common to the greatest number of edge 
points and is a reasonable choice to represent the contour of interest [33]. Similar 
technique that uses parameterized parabolic arcs is used to detect upper and lower 
eyelids. Once an iris image is localized, regions of interests are defined and it is 
transformed into fixed-size rectangular image. The normalization process employs 
Daugman's homogeneous rubber sheet model that remaps the iris image I(x, y) 
from Cartesian (x, y) to polar coordinates (r, θ) [34]: 

( ) ( )( ) ( ), , , ,I x r y r I rθ θ θ→ . (4) 

 

 
Figure 3 

Daugman's rubber sheet model: localized iris (left) and normalized iris (right) 

Parameter r is on the interval [0, 1] and θ is the angle [0, 2π]. If iris and pupil 
boundary points along θ are denoted as (xi, yi) and (xp, yp), respectively, the 
transformation is performed according to: 

( ) ( ) ( ) ( ), 1 p ix r r x xθ θ θ= − + , (5) 

( ) ( ) ( ) ( ), 1 p iy r r y yθ θ θ= − + . (6) 

The rubber sheet model does not compensate rotational inconsistencies, but it 
takes into account pupil dilation size inconsistencies in order to produce a 
normalized representation with constant dimensions [31] set by angular resolution 
(the number of radial lines generated around the iris region) and radial resolution 
(the number of data points in the radial direction). 
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Although various extraction methods are reported in the literature, discriminant 
features are extracted from a normalized iris using conventional method based on 
Gabor filtering. This method is validated as suitable feature extraction method in 
various researches presented by other authors. A normalized image is broken into 
a number of 1-D signals that are convolved with 1-D Gabor wavelets. The 
frequency response of 1-D log-Gabor filter, introduced by Field [35] is given by: 

( )

2 2

0 0
log 2 logf

f f
G f e

σ   
      
   

−

= , (7) 

where f0 denotes center frequency, and σ denotes the bandwidth of the filter. Phase 
quantization is applied to four levels on filtering outputs (each filter produces two 
bits of data for each phasor) and the quantized phase data is used to encode an iris 
pattern into a bit-wise biometric template. An error correction code is generated 
using the Reed-Solomon algorithm and the template is digested into a key. The 
number of bits in the biometric template depends on angular and radial resolution 
and the number of used filters, while the template entropy depends on the number 
of used filters, their center frequencies and the parameters of the modulating 
Gaussian. 

4.2 Minutiae Points Extraction 

Minutiae points are extracted from the fingerprint biometrics prior to cancelable 
template generation. This procedure consists of several steps: preprocessing, 
segmentation, orientation field estimation, image enhancement and minutiae 
extraction. 

The first operation applied to the acquired sample is histogram equalization, 
which increases the local contrast of the image. The Wiener filter removes blur 
and additive noise from the picture without altering ridge structures of the 
fingerprint biometric sample. Let H(u, v) denote the Fourier transform of the point 
spread-function of the degradation process h(x, y) and H*(u, v) the complex 
conjugate of degradation function. The Wiener filter [36] in frequency domain is 
given by: 

( ) ( )
( ) ( ) ( )

*

2

,
,

, , ,n s

H u v
W u v

H u v P u v P u v
=

+
, (8) 

where Pn(u, v) denotes the power spectrum of the noise and Ps(u, v) is the power 
spectrum of the under-graded image f(x, y). If blur is negligible and only additive 
noise needs to be removed, the filter takes the form: 

( ) ( )
( ) 2

,
,

,
s

s n

P u v
W u v

P u v σ
=

+
, (9) 
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where σn
2 is the noise variance. The output of the Wiener filter is divided into 

equal-sized non-overlapping blocks. Let N denote the size of the block and μ(I) 
the mean pixel value of the block. The block I is considered to be a foreground 
block if its variance is greater than the threshold τs: 

( ) ( ) ( )( )22

2
1 1

1
,

N N

s
i j

I I i j I
N

σ µ τ
= =

= − >∑∑  (10) 

This process is referred to as segmentation and is used to separate the regions of 
interest from the rest of the image. The next step in the extraction process is the 
estimation of orientation field (the local orientation of ridge valley structures), 
which is also a block-wise operation. The approach to orientation field estimation 
used in this research is gradient based. Gradient vectors indicate the highest 
deviation of gray intensity that is normal to the edge of ridge lines [37]. Let gx and 
gy denote gradient vectors of the block centered at pixel (i, j) in horizontal and 
vertical directions, respectively. The orientation θ of each block is given by: 

