
Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 121 –

A Bagging Method using Decision Trees in the
Role of Base Classifiers

Kristína Machová, František Barčák, Peter Bednár
Department of Cybernetics and Artificial Intelligence, Technical University, Letná
9, 04200 Košice, Slovakia
Kristina.Machova@tuke.sk
Frantisek.Barcak@accenture.com
Peter.Bednár@tuke.sk

Abstract: This paper describes a set of experiments with bagging – a method, which can
improve results of classification algorithms. Our use of this method aims at classification
algorithms generating decision trees. Results of performance tests focused on the use of the
bagging method on binary decision trees are presented. The minimum number of decision
trees, which enables an improvement of the classification performed by the bagging method
was found. The tests were carried out using the Reuters 21578 collection of documents as
well as documents from an internet portal of TV broadcasting company Markíza.

Keywords: classification algorithms, bagging, binary decision trees, text categorisation,
recall and precision

1 Introduction

Nowadays, information and data are stored everywhere, mainly on the Internet. To
serve us, information had to be transformed into the form, which people can
understand, i.e. into the form of knowledge. This transformation represents a large
space for various machine learning algorithms, mainly classification ones. The
quality of the transformation heavily depends on the precision of classification
algorithms in use.

The precision of classification depends on many aspects. Two of most important
aspects are the selection of a classification algorithm for a given task and the
selection of a training set. In frame of this paper, we have focused on experiments
with training set samples, with the aim to improve the precision of classification
results. At present, two various approaches are known. The first approach is based
on an idea of making various samples of the training set. A classifier is generated
for each of these training set samples by a selected machine learning algorithm. In
this way, for k variations of the training set we get k particular classifiers. The

K. Machová et al. A Bagging Method using Decision Trees in the Role of Base Classifiers

 – 122 –

result will be given as a combination of individual particular classifiers. This
method is called Bagging in the literature [1]. Another similar method called
Boosting [7] performs experiments over training sets as well. This method works
with weights of training examples. Higher weights are assigned to incorrectly
classified examples. That means, that the importance of these examples is
emphasised. After the weights are updated, a new (base) classifier is generated. A
final classifier is calculated as a combination of base classifiers. The presented
paper focuses on the bagging method in combination with Decision trees in the
role of base classifiers.

2 Bagging

Bagging is a method for improving results of machine learning classification
algorithms. This method was formulated by Leo Breiman and its name was
deduced from the phrase “bootstrap aggregating” [1]. More information about
bagging can be found in [3], [4] and [9].

In case of classification into two possible classes, a classification algorithm
creates a classifier H: D {-1,1} on the base of a training set of example
descriptions (in our case played by a document collection) D. The bagging method
creates a sequence of classifiers Hm, m=1,…,M in respect to modifications of the
training set. These classifiers are combined into a compound classifier. The
prediction of the compound classifier is given as a weighted combination of
individual classifier predictions:

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

M

m
immi dHsigndH

1
)()(α .

The meaning of the above given formula can be interpreted as a voting procedure.
An example di is classified to the class for which the majority of particular
classifiers vote. Articles [2] and [6] describe the theory of classifier voting.
Parameters αm, m=1,…,M are determined in such way that more precise classifiers
have stronger influence on the final prediction than less precise classifiers. The
precision of base classifiers Hm can be only a little bit higher than the precision of
a random classification. That is why these classifiers Hm are called weak
classifiers.

We experimented with the following bagging algorithm [1]:

A bagging algorithm for multiple classification into several classes.

1 Initialisation of the training set D

2 for m = 1, ..., M

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 123 –

2.1 Creation of a new set Dm of the same size D by

random selection of training examples from the set D
(some of examples can be selected repeatedly and some
may mot be selected at all).

2.2 Learning of a particular classifier Hm: Dm → R by a
given machine learning algorithm based on the actual
training set Dm.

3 Compound classifier H is created as the aggregation of particular
classifiers Hm: m = 1, ...,M and an example di is classified to the
class cj in accordance with the number of votes obtained from
particular classifiers Hm.

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

M

m
jimmji cdHsigncdH

1
),(),(α

If it is possible to influence the learning procedure performed by the classifier Hm
directly, classification error can be minimised also by Hm while keeping
parameters αm constant.

The above described algorithm represents an approach called base version of
bagging. There are some other strategies called bagging like strategies which
work with smaller size of the training set of example descriptions. These strategies
use a combination of the bagging method and the cross-validation method. The
cross-validation represents the division of the training set into N subsets of D/N
size. One of these subsets is used as the training set and the other subsets play the
role of test sets.

