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Abstract: This paper deals with the issues of volume dataset representation as an important 

part of data storage and processing in many fields including science, research and 

development, medicine or industry. Due to the significant amount of data included in 

volume datasets, operations performed on them are often, time- and space-consuming.    

One of those operations – loading data from secondary storage into the operating memory 

of computer or memory of graphics card – can be time-consuming and lead to a bad user 

experience and significantly delay the subsequent processes. Therefore, the main 

contribution hereof is the design and introduction of an algorithm to generate volume 

dataset segmentation metadata. It allows (with a small data overhead, as a trade-off) to 

prepare metadata about splitting the particular volume dataset into segments with different 

priority levels. Subsequently, it is possible to reorganize the volume dataset according to 

the priority of the data segments, in descending order. The algorithm proposed herein 

allows to start the visualization of the volume dataset in its final quality (resembling 

visualization of the complete volume dataset, although only a part of the data was loaded 

from the secondary storage), within a fraction of the total load time of the volume dataset. 

The remaining data are continually read in the background during data visualization, 

without affecting volume data visualization quality. The first section herein, contains an 

introduction to the proposed algorithms. Results of tests, performed with different 

parameter setups on non-invasive medical imaging volume datasets, obtained by computed 

tomography and magnetic resonance imaging, are included in the second part of the paper. 

Conclusions, drawn from test results, are summarized in the last part of the paper. 
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1 Introduction 

Volume datasets are often represented as regular three-dimensional grids of scalar 

values or vectors of scalar values. Volume dataset representation, pre-processing, 

visualization and other forms of processing are important in the field of science, 

research and development [1] [2], medicine [3], industry [4] [5], etc. The amount of the 

space that volume datasets need for their representation in the operating memory 

of computer or memory of graphics card and even the secondary storage has 

always been a challenge. Although the capacities of computers, in terms of system 

memory, secondary storage size and data throughput are constantly and 

significantly growing, as do the storage space requirements of volume datasets – 

in terms of their geometrical resolutions and the size of their binary 

representations (the number of bits) of voxels. 

Computed tomography, invented by Sir Godfrey Hounsfield in 1967, was first 

used to scan a patient in 1971 [6]. Back then, computed tomography produced 

volume datasets of 643 voxels (262144 voxels), taking 2.5 hours to compute. 

Nowadays, 5123 voxel computed tomography scans are common: when using 

12b/vox, without any compression, they need 192 MB of secondary storage space 

(256MB when using 16b/vox). Raising the resolution of common volume datasets 

to 2𝐾3 (2048 × 2048 × 2048) voxels and using 16b/vox, their size on the 

secondary storage and in system memory will rise to 16 GB. While in 2007, 70 

million CT scans were performed in the USA alone, this number raised to 80 

million in 2015 [7]. 

Not only the size of volume datasets itself can be significant challenges (in terms 

of both time and space), but also operations performed on them during their pre-

processing, visualization and other forms of processing. Modern approaches to 

volume dataset visualization, in combination with virtual reality, augmented 

reality [8] [9] or computer vision [10] are even more demanding. Spatiotemporal 

volume datasets are even more demanding to process. One of those time-

consuming operations – loading the volume dataset from secondary storage into 

system or graphics memory – can result even in bad user experience and can 

significantly delay the subsequent processes. 

That is why the authors decided to work on an algorithm that can enhance the user 

experience, concerning the loading of the volume dataset, from secondary storage, 

into operating memory of computer. In [11], we designed an algorithm 

decomposing the volume dataset into two segments, creating a three-dimensional 

image – segmentation metadata – and rearranging the volume dataset to allow 

reading of the important segment of voxels from secondary storage preceding the 

unimportant segment. In comparison to the original volume dataset, the produced 

segmentation metadata represent a significant amount of data and that is why we 

applied lossless compression to the volume dataset metadata (see: Related works 

section of the paper). 
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In this work, we build on this previous research, proposing an algorithm to create 

volume dataset segmentation metadata, to rearrange the volume dataset and to 

enhance reading the volume dataset from storage. 

The contribution lies in the following: 

 An algorithm splitting the volume dataset into data blocks, assigning a level 

of priority (importance) to each data block of the volume dataset, creating 

volume dataset segmentation metadata to represent the information stored 

in the dataset and reorganizing the volume dataset (linearizing the 

segments, ordered by the level of priority in descending order).               

