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Abstract: This paper describes a set of experiments with bagging – a method, which can 
improve results of classification algorithms. Our use of this method aims at classification 
algorithms generating decision trees. Results of performance tests focused on the use of the 
bagging method on binary decision trees are presented. The minimum number of decision 
trees, which enables an improvement of the classification performed by the bagging method 
was found. The tests were carried out using the Reuters 21578 collection of documents as 
well as documents from an internet portal of  TV broadcasting company Markíza. 
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1 Introduction 

Nowadays, information and data are stored everywhere, mainly on the Internet. To 
serve us, information had to be transformed into the form, which people can 
understand, i.e. into the form of knowledge. This transformation represents a large 
space for various machine learning algorithms, mainly classification ones. The 
quality of the transformation heavily depends on the precision of classification 
algorithms in use. 

The precision of classification depends on many aspects. Two of most important 
aspects are the selection of a classification algorithm for a given task and the 
selection of a training set. In frame of this paper, we have focused on experiments 
with training set samples, with the aim to improve the precision of classification 
results. At present, two various approaches are known. The first approach is based 
on an idea of making various samples of the training set. A classifier is generated 
for each of these training set samples by a selected machine learning algorithm. In 
this way, for k variations of the training set we get k particular classifiers. The 
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result will be given as a combination of individual particular classifiers. This 
method is called Bagging in the literature [1]. Another similar method called 
Boosting [7] performs experiments over training sets as well. This method works 
with weights of training examples. Higher weights are assigned to incorrectly 
classified examples. That means, that the importance of these examples is 
emphasised. After the weights are updated, a new (base) classifier is generated. A 
final classifier is calculated as a combination of base classifiers. The presented 
paper focuses on the bagging method in combination with Decision trees in the 
role of base classifiers. 

2 Bagging 

Bagging is a method for improving results of machine learning classification 
algorithms. This method was formulated by Leo Breiman and its name was 
deduced from the phrase “bootstrap aggregating” [1]. More information about 
bagging can be found in [3], [4] and [9]. 

In case of classification into two possible classes, a classification algorithm 
creates a classifier H: D  {-1,1} on the base of a training set of example 
descriptions (in our case played by a document collection) D. The bagging method 
creates a sequence of classifiers Hm, m=1,…,M in respect to modifications of the 
training set. These classifiers are combined into a compound classifier. The 
prediction of the compound classifier is given as a weighted combination of 
individual classifier predictions: 
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The meaning of the above given formula can be interpreted as a voting procedure. 
An example di is classified to the class for which the majority of particular 
classifiers vote. Articles [2] and [6] describe the theory of classifier voting. 
Parameters αm, m=1,…,M are determined in such way that more precise classifiers 
have stronger influence on the final prediction than less precise classifiers. The 
precision of base classifiers Hm can be only a little bit higher than the precision of 
a random classification. That is why these classifiers Hm are called weak 
classifiers. 

We experimented with the following bagging algorithm [1]: 

A bagging algorithm for multiple classification into several classes. 

1 Initialisation  of the training set D 

2 for m = 1, ..., M 



Acta Polytechnica Hungarica Vol. 3, No. 2, 2006 

 – 123 – 

2.1 Creation of a new set Dm of the same size D  by 

random selection of training examples from the set D 
(some of examples can be selected repeatedly and some 
may mot be selected at all). 

2.2 Learning of a particular classifier Hm: Dm → R by a 
given machine learning algorithm based on the actual 
training set Dm. 

3 Compound classifier H is created as the aggregation of particular 
classifiers Hm: m = 1, ...,M and an example di is classified to the 
class cj in accordance with the number of votes obtained from 
particular classifiers Hm. 
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If it is possible to influence the learning procedure performed by the classifier Hm 
directly, classification error can be minimised also by Hm while keeping 
parameters αm  constant. 

The above described algorithm represents an approach called base version of 
bagging. There are some other strategies called bagging like strategies which 
work with smaller size of the training set of example descriptions. These strategies 
use a combination of the bagging method and the cross-validation method. The 
cross-validation represents the division of the training set into N subsets of D/N 
size. One of these subsets is used as the training set and the other subsets play the 
role of test sets. 