In “bagging like strategies” the original training set is divided into N subsets of
the same size. Each subset is used to create one classifier – a particular classifier is
learned using this subset. A compound classifier is created as the aggregation of
particular classifiers. The most known methods are: disjoint partitions, small bags,
no replication small bags and disjoint bags. An illustrative example of the subset
selection process to form new training subsets from an original one is presented in
the rest of this section. The original training set containing sixteen examples is
depicted in Figure 1.

A B C D E F G H I J K L M N O P

Figure 1
Original training set D

The method of disjoint partitions uses random selection to select examples. Each
example is selected only once. An example of four new subsets, created from the
original training set in Figure 1, is presented in Figure 2. In general, if N subsets

K. Machová et al. A Bagging Method using Decision Trees in the Role of Base Classifiers

 – 124 –

are created from the original training set, then each of them contains 1/N part from
the original set. Union of particular subsets equals the original training set. For
very large original set, partitions enable parallel learning of base classifiers.

A B C D E F G H I J K L M N O P

Figure 2
Disjoint partitions

Classifier H obtained from the aggregation of particular classifiers Hm learnt on
disjoint partitions, achieves the best results from all „bagging like strategies“.
In the method of small bags, each subset is generated independently from the
other subsets by random selection of training examples with the possibility to
select an example repeatedly. An example can be located in several subsets and/or
several times in one subset as well. The training sets illustrated in Figure 3 were
obtained from the original set in Figure 1. Union of particular partitions does not
guarantee to provide the original training set. Classifiers using the small bags
reach the worst results from all „bagging like strategies“.

A C H L B P L P D I O H K C F K

Figure 3
Small bags

In the method of no replication small bags, each subset is generated
independently from the other subsets by random selection of training examples
without any replication of examples. An example can occur in one subset, several
subsets, or no subset. If it occurs in a subset, then exactly one copy is included in
the subset. The training sets illustrated in Figure 4 were obtained from the original
set in Figure 1. Union of particular partitions does not guarantee to represent the
original training set.

A C H L O P L N D I O H K C F P

Figure 4
No replication small bags

The last method from the above mentioned ones is the method of disjoint bags. In
this method, size of each subset does not equal |D| but is (slightly) greater. First,
examples which occur in the original training set are distributed into subsets.
Selection of training examples is performed in the same way as in the method of
“disjoint partitions”. Then, one or more examples are randomly selected and
replicated within each subset. The number of replications has to be the same in
each subset. An example of resulting division of training examples is illustrated in
Figure 5. Each example from the original set occurs (once or more times) exactly
in one subset.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 125 –

A B C D C E F G H E I J K L J M N O P O

Figure 5
Disjoint bags

Union of particular partitions does not provide the original training set. Classifiers
using “disjoint bags" are known to reach the same or sometimes better results as
those classifiers using „disjoint partitions“.

3 Text Categorisation

We decided to base our experiments with bagging on the text categorisation task
[8]. The aim is to find an approximation of an unknown function Φ : D × C →
{true, false} where D is a set of documents and C = {c1, ..., c|C|} is a set of
predefined categories. The value of the function Φ for a pair 〈di, cj〉 is true if the
document di belongs to the category cj.. The function Φ̂ : D × C → {true, false}
which approximates Φ is called a classifier. Definition of the text categorisation
task is based on these additional suppositions:

• Categories are only nominal labels and there is no (declarative or
procedural) knowledge about their meaning.

• Categorisation is based solely on knowledge extracted from text of the
documents.

This definition is a general one and does not require availability of other
resources. The constraints may not hold in operational conditions when any kind
of knowledge can be used to make the process of categorisation more effective.

Based on a particular application it may be possible to limit the number of
categories for which the function Φ has the value true for a given document di. If
the document di can be classified exactly into one class cj ∈ C, it is the case of the
classification into one class and C represents the set of disjoint classes. The case
when each document can be classified into an arbitrary number k = 0, ..., |C| of
classes from the set C is called multiple classification and C represents the set of
overlapping classes.

Binary classification represents a special case when a document can be classified
into one of two classes. Classifiers (and algorithms for their creation) for binary
classification can be used for multiple classification as well. If classes are
independent from each other (i.e. for each pair of classes cj, ck, j ≠ k holds that the
value Φ(di, cj) is independent from the value Φ(di, ck)), the problem of multiple
classification can be decomposed into |C| independent binary classification
problems into classes },{ ii cc for i = 0, ..., |C|. In this case a classifier for the

K. Machová et al. A Bagging Method using Decision Trees in the Role of Base Classifiers

 – 126 –

category cj stands for the function jΦ̂ : D → {true, false}, which approximates

the unknown function Φ j : D → {true, false}.