The segmentation metadata allow reconstruction of the original location of 

the voxels for each segment of the volume dataset. 

 An algorithm that allows to start the visualization of the volume dataset in 

its final quality (resembling visualization of the complete dataset, although 

only a corresponding fraction of the dataset was loaded from secondary 

storage), within a fraction of the total load time of the dataset.                 

The remaining data are continually read in the background, during data 

processing, without affecting data visualization quality. 

The structure of the remainder of this paper is as follows: 

Section 2 presents the related works concerning multi-dimensional data 

linearization, volume dataset segmentation metadata and lossless compression of 

those segmentation metadata using domain-specific hierarchical data structures 

based on octant trees and directed acyclic graphs and other lossless compression 

algorithms including Run-Length Encoding and  ∆𝑅𝐿𝐸. 

Section 3 introduces the proposed algorithms: one performing volume dataset 

segmentation and creating the volume dataset segmentation metadata and the 

other, improving the user experience concerning reading the volume dataset from 

storage. The inputs of these algorithms, their particular steps and outputs are 

described in detail. 

Section 4 represents the test results of the algorithms described in the previous 

section using various medical imaging volume datasets using CT and MRI and 

various parameter setups. 

The Conclusions section summarizes the conclusions based on the tests, described 

in Section 4. 

2 Related Works 

This section mentions only very close related works, related to the linearization of 

the multi-dimensional data, to the enhancement of the user experience concerning 

reading volume datasets from secondary storage and compression of volume 

datasets using hierarchical data structures. 
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Linearization of multi-dimensional data. Space-Filling Curves (SFC), introduced 

by Peano and Hilbert at the end of the 19
th

 Century [12] [13], are used for 

linearization not only of two- or three- but in general of multi-dimensional data. 

The Morton order is an SFC popular in computer graphics for its better addressing 

abilities [14] and Hilbert Space Filling-Curve (HSBC) is used in computer science 

for better locality preserving [15]. 

Volume dataset segmentation metadata. In [11], we designed an algorithm 

assigning 1b of metadata to each voxel of the volume dataset – this allows 

including that voxel into the background (the unimportant voxel segment) or into 

the region of interest (the important voxel segment) of the volume dataset.            

It allows rearranging the volume dataset in the manner that all voxels from the 

important segment are linearized in the first part of the dataset, to be read before 

the unimportant voxels, stored in the second part of the dataset. In each segment 

of the rearranged dataset, the order of voxels is the same as it is in linearized form 

of the original dataset. The size of metadata is 1b per voxel – if 16b are used as the 

size of the binary representation of voxels, metadata represent 1/16 of the volume 

dataset size. That is too much, which is why lossless compression of the volume 

dataset metadata is applied. The 3D metadata image of the volume dataset allows 

reconstruction of the original location of voxels, for each segment of the volume 

dataset. 

Lossless compression of volume segmentation metadata. In connection with the 

above-mentioned algorithm, lossless compression of the image segmentation 

metadata was proposed and different Run-Length Encoding (RLE) schemes were 

used [16]. Then, ∆𝑅𝐿𝐸 – a new compression algorithm based on the combination 

of Delta encoding and Run-Length Encoding – was tested on the image 

segmentation metadata of the volume datasets. 

Suitable solutions for compressing volume dataset segmentation metadata – the 

volume dataset itself – are octree-based Hierarchical Data Structures (HDS), also 

in their pointerless versions [17] [18] (these are suitable for dense volume datasets 

and can encode multi-bit-value voxels), and sparse, octree-derived, hierarchical 

data structures - directed acyclic graphs (DAGs) – e.g. Sparse Voxel Directed 

Acyclic Graphs (SVDAGs) [19], Symmetry-aware Sparse Voxel Directed Acyclic 

Graphs (SSVDAGs) [20] and Pointerless Sparse Voxel Directed Acyclic Graphs 

(PSVDAGs) [21]. The latter are suitable for compressing metadata if the volume 

dataset has only two segments e.g. one bit per voxel can be used for the geometry 

representation. 