In “bagging like strategies” the original training set is divided into N subsets of 
the same size. Each subset is used to create one classifier – a particular classifier is 
learned using this subset. A compound classifier is created as the aggregation of 
particular classifiers. The most known methods are: disjoint partitions, small bags, 
no replication small bags and disjoint bags. An illustrative example of the subset 
selection process to form new training subsets from an original one is presented in 
the rest of this section. The original training set containing sixteen examples is 
depicted in Figure 1. 

A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P 

Figure 1 
Original training set D 

The method of disjoint partitions uses random selection to select examples. Each 
example is selected only once. An example of four new subsets, created from the 
original training set in Figure 1, is presented in Figure 2. In general, if N subsets 
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are created from the original training set, then each of them contains 1/N part from 
the original set. Union of particular subsets equals the original training set. For 
very large original set, partitions enable parallel learning of base classifiers. 

A B  C  D  E  F  G  H  I  J  K L  M  N  O P 

Figure 2 
Disjoint partitions 

Classifier H obtained from the aggregation of particular classifiers Hm learnt on 
disjoint partitions, achieves the best results from all „bagging like strategies“. 
In the method of small bags, each subset is generated independently from the 
other subsets by random selection of training examples with the possibility to 
select an example repeatedly. An example can be located in several subsets and/or 
several times in one subset as well. The training sets illustrated in Figure 3 were 
obtained from the original set in Figure 1. Union of particular partitions does not 
guarantee to provide the original training set. Classifiers using the small bags 
reach the worst results from all „bagging like strategies“. 

A C  H  L  B  P  L  P  D  I  O  H  K  C  F  K 

Figure 3 
Small bags 

In the method of no replication small bags, each subset is generated 
independently from the other subsets by random selection of training examples 
without any replication of examples. An example can occur in one subset, several 
subsets, or no subset. If it occurs in a subset, then exactly one copy is included in 
the subset. The training sets illustrated in Figure 4 were obtained from the original 
set in Figure 1. Union of particular partitions does not guarantee to represent the 
original training set. 

A C  H  L  O  P  L  N  D  I  O  H  K  C  F P 

Figure 4 
No replication small bags 

The last method from the above mentioned ones is the method of disjoint bags. In 
this method, size of each subset does not equal |D| but is (slightly) greater. First, 
examples which occur in the original training set are distributed into subsets. 
Selection of training examples is performed in the same way as in the method of 
“disjoint partitions”. Then, one or more examples are randomly selected and 
replicated within each subset. The number of replications has to be the same in 
each subset. An example of resulting division of training examples is illustrated in 
Figure 5. Each example from the original set occurs (once or more times) exactly 
in one subset. 
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A B  C  D C  E  F  G  H E  I  J  K L J  M  N  O P O 

Figure 5 
Disjoint bags 

Union of particular partitions does not provide the original training set. Classifiers 
using “disjoint bags" are known to reach the same or sometimes better results as 
those classifiers using „disjoint partitions“. 

3 Text Categorisation 

We decided to base our experiments with bagging on the text categorisation task 
[8]. The aim is to find an approximation of an unknown function Φ : D × C → 
{true, false} where D is a set of documents and C = {c1, ..., c|C|} is a set of 
predefined categories. The value of the function Φ for a pair 〈di, cj〉 is true if the 
document di belongs to the category cj.. The function Φ̂ : D × C → {true, false} 
which approximates Φ is called a classifier. Definition of the text categorisation 
task is based on these additional suppositions: 

• Categories are only nominal labels and there is no (declarative or 
procedural) knowledge about their meaning. 

• Categorisation is based solely on knowledge extracted from text of the 
documents. 

This definition is a general one and does not require availability of other 
resources. The constraints may not hold in operational conditions when any kind 
of knowledge can be used to make the process of categorisation more effective. 