( ) ( )
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The image is enhanced by the Gaussian low-pass filter followed by the 2-D Gabor 
filter [38]. Let f0 denote the ridge frequency, θ the orientation of the filter, σx and 
σy standard deviations of the Gaussian envelope along the x and y axes, and [xθ, yθ] 
coordinates of [x, y] after the clockwise rotation of the Cartesian axes by 0.5π–θ. 
The 2-D Gabor filter is given by: 

( )0 0

2 2

2 2
1
2

, , , cos(2 )x y

x y

G x y f e f xθ

θ θ
σ σ

θ π

 
 
 
 

− +

=  (12) 

sin cosx x yθ θ θ= +  (13) 

cos siny x yθ θ θ= − +  (14) 

As minutiae extraction algorithms operate on binary images, the filtering output is 
binarized. Gray level of each pixel is compared to a global threshold, resulting in 
the image with two levels of interest: ridges (black pixels) and valleys (white 
pixels). Morphological operators are further applied to the binarized image in 
order to eliminate noise resulting from spurs and line breaks. The thinning 
algorithm presented by Lam et al. [39] reduces the width of ridge lines. The image 
is segmented into two subfields as in the checkboard pattern. Let p1, p2, ... p8 ∈ [0, 
1] denote neighbor pixels of pixel p as shown in Figure 4, and let bi=1 if: 

( )2 1 2 2 10 1 1i i ip p p
− +
= ∧ = ∨ =  (15) 
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Figure 4 

Eight neighbor pixels of p in a binarized image 

Crossing number XH(p), according to the definition of Hilditch, is the number of 
times one crosses from white to black point when points are traversed in order. 
Four pixel removal conditions used in the iterations of the algorithm are defined as 
follows: 

( )
4

1

1H i
i

X p b
=

= =∑  (16) 

{ }4 4

2 1 2 2 2 1
1 1

2 min , 3i i i i
i i

p p p p
− +

= =

≤ ∨ ∨ ≤   
   
   
∑ ∑  (17) 

( )2 3 8 1 0p p p p∨ ∨ ∧ = . (18) 

( )6 7 5 0p p p p∨ ∨ ∧ = . (19) 

The condition XH(p)=1 implies that p is a contour point [39]. Each iteration of the 
algorithm has two sub-iterations. Pixel p is deleted from the first subfield in the 
first sub-iteration only if conditions (16), (17) and (18) are satisfied. The pixel p is 
deleted from the second subfield in the second sub-iteration only if conditions 
(16), (17) and (19) are satisfied. The result of the algorithm is an image composed 
of one pixel wide ridges, with clearly visible ridge terminations and bifurcation 
points (valley endings). Crossing number XR(p) is calculated for each pixel in the 
resulting image, according to definition of Rutovitz, as the number of transitions 
from white to black and vice versa when points in are traversed in order. The pixel 
p is identified as ridge termination point if: 

( )
8

1
1

2R i i
i

X p p p
+

=

= − =∑  (20) 

The pixel p is identified as bifurcation point if: 

( )
8

1
1

6R i i
i

X p p p
+

=

= − =∑  (21) 
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4.3 Cancelable Template Generation 

Non-invertible transforms are used to preserve the privacy of biometric templates. 
The transform produces a cancelable template that does not match the original and 
the original cannot be reconstructed from the cancelable template. If the stored 
template is compromised, a new cancelable template is generated by changing 
distortion characteristics of the non-invertible transform. The transformation 
applied to a fingerprint template is invertible if the post-transformation minutiae 
positions after are highly correlated to minutiae positions before transformation 
[21]. According to the aforementioned statement, the goal of the transform is to 
eliminate minutiae correlation to the maximum possible extent. Additionally, 
tolerance to brute force attacks is required. 

Let (xi, yi), i=1, ... n denote the coordinates of minutiae i for n identified minutiae 
points. The two-dimensional vector of extracted minutiae points is given by: 

( ) ( ) ( ){ }1 1 2 2, , , , ..., ,n nF x y x y x y=  (22) 

The non-invertibility of proposed transformation comes from cell shuffling. The 
coordinate system is divided into Nx x Ny cells, each containing nxy minutiae 
points. Cells are shuffled as follows: circular shift right is performed to each cell 
according to the number of minutiae in that cell. Once horizontal shifting is 
finished, circular shift down is performed in the same manner. More than one cell 
can be mapped into the same cell after the transformation, as shifting depends on 
the number of points in the cell and no key is employed as a transformation 
matrix. The transform is non-invertible at this point, as is impossible to determine 
the original cell of the minutiae. This transform also satisfies the condition of local 
smoothness. The strength of the transform depends on the number of cells: an 
adversary performing brute force attack would have to try (NxNy)NxNy possibilities. 
For example, brute force attack against 4x4 cells shifting transform would require 
18.5 x 1018 attempts, and against 4x5 cells transform 1.05 x 1026 attempts. 