3 Proposed Algorithms 

This section introduces the main contribution of the paper: an algorithm to create 

the volume dataset segmentation metadata (described in subsection 3.1) and an 
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algorithm to enhance the user’s experience concerning reading the volume dataset 

from the secondary storage (described in subsection 3.2). 

3.1 An Algorithm to Generate Volume Dataset Segmentation 

Metadata 

This section describes the input, the steps of algorithm and the outputs of the 

proposed algorithm. 

3.1.1 Input 

The inputs of the proposed algorithm are as follows: 

1) The volume dataset 𝑅[𝑋, 𝑌, 𝑍], organized as a regular three-dimensional grid 

of voxels, with 𝑋, 𝑌, 𝑍 ∈ ℕ grid dimensions. Each voxel 𝑣[𝑥, 𝑦, 𝑧] ∈ 𝑅: 𝑥 ∈<
0; 𝑋 − 1 >; 𝑦 ∈< 0; 𝑌 − 1 >; 𝑧 ∈< 0; 𝑍 − 1 >; 𝑥, 𝑦, 𝑧 ∈ ℕ0 is represented 

by a scalar value 𝑣𝑎𝑙 ∈< 0; 𝜈𝑚𝑎𝑥 >, where 𝜈𝑚𝑎𝑥 is the maximal value. 

2) The size of the volume dataset data block that is represented by its 

dimensions 𝐵𝑥 ∈< 1; 𝑋 >, 𝐵𝑦 ∈< 1; 𝑌 >, 𝐵𝑧 ∈< 1; 𝑍 >; 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧 ∈ ℕ.  

3) Number of priority levels 𝜌𝑚𝑎𝑥 ∈ ℕ. 

3.1.2 Steps 

The following five steps of the algorithm are performed consecutively: 

Step 1 of the algorithm divides the volume dataset 𝑅[𝑋, 𝑌, 𝑍] into a regular three-

dimensional grid 𝑅´[𝑋′, 𝑌′, 𝑍′] of voxel data blocks (from the volume dataset); 

𝑋′ = ⌈
𝑋

𝐵𝑥

⌉ , 𝑌′ = ⌈
𝑌

𝐵𝑦

⌉ , 𝑍′ = ⌈
𝑍

𝐵𝑧

⌉ ; 𝑋′, 𝑌′, 𝑍′ ∈ ℕ are the dimensions of the grid. Each 

data block [𝑥′, 𝑦′, 𝑧′] ∈ 𝑅′:  𝑥′ ∈  < 0; 𝑋′ − 1 >;   𝑦′ ∈  < 0; 𝑌′ − 1 >; 𝑧′  ∈ < 0; 𝑍′ −

1 >; 𝑥′, 𝑦′, 𝑧′ ∈ ℕ0. 

Each volume dataset data block has a size 𝐵𝑠𝑖𝑧𝑒 determined by its dimensions 

𝐵𝑥 , 𝐵𝑦 and 𝐵𝑧, expressed in number of voxels. This can be calculated using the 

following formula: 

𝐵𝑠𝑖𝑧𝑒 = 𝐵𝑥 ∗ 𝐵𝑦 ∗ 𝐵𝑧  (1) 

The data block count 𝑁 (i.e. the number of data blocks, to which the volume 

dataset is divided), can be calculated as follows: 

𝑁 = ⌈
𝑋

𝐵𝑥

⌉ ∗ ⌈
𝑌

𝐵𝑦

⌉ ∗ ⌈
𝑍

𝐵𝑧

⌉ 
(2) 

Step 2 To each data block 𝛿[𝑥′, 𝑦′, 𝑧′] ∈ 𝑅′[𝑋′, 𝑌′, 𝑍′] of the volume dataset, its 

priority level is assigned from the set Ρ with the cardinality |𝜌𝑚𝑎𝑥|, when this set 

is defined as 
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Ρ = {0,1,2, … , 𝜌𝑚𝑎𝑥 − 3, 𝜌𝑚𝑎𝑥 − 2, 𝜌𝑚𝑎𝑥 − 1} (3) 

𝑅′′[𝑋′′, 𝑌′′, 𝑍′′], where 𝑋′′ = 𝑋′, 𝑌′′ = 𝑌′, 𝑍′′ = 𝑍′; 𝑋′′, 𝑌′′, 𝑍′′ ∈ ℕ, is the regular 

three-dimensional grid of scalar values, each of these represents the priority level 

of the particular data block in the volume dataset. Priority level 0 is assigned to 

the data blocks having the highest priority, while priority level 𝜌𝑚𝑎𝑥 − 1 is 

assigned to the data blocks having the lowest priority in the volume dataset. 