With respect to the above mentioned decomposition, we used binary decision tree
(decision tree performing binary classification) in the role of a base classifier.

4 Classifier Efficiency Evaluation

The evaluation of classifier efficiency can be based on the degree of match
between prediction Φ̂ (di, cj) and actual value Φ(di, cj) calculated over all
documents di ∈ T (or di ∈ V). Quantitatively it is possible to evaluate the
effectiveness in terms of precision and recall (similarly to evaluating methods for
information retrieval).

For classification of documents belonging to the class cj it is possible to define
precision πj as conditional probability Pr(Φ(di, cj) = true | Φ̂ (di, cj) = true).
Similarly, recall ρj can be defined as conditional probability Pr(Φ̂ (di, cj) = true |
Φ(di, cj) = true). Probabilities πj and ρj can be estimated from a contingence table
Table 1 in the following way:

jj

j
j FPTP

TP
+

=π ,
jj

j
j FNTP

TP
+

=ρ

where TPj and TNj (FPj and FNj) are the numbers of correctly (incorrectly)
predicted positive and negative examples of the class cj.

Table 1
Contingence table for category cj

 Φ(di, cj) = true Φ(di, cj) = false

Φ̂ (di, cj) = true TPj FPj

Φ̂ (di, cj) = false FNj TNj

Overall precision and recall for all classes can be calculated in two ways. Micro
averaging is defined in the following way:

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 127 –

∑
∑

∑
∑

=

=

=

=

+
=

+
=

+
=

+
=

||

1

||

1

||

1

||

1

)(

)(

C

j jj

C

j j

C

j jj

C

j j

FNTP

TP

FNTP
TP

FPTP

TP

FPTP
TP

μ

μ

ρ

π

while macro averaging is given by the following equations:

||||

||

1

||

1

CC

C

j jM

C

j jM ∑∑ == ==
ρ

ρ
π

π

The selection of a particular way of averaging depends on a given task. For
example, micro averaging reflects mainly classification of cases belonging to
frequently occurring classes while macro averaging is more sensitive to
classification of cases from less frequent classes.

Precision and recall can be combined into one measure, for example according to
the following formula:

ρπβ
πρβ

β +
+

= 2

2)1(F

where β expresses trade off between Fβ and π and ρ. Very often it can be seen the
use of the function F1 combining precision and recall using equal weights.

Lacking training data (when it is not possible to select a sufficiently representative
test set), it is possible to estimate classification efficiency using cross validation
when the set of all examples Ω is divided into k subsets T1, ..., Tk of the same size.
For each subset a classifier Φ̂ i is constructed using Ω - Ti as a training set and Ti
in the role of the test set. Final estimation can be calculated by averaging results of
classifiers Φ̂ i relevant to all subsets.

5 Experiments

A series of experiments was carried out using binary decision trees as base
classifiers. Data from two sources were employed. The first one was the Reuters-
215781 document collection, which comprises Reuter‘s documents from 1987.

1 Most experiments were carried out using this document collection, if not given otherwise.

K. Machová et al. A Bagging Method using Decision Trees in the Role of Base Classifiers

 – 128 –

The documents were categorised manually. To experiment, we used a XML
version of this collection. The collection consists of 674 categories and contains
24242 terms. The documents were divided into training and test sets – the training
set consists of 7770 documents and 3019 documents form the test set. After
stemming and stop-words removal, the number of terms was reduced to 19864.

The other document collection, used to perform experiments, was formed by
documents from the Internet portal of the Markiza broadcasting company. The
documents were classified into 96 categories according to their location on the
Internet portal www.markiza.sk. The collection consists of 26785 documents in
which 280689 terms can be found. In order to ease experiments, the number of
terms was reduced to 70172. This form of the collection was divided into the
training and test sets using ratio 2:1. The training set is formed by 17790
documents and the test set by 8995 documents. Documents from this collection
are in the Slovak language unlike the first collection, whose documents are written
in English.

In order to create decision trees, the famous C4.5 algorithm was used [5]. This
algorithm is able to form perfect binary trees over training examples for each
decision category. To test the bagging method, weak classifiers (not perfect) are
necessary. Therefore, the trees generated by the C4.5 method were subsequently
pruned.

5.1 Bagging Efficiency Testing

Results achieved by classifiers, based on the bagging algorithm, were compared
with those generated by perfect decision trees. Figure 6 depicts differences
between precision of the bagging-based classifier and the precision of the perfect
decision tree classifier. Data are shown for each classification class separately (the
classes are ordered decreasingly according their frequency).