Based on a particular application it may be possible to limit the number of 
categories for which the function Φ has the value true for a given document di. If 
the document di can be classified exactly into one class cj ∈ C, it is the case of the 
classification into one class and C represents the set of disjoint classes. The case 
when each document can be classified into an arbitrary number k = 0, ..., |C| of 
classes from the set C is called multiple classification  and C  represents the set of 
overlapping classes. 

Binary classification represents a special case when a document can be classified 
into one of two classes. Classifiers (and algorithms for their creation) for binary 
classification can be used for multiple classification as well. If classes are 
independent from each other (i.e. for each pair of classes cj, ck, j ≠ k holds that the 
value Φ(di, cj) is independent from the value Φ(di, ck)), the problem of multiple 
classification can be decomposed into |C| independent binary classification 
problems into classes },{ ii cc  for  i = 0, ..., |C|. In this case a classifier for the 
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category cj stands for the function  jΦ̂ : D → {true, false}, which approximates 

the unknown function  Φ j : D → {true, false}. 

With respect to the above mentioned decomposition, we used binary decision tree 
(decision tree performing binary classification) in the role of a base classifier. 

4 Classifier Efficiency Evaluation 

The evaluation of classifier efficiency can be based on the degree of match 
between prediction Φ̂ (di, cj) and actual value Φ(di, cj) calculated over all 
documents di ∈ T (or di ∈ V). Quantitatively it is possible to evaluate the 
effectiveness in terms of precision and recall (similarly to evaluating methods for 
information retrieval). 

For classification of documents belonging to the class cj it is possible to define 
precision πj as conditional probability Pr(Φ(di, cj) = true | Φ̂ (di, cj)  = true). 
Similarly, recall ρj can be defined as conditional probability Pr( Φ̂ (di, cj) = true | 
Φ(di, cj) = true). Probabilities πj and ρj can be estimated from a contingence table 
Table 1 in the following way: 
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where TPj and TNj (FPj and FNj) are the numbers of correctly (incorrectly) 
predicted positive and negative examples of the class cj. 

Table 1 
Contingence table for category cj 

 Φ(di, cj) = true Φ(di, cj) = false 

Φ̂ (di, cj) = true TPj FPj 

Φ̂ (di, cj) = false FNj TNj 

Overall precision and recall for all classes can be calculated in two ways. Micro 
averaging is defined in the following way: 



Acta Polytechnica Hungarica Vol. 3, No. 2, 2006 

 – 127 – 

∑
∑

∑
∑

=

=

=

=

+
=

+
=

+
=

+
=

||

1

||

1

||

1

||

1

)(

)(

C

j jj

C

j j

C

j jj

C

j j

FNTP

TP

FNTP
TP

FPTP

TP

FPTP
TP

μ

μ

ρ

π

 

while macro averaging is given by the following equations: 
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The selection of a particular way of averaging depends on a given task. For 
example, micro averaging reflects mainly classification of cases belonging to 
frequently occurring classes while macro averaging is more sensitive to 
classification of cases from less frequent classes. 

Precision and recall can be combined into one measure, for example according to 
the following formula: 

ρπβ
πρβ

β +
+

= 2
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where β expresses trade off between Fβ and π and ρ.  Very often it can be seen the 
use of the function F1 combining precision and recall using equal weights. 

Lacking training data (when it is not possible to select a sufficiently representative 
test set), it is possible to estimate classification efficiency using cross validation 
when the set of all examples Ω is divided into k subsets T1, ..., Tk of the same size. 
For each subset a classifier Φ̂ i is constructed using Ω - Ti as a training set and Ti 
in the role of the test set. Final estimation can be calculated by averaging results of 
classifiers Φ̂ i  relevant to all subsets. 

5 Experiments 

A series of experiments was carried out using binary decision trees as base 
classifiers. Data from two sources were employed. The first one was the Reuters-
215781 document collection, which comprises Reuter‘s documents from 1987. 

                                                           
1 Most experiments were carried out using this document collection, if not given otherwise. 
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The documents were categorised manually. To experiment, we used a XML 
version of this collection. The collection consists of 674 categories and contains 
24242 terms. The documents were divided into training and test sets – the training 
set consists of 7770 documents and 3019 documents form the test set. After 
stemming and stop-words removal, the number of terms was reduced to 19864. 