The above-mentioned assignment is performed using function 𝑓 (this function can 

be designed according to the specific needs of the particular volume dataset 

segmentation): 

𝑅′′[𝑋′′, 𝑌′′, 𝑍′′] = 𝑓: (𝑅′[𝑋′, 𝑌′, 𝑍′]) → Ρ (4) 

The priority level of each volume dataset data block is encoded in binary. If fixed-

length encoding in the form of unsigned integer values is used, the encoding 

requires ⌈log2 𝜌𝑚𝑎𝑥⌉ bits per data block. The overall number of volume dataset 

data blocks is quantified using (2) as 𝑁, so the overall size of 𝑅′′[𝑋′′, 𝑌′′, 𝑍′′], the 

𝑅′′𝑠𝑖𝑧𝑒  value, in bits, is: 

𝑅′′𝑠𝑖𝑧𝑒 = 𝑁 × ⌈log2 𝜌𝑚𝑎𝑥⌉ [𝑏] (5) 

All data blocks constituting 𝑅′ and having the same particular priority level 

𝑝 ∈ 𝑃; 𝑝 ∈< 0; 𝜌𝑚𝑎𝑥 − 1 >; 𝑝 ∈ ℕ0 assigned in 𝑅′′, constitute segment 𝑆𝑝 of that 

particular priority in the volume dataset. The set of segments Σ with the 

cardinality |𝜌𝑚𝑎𝑥| may be described as follows: 

Σ = {𝑆0, 𝑆1, 𝑆2, … , 𝑆𝜌𝑚𝑎𝑥−3, 𝑆𝜌𝑚𝑎𝑥−2, 𝑆𝜌𝑚𝑎𝑥−1} (6) 

Each data block from 𝑅′ belongs to one of the above segments and therefore: 

𝑅′[𝑋′, 𝑌′, 𝑍′] = ⋃ 𝑆𝑟

𝜌𝑚𝑎𝑥−1

𝑟=0

 

 

(7) 

Step 3 Volume dataset 𝑅′ is linearized, when all of its data blocks are ordered in a 

one-dimensional stream according to the selected linearization. 

Step 4 Volume dataset 𝑅′ is rearranged, when its data segments are ordered 

according to the priority in the linearized one-dimensional stream of data blocks, 

in descending order. In each volume dataset segment, the data blocks are ordered 

according their order in the linearized volume dataset obtained in Step 3 of the 

algorithm. 

Step 5 Voxels of volume dataset 𝑅′ are linearized separately in each volume 

dataset data block according to selected linearization. 



Acta Polytechnica Hungarica Vol. 18, No. 5, 2021 

 – 193 – 

3.1.3 Outputs 

The output of the algorithm is represented by the volume dataset segmentation 

metadata stored in 𝑅′′ and by the linearized rearranged volume dataset 𝑅′ obtained 

in Step 5. 

3.1.4 Metadata Generation and Volume Dataset Rearrangement – an 

Example 

Figure 1 shows the steps of the proposed algorithm – for the sake of simplicity, 

using two-dimensions. Figure 1a contains a grid 𝑅′ of 8 × 8 pixels. 

 

Figure 1 

A two-dimensional (for the sake of the simplicity) example of the steps of the algorithm generating 

volume metadata and rearranging dataset 

In Step 1, as shown in Figure 1b, the grid is divided into 16 data blocks forming 

the 4 × 4 grid 𝑅′′. Each data block has 2 × 2 pixels. 

In Step 2, each data block is assigned a priority from the set 𝑃 = {𝑝0, 𝑝1, 𝑝2, 𝑝3}. 

Priority values are encoded in binary as the vectors 

𝑝0 = ”00”, 𝑝1 = ”01”, 𝑝2 = ”10”, 𝑝3 = ”11” 

and also in color – see the color coding table in Figure 1. 