Let (xT
i, yT

i), i=1, ... n denote the coordinates of minutiae i after cell shuffling. 
Generated cancelable template is given by: 

( ) ( ) ( ){ }T T T T T T T

1 1 2 2, , , , ..., ,n nF x y x y x y= . (23) 

Templates are matched in the operating phase by discarding missing points, 
calculating the sum of the squared differences between two vectors, normalized by 
the number of remaining non-discarded values, and comparing the matching score 
with a threshold. 
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4.4 Experimental Evaluation 

The implementation of the proposed framework is experimentally evaluated using 
MATLAB (version R2011b). As this research does not deal with acquisition 
hardware, images from CASIA-IrisV4 and CASIA-FingerprintV5 [40], collected 
by the Chinese Academy of Sciences' Institute of Automation, are used as inputs. 
It should be noted that different implementation of the proposed framework 
(different employed modalities, algorithms or parameters) will result in different 
error rates, key generation template entropy and cancelable template security. 

The iris image subset used in our experiments consists of 500 samples from 50 
subjects. Each iris image is normalized into an 8-bit 240x20 pixel image, and a 1-
D log-Gabor filter with σ=0.5 and 12 pixel center wavelength is subsequently 
applied, resulting in a 9600 bit template. These parameters were found to provide 
high local entropy and optimum encoding on CASIA database [41]. Fingerprint 
image subset used in our experiments also consists of 500 samples from 50 
subjects, with a resolution of 328x356 pixels. The optimal number of cells used in 
the non-invertible transform is selected as a compromise between the template 
security to brute force attacks and Equal Error Rate (EER), as presented in Fig. 5. 

 
Figure 5 

Determining optimal number of cells used in non-invertible transform 

According to Figure 5, the optimal number of cells used in non-invertible 
transform is 4x4, resulting in less than 2% EER (1 reject in 50 authentication 
attempts) and the sufficient level of biometric template security. Five look-up 
tables are initially generated for different key lengths, each containing 50 rows of 
key hashes, correction codes from the Reed-Solomon algorithm output and 
cancelable templates generated from one fingerprint image for each subject. 
System was further tested as follows: FAR and FRR rates for different key sizes, 
without hash verification, are given in Table 1 and the overall system-wide 
performance is given in Table 2. Tolerance to brute force attacks takes into 
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account the fact that an adversary knows the length of the key. Otherwise, they 
would have to seek hash collision, which would make an attack even more 
complicated if the hash produces digest larger than the key. 

Table 1 
Average FAR and FRR for different key lengths (key generation without hash verification) 

Key length FAR (%) FRR (%) 
128 0.04% 0.31% 
160 < 0.01% 1.29% 
192 0% 4.01% 
224 0% 11.52% 
256 0% 14.83% 

Table 2 
System-wide performance for different key lengths and optimal number of cells (4x4) 

Key length Hash Security (brute force) FAR (%) FRR (%) 
128 

RIPEMD-160 
6.29 x 1057 

0% 

2.62% 
160 2.70 x 1067 3.83% 
192 

SHA-224 
1.61 x 1077 6.75% 

224 4.99 x 1086 13.41% 
256 SHA-256 2.14 x 1096 15.97% 

Conclusions 

Although lower error rates, generated by other systems, are reported in the 
literature, no system that generates a 100% stable cryptographic key with a 0% 
false acceptance rate is reported, to the best of our knowledge. According to the 
experimental evaluation of the proposed implementation, that employs iris and 
fingerprint biometrics, as well as conventional key generation and authentication 
methods, the system will falsely identify one out of 38 users as an impostor while 
generating a 128 bit key and one out of 6 users while generating a 256 bit key. 
Although these error rates might not be suitable while attempting to generate the 
key that will, for example, open the classroom or office door, they are more than 
acceptable in critical environments where false acceptance may result in severe 
consequences, while the legitimate users are allowed to retry. Furthermore, the 
system protects stored identities with cancelable biometrics and is resistant to all 
attack types, with the exception of indiscriminate availability violations, as it is 
discussed in section 3.1. If the system generates a 128-bit key, an adversary trying 
to perform a brute force attack would have to try 6.29 x 1057 possibilities, while 
for the 256-bit key the number of possibilities increase to 2.14 x 1096. 

To conclude, the main contribution of the proposed framework is stable generated 
key, robustness, biometric template privacy and 0% false acceptance rate. 

 – 56 – 



Acta Polytechnica Hungarica Vol. 12, No. 8, 2015 

Our further research in biometric cryptosystems will be focused on the 
implementation of the iris-face key generation system according to the framework 
presented in this paper and the reduction of false rejection rates. 
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