The other document collection, used to perform experiments, was formed by 
documents from the Internet portal of the Markiza broadcasting company. The 
documents were classified into 96 categories according to their location on the 
Internet portal www.markiza.sk. The collection consists of 26785 documents in 
which 280689 terms can be found. In order to ease experiments, the number of 
terms was reduced to 70172. This form of the collection was divided into the 
training and test sets using ratio 2:1. The training set is formed by 17790 
documents and the test set by 8995 documents. Documents from this collection 
are in the Slovak language unlike the first collection, whose documents are written 
in English. 

In order to create decision trees, the famous C4.5 algorithm was used [5]. This 
algorithm is able to form perfect binary trees over training examples for each 
decision category. To test the bagging method, weak classifiers (not perfect) are 
necessary. Therefore, the trees generated by the C4.5 method were subsequently 
pruned. 

5.1 Bagging Efficiency Testing 

Results achieved by classifiers, based on the bagging algorithm, were compared 
with those generated by perfect decision trees. Figure 6 depicts differences 
between precision of the bagging-based classifier and the precision of the perfect 
decision tree classifier. Data are shown for each classification class separately (the 
classes are ordered decreasingly according their frequency). 
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Figure 6 

Precision differences between a bagging-based classifier and a perfect decision tree for data from the 
Reuter’s collection 

The results can be interpreted in such way that the bagging-based method provides 
better  results than perfect decision trees for more frequent classes. On the other 
hand, for less frequent classes the results of the perfect decision tree are better. 

5.2 Experiments with Different Number of Classifiers 

In order to explore dependence of the efficiency of the bagging-based classifier on 
the number of classifiers, additional experiments were carried out. The number of 
iterations (i.e. the number of generated binary decision trees) of the bagging 
algorithm was limited by 200 classifiers. That means, each category was classified 
by a sum of not more than 200 classifiers. Subsequently, the number of used 
classifiers was reduced and implications on the classifier efficiency were studied. 
In order to enable comparison with non-bagging classifier, the efficiency of a 
perfect binary decision tree was represented on the Figure 7 as a black line. 
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Figure 7 

Efficiency differences between the bagging-based classifiers  and a perfect decision tree for data from 
the Reuter’s collection 

The Figure 7 illustrates that efficiency of the classifiers based on the bagging 
method does not depend on the quality of particular classifiers (represented by the 
pruning values), since the values are almost the same for every pruning method. 
As far as different parameters are concerned, bagging is superior in respect to 
precision for the number of used classifiers greater than 20. Using 20 or more 
classifiers, the F1 measure is practically constant. Considering recall, the situation 
slightly differs. The value of the recall parameter increases with using bigger 
number of classifiers – with the threshold value 40 classifiers approximately. 

Similar experiments were carried out using data from the Internet portal of the 
Markiza broadcasting company. The results are illustrated on Figure 8. The same 
parameter setting was used for both the bagging-based classifier and the decision 
tree classifier. 
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Figure 8 

Efficiency differences between the bagging-based classifiers and a perfect decision tree for data from 
the Markiza collection 

The Figure 8 illustrates that as far as different parameters are concerned, the 
bagging method is superior for the number of classifiers greater than 10 
(approximately). 

Conclusion 

In order to draw a conclusion from our experiments, several statements can be 
formulated. The bagging method is a suitable mean for increasing efficiency of 
standard machine learning algorithms. 

Considering the same efficiency for a perfect decision tree and bagging-based 
classifiers, minimum number of classifiers necessary to achieve this efficiency can 
be found. 

As far as disadvantages of bagging are concerned, the loss of simplicity and 
illustrativeness of this classification scheme can be observed. Increased 
computational complexity is a bit discouraging as well. 

The work presented in this paper was supported by the Slovak Grant Agency of 
Ministry of Education and Academy of Science of the Slovak Republic within the 
1/1060/04 project ”Document classification and annotation for the Semantic web”. 
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