Data blocks constitute the segments Σ = {𝑆0, 𝑆1, 𝑆2, 𝑆3} of the volume dataset. 

In Step 3, the data blocks are linearized as shown in Figure 1c. The linearized 

sequence of the binary priority codes shown in Figure 1c constitutes the linearized 

form of the segmentation metadata in the algorithm output. 

In Step 4, the data blocks are rearranged (Figure 1d), when all data blocks from 

the same segment 𝑆𝑟: 𝑟 ∈< 0; 3 > are located, within the segment, in the order of 

appearance in the linearized form (Figure 1c). The segments are ordered according 

to their priority levels, in descending order. 
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Step 5, in which each data block is linearized according the selected linearization, 

is missing from Figure 1. The rearranged form of the data blocks is the output of 

the algorithm. 

It is possible to reconstruct the original position of each voxel in the volume 

dataset for each data block loaded from the secondary storage, using rearranged 

volume dataset and metadata (volume segmentation metadata 𝑅′′), even if the 

volume dataset is loaded only partially, i.e. if only some segments of the dataset 

are loaded from the secondary storage. 

In Step 1, volume segmentation metadata is transformed from the linearized form 

into the three-dimensional grid 𝑅′′, respecting selected linearization. 

In Step 2, volume dataset data blocks forming particular priority segment are 

placed into the locations of particular priority codes respecting order of volume 

dataset data blocks in the priority segment. 

The number of data blocks in each segment can be obtained as the result of 

analysis of segmentation metadata 𝑅′′ in time of original volume dataset 

reconstruction from rearranged volume dataset and therefore can be omitted from 

the metadata representation. 

3.2 An Algorithm for Improved Reading of Volume Datasets 

from Storage 

The algorithm is based on the above-mentioned algorithm, when all its steps have 

been performed, using a specific function 𝑓 for the assignment of the priority level 

to volume dataset data blocks, on a pre-processed volume dataset. 

3.2.1 Input 

The proposed algorithm has the following inputs: 

1) The volume dataset 𝑅[𝑋, 𝑌, 𝑍], organized as a regular three-dimensional grid 

of voxels, with 𝑋, 𝑌, 𝑍 ∈ ℕ grid dimensions. Each voxel 𝑣[𝑥, 𝑦, 𝑧] ∈ 𝑅: 𝑥 ∈<
0; 𝑋 − 1 >; 𝑦 ∈< 0; 𝑌 − 1 >; 𝑧 ∈< 0; 𝑍 − 1 >; 𝑥, 𝑦, 𝑧 ∈ ℕ0 is represented 

by a scalar value 𝑣𝑎𝑙 ∈< 0; 𝜈𝑚𝑎𝑥 > where 𝜈𝑚𝑎𝑥 is the maximal value. 

2) The size of the volume dataset data block that is represented by its 

dimensions 𝐵𝑥 ∈< 1; 𝑋 >, 𝐵𝑦 ∈< 1; 𝑌 >, 𝐵𝑧 ∈< 1; 𝑍 >; 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧 ∈ ℕ 

3) Number of priority levels 𝜌𝑚𝑎𝑥 = 4 

4) Threshold 𝜏 ∈< 0; 𝜈𝑚𝑎𝑥 > 
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3.2.2 Steps 

Steps P1 and P2 are the pre-processing steps of the algorithm; after these, all five 

steps of the volume dataset segmentation and metadata generation algorithm are 

performed, applying function 𝑓 designed specifically for this algorithm. 

Step P1. This step decomposes the volume dataset 𝑅[𝑋, 𝑌, 𝑍] (a slice of example 

volume dataset is shown in Figure 2a) into two segments (unimportant, i.e. 

background and important, i.e. foreground voxels) and creates a three-dimensional 

grid 𝑅𝑠[𝑋, 𝑌, 𝑍]. As a proof of concept, the authors used a segmentation threshold 

value 𝜏 (that is why 𝜏 is one of the inputs of the algorithm): 

𝑅𝑠[𝑥, 𝑦, 𝑧] = {
0 𝑖𝑓 𝑅[𝑥, 𝑦, 𝑧] < 𝜏

1 𝑖𝑓 𝑅[𝑥, 𝑦, 𝑧] ≥ 𝜏
 

(8) 