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 129 –

-0,7000

-0,6000

-0,5000

-0,4000

-0,3000

-0,2000

-0,1000

0,0000

0,1000

0,2000

0,3000

0,4000

1 4 13 38 8 10 45 7 63 86 51 30 6 19 43 54 40 21 14 57 41 59 85 89 35 97 69 53 92 72 88 71 94

Categories ordered according their occurrence frequency

Figure 6

Precision differences between a bagging-based classifier and a perfect decision tree for data from the
Reuter’s collection

The results can be interpreted in such way that the bagging-based method provides
better results than perfect decision trees for more frequent classes. On the other
hand, for less frequent classes the results of the perfect decision tree are better.

5.2 Experiments with Different Number of Classifiers

In order to explore dependence of the efficiency of the bagging-based classifier on
the number of classifiers, additional experiments were carried out. The number of
iterations (i.e. the number of generated binary decision trees) of the bagging
algorithm was limited by 200 classifiers. That means, each category was classified
by a sum of not more than 200 classifiers. Subsequently, the number of used
classifiers was reduced and implications on the classifier efficiency were studied.
In order to enable comparison with non-bagging classifier, the efficiency of a
perfect binary decision tree was represented on the Figure 7 as a black line.

K. Machová et al. A Bagging Method using Decision Trees in the Role of Base Classifiers

 – 130 –

0,84415

0,80295

0,77

0,79

0,81

0,83

0,85

0,87

0,89

0 20 40 60 80 100 120 140 160 180 200

Number of classifiers in the Bagging method

mikro F1

micro recall

micro precision

basic tree

max

Figure 7

Efficiency differences between the bagging-based classifiers and a perfect decision tree for data from
the Reuter’s collection

The Figure 7 illustrates that efficiency of the classifiers based on the bagging
method does not depend on the quality of particular classifiers (represented by the
pruning values), since the values are almost the same for every pruning method.
As far as different parameters are concerned, bagging is superior in respect to
precision for the number of used classifiers greater than 20. Using 20 or more
classifiers, the F1 measure is practically constant. Considering recall, the situation
slightly differs. The value of the recall parameter increases with using bigger
number of classifiers – with the threshold value 40 classifiers approximately.

Similar experiments were carried out using data from the Internet portal of the
Markiza broadcasting company. The results are illustrated on Figure 8. The same
parameter setting was used for both the bagging-based classifier and the decision
tree classifier.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 131 –

0,64466

0,71224

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

0 5 10 15 20 25 30

Number of classifiers in the Bagging method

mikro F1

micro recall

micro precision

basic tree

max

Figure 8

Efficiency differences between the bagging-based classifiers and a perfect decision tree for data from
the Markiza collection

The Figure 8 illustrates that as far as different parameters are concerned, the
bagging method is superior for the number of classifiers greater than 10
(approximately).

Conclusion

In order to draw a conclusion from our experiments, several statements can be
formulated. The bagging method is a suitable mean for increasing efficiency of
standard machine learning algorithms.

Considering the same efficiency for a perfect decision tree and bagging-based
classifiers, minimum number of classifiers necessary to achieve this efficiency can
be found.

As far as disadvantages of bagging are concerned, the loss of simplicity and
illustrativeness of this classification scheme can be observed. Increased
computational complexity is a bit discouraging as well.

The work presented in this paper was supported by the Slovak Grant Agency of
Ministry of Education and Academy of Science of the Slovak Republic within the
1/1060/04 project ”Document classification and annotation for the Semantic web”.

References

[1] Breiman, L.: Bagging predictors. Technical Report 421, Department of
Statistics, University of California at Berkeley, 1994

[2] Breiman, L.: Arcing the edge. Technical report 486, at UC Berkeley, 1996.

[3] Friedman, J., Springer, L.:
<http://www-stat.stanford.edu/people/faculty/friedman.html>

K. Machová et al. A Bagging Method using Decision Trees in the Role of Base Classifiers

 – 132 –

[4] Hastie, T.: <http://www-stat.stanford.edu/%7Ehastie/>Robert

[5] Quinlan, J. R.: Bagging, boosting and C4.5. In Proc. of the Fourteenth
National Conference on Artificial Intelligence, 1996

[6] Schapire, R., Freund, Y.: Boosting the margin: A new explanation for the
efectiveness of voting methods. The annals of statistics, 26(5):1651-1686,
1998

[7] Schapire, R. E., Singer, Y.: Improved Boosting Algorithms Using
Confidence-rated Predictions. Machine Learning, 37(3), 1999, 297-336

[8] Schapire, R. E., Singer, Y.: BoostTexter: A Boosting – based System for
Text Categorization. Machine Learning, 39(2/3), 2000, 135-168

[9] Tibshirani, R.: <http://www-stat.stanford.edu/%7Etibs/>Jerome