Two segments Τ0 and Τ1 are formed, when: 

𝑅[𝑥, 𝑦, 𝑧] ∈ 𝑇0: 𝑅𝑠[𝑥, 𝑦, 𝑧] = 0  

𝑅[𝑥, 𝑦, 𝑧] ∈ 𝑇1: 𝑅𝑠[𝑥, 𝑦, 𝑧] = 1 

 

(9) 

Each volume dataset voxel from 𝑅 belongs to one of those segments and 

therefore: 

𝑅[𝑋, 𝑌, 𝑍] = Τ0 ∪ Τ1 (10) 

After the Step P1 of the algorithm is performed: 

 Segment Τ0 contains each voxel of 𝑅, having a value lower than the threshold 

𝜏 (the corresponding value is set to 0 in 𝑅𝑠). In Figure 2b, these are displayed 

in grey. 

 Segment Τ1 contains each voxel of 𝑅, having a value equal or greater than the 

threshold 𝜏 (the corresponding value is set to 1 in 𝑅𝑠). In Figure 2b, these are 

displayed in green. 

Step P2. The volume dataset is segmented further, into set Φ of four segments 

𝑈0, 𝑈1, 𝑈2 and 𝑈3: 

Φ = {𝑈0, 𝑈1, 𝑈2, 𝑈3} (11) 

Each volume dataset voxel from 𝑅 belongs to one of those segments, therefore: 

𝑅[𝑋, 𝑌, 𝑍] = ⋃ 𝑈𝑟

3

𝑟=0

 
 

(12) 

After Step P2: 

 Segment 𝑈0 contains all voxels of the surface of the region of interest 

(foreground). In Figure 2c, these are displayed in red. 
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 Segment 𝑈1 contains all important voxels within the region of interest that are 

not constituting its surface. In Figure 2c, these are displayed in green. 

 Segment 𝑈2 contains all unimportant voxels within the region of interest.      

In Figure 2c, these are displayed in grey. 

 Segment 𝑈3 contains all unimportant voxels beyond the region of interest 

(background voxels). In Figure 2c, these are displayed in blue. 

In the proof of concept, the authors used flood fill to implement this step. 

Step P2a. Voxels constituting the borders of the volume dataset grid are 

examined, each voxel 𝑣[𝑥, 𝑦, 0] ∈ 𝑅, 𝑣[𝑥, 𝑦, 𝑍 − 1] ∈ 𝑅, 𝑣[𝑥, 0, 𝑧] ∈
𝑅, 𝑣[𝑥, 𝑌 − 1, 𝑧] ∈ 𝑅, 𝑣[0, 𝑦, 𝑧] ∈ 𝑅, 𝑣[𝑋 − 1, 𝑦, 𝑧] ∈ 𝑅 is added to segment 𝑈3, if 

this voxel is a part of segment Τ0. In that case, this voxel is used also as the start 

point of the further flood fill (Step 2b). If this voxel belongs to segment Τ1, it is 

added to segment 𝑈0. 

Step P2b. Flood fill is performed starting from each voxel that was determined as 

the starting point in Step 2a and each voxel reached and belonging to segment Τ0, 

not yet added to segment 𝑈3, is added to segment 𝑈3 and used for the further flood 

fill (Step 2b). Each reached voxel from segment Τ1, not a member of segment 𝑈0, 

is added to this segment (it is not used in further flood fill). Flood fill ends when 

all reached voxels are members of the 𝑈0 or 𝑈3 segments and there are no more 

starting points for further flood fill available. 

Step P2c. All voxels from the dataset R that are members of segment Τ0 and were 

not added to segment 𝑈3 are now added to segment 𝑈2. All voxels from the 

dataset 𝑅 that are members of segment  Τ1 and were not added to segment 𝑈0 are 

now added to segment 𝑈1. 

Step 1 is identical to Step 1 of above-mentioned algorithm (Subsection 3.1.4). 

Step 2 is identical to Step 2 of above-mentioned algorithm, with four 

segments: 𝑆0, 𝑆1, 𝑆2 and 𝑆3. 

Function 𝑓performs the following mapping: 

 Segment 𝑆0 represents the set of surface data blocks of the region of interest. 

Each data block in this set contains at least one voxel belonging to the 𝑈0 

surface voxel set. The assigned priority level is 0. In Figure 2d, these data 

blocks are displayed in red. 

 Segment 𝑆1 represents the set of important data blocks of the region of 

interest. Each data block in this set contains at least one voxel belonging to 

the 𝑈1 important voxel set and can contain voxels from segment 𝑈2 but does 

not contain any voxels from the 𝑈0 surface voxel set nor from the 𝑈3 

unimportant voxel set. The assigned priority level is 1. In Figure 2d, these 

data blocks are displayed in green. 
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 Segment 𝑆2 represents the set of unimportant data blocks within the region of 

interest. Each data block is homogenously filled with voxels from 𝑈2, the set 

of unimportant voxels of the region of interest. The assigned priority level is 

2. In Figure 2d, these data blocks are displayed in grey. 

 Segment 𝑆3 represents the set of unimportant data blocks beyond the region 

of interest (the background). Each data block is homogenously filled with 

voxels from 𝑈3, the set of unimportant voxels beyond the region of interest. 

The assigned priority level is 3. In Figure 2d, these data blocks are displayed 

in blue. 

Each data block is assigned a 2b priority tag: data blocks from the 𝑆0 segment are 

tagged with “00”, from the segment 𝑆1 with “01”, from the 𝑆2 with “10” and from 

segment 𝑆3 with “11”. The cardinality – the number of data blocks in the 

particular set – of each segment 𝑆0, 𝑆1, 𝑆2 and 𝑆3 is evaluated. 

Step 3, Step 4 and Step 5 of the algorithm are identical to the corresponding steps 

of the algorithm described in subsection 3.1. 

 

Figure 2 

Visualization of algorithm steps: a) slice of the original data; b) slice of binarized data; c) slice of data 

with four segments of voxels; d) slice of dataset split into volume data blocks of volume segments; e) 

visualization of data blocks constituting segment 𝑆0 

3.2.3 Output 

The output of the algorithm is represented by the volume dataset segmentation 

metadata stored in 𝑅′′ and by the linearized rearranged volume dataset 𝑅′ obtained 

in Step 5 of the algorithm. The enhancement of reading volume datasets from 

storage lies in the possibility to load the volume dataset segmentation metadata 

along with the segment 𝑆0 of the dataset, which allows to start the visualization of 

this segment in 3D immediately – with full possibility of interactions and 

transformations – while loading the remaining, less important segments on the 



B. Madoš et al. Reading Volume Datasets from Storage – Using Segmentation Metadata,  
 for an Enhanced User Experience 

 – 198 – 

background, according to the set priority level. It allows to see surface of all parts 

of the region of interest in the final quality after only a fraction of the time needed 

to load the whole volume dataset (see Figure 3). 

  
a) b) 

Figure 3 

Visualization of volume dataset a) only S0 segment b) all segments 

4 Test Results 

Tests were performed on volume datasets obtained using medical imaging 

techniques, including Computed Tomography and Magnetic Resonance Imaging– 

see the volume dataset parameters in Table 1 and slice visualizations in Figure 4. 

   
a) b) c) 

  
d) e) 

Figure 4 

Slices of volume datasets obtained using different medical imaging techniques including Computed 

Tomography (CT) and Magnetic Resonance Imaging (MRI) that were used for testing purposes: a) 

Head, b) Brain, c) Abdomen, d) Human Skull, e) Pancreas 
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Voxels of these volume datasets were represented as scalar values. Some volume 

datasets were encoded as 8-bit unsigned integers per voxel (range: <0;255>), 

others were encoded as 16-bit unsigned integers per voxel (range: <0;4095>) 

(using 12 bits for the value and keeping 4 bits reserved). 

For test purposes, the authors used cubic data blocks of 𝑛3; 𝑛 ∈ ℕ voxels. Four 

different data block sizes were selected: 23 = 8, 43 = 64, 83 = 512 and 163 =
4096 voxels, respectively. 

Tests were performed on a computer with a four-core Intel® Core i5-8265U @ 

1.6 GHz CPU, 8 GB system memory, an NVIDIA GeForce GTX 1050 3 GB 

graphics card and a 256 GB SSD as the secondary storage. 

Table 1 

Summary of parameters of the tested volume datasets obtained by the Computed Tomography (CT) 

and Magnetic Resonance Imaging (MRI) 

 Dataset Dimensions Voxels 

[M] 

b/vox Size 

[MB] 

Threshold Active voxels 

[mil] / [pct] 

A Head 256 × 256 × 112 7.34 16 14.0 200 2.437 (33.21%) 

B Brain 256 × 256 × 96 6.29 16 12.0 1150 1.670 (26.54%) 

C Abdomen 512 × 512 × 160 41.94 16 80.0 200 21.646 (51.61%) 

D Human skull 256 × 256 × 256 16.78 8 16.0 25 2.199 (13.11%) 

E Pancreas 240 × 512 × 512 62.91 16 120.0 1150 57.114 (90.78%) 

In all dataset tests, when only data blocks of the 𝑆0 segment – the surface data 

blocks of the region of interest – of the volume datasets were loaded from 

secondary storage and the size of data block was 23 voxels, only a fraction of data 

blocks – ranging from 2.96% (in case of dataset 𝑒) to 15.47% (in case of dataset 

𝑑) – had to be read. Considering also metadata, the share of data needed to load 

rose, ranging from 4.52% (in case of dataset 𝑒) to 18.60% (in case of dataset 𝑑) 

(see Table 2 and Figure 5). 

In general, an increase in the data block size generates – compared to the total 

voxel count – an increased share of voxels from the 𝑆0 data block set and a 

decreased share of voxels from the 𝑆1, 𝑆2 and 𝑆3 data block sets. For example, in 

dataset 𝑎, the share of 𝑆0 raised from 11.85% (using 23 voxels pre data block) to 

55.47% (using 163 voxels per data block). The total overhead (image 

segmentation metadata) is dependent on the data block size. In the tests, this 

ranged from 0.003% (using 16
3
 data block size) to 1.563% (using 2

3
 data block 

size) with datasets encoded using 16 bits per voxel and from 0.006% to 3.125% in 

case of datasets encoded using 8 bits per voxel. 

The share of the 𝑆0 segment of the volume dataset and the share of metadata are 

inversely proportionate. That is why there is a trade-off between those two 

parameters. Increasing the metadata share to 1.563% and/or 3.125% allows a 

significant reduction of the share of the 𝑆0 dataset segment, leading to an overall 

improvement of the user experience.  
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Table 2 

Test results where image segmentation metadata were created for five volume datasets and four data 

block sizes, ranging from 23 to 163 voxels. S0 is the segment of surface blocks, S1 is the segment of 

important data blocks within the region of interest, S2 is the segment of unimportant data blocks within 

the region of interest and S3 is the segment of unimportant blocks of background data 

Block 
size  

S0 S1 S2 S3 Blocks 

 total 

Metadata 

Blocks % Blocks % Blocks % Blocks % [KB] [%] 

a – Head 

2
3
 108769 11.85 239105 26.06 1536 0.17 568094 61.92 917504 224.00 1.563 

43 25745 22.45 26546 23.15 69 0.06 62328 54.35 114688 28.00 0.195 

8
3
 5213 36.36 2709 18.90 2 0.01 6412 44.73 14336 3.50 0.024 

16
3
 994 55.47 214 11.94 0 0.00 584 32.59 1792 0.44 0.003 

b – Brain 

2
3
 83652 10.64 177408 22.56 261 0.03 525111 66.77 786432 192.00 1.563 

43 25546 25.99 19989 20.33 0 0.00 52769 53.68 98304 24.00 0.195 

83 6558 53.37 2039 16.59 0 0.00 3 691 30.04 12288 3.00 0.024 

163 1295 84.31 162 10.55 0 0.00 79 5.14 1536 0.38 0.003 

c – Abdomen 

23 273824 5.22 2528784 48.23 54 0.00 2440218 46.54 5242880 1280.00 1.563 

43 62901 9.60 298245 45.51 0 0.00 294214 44.89 655360 160.00 0.195 

83 13664 16.68 33541 40.94 0 0.00 34715 42.38 81920 20.00 0.024 

163 2919 28.51 3416 33.36 0 0.00 3905 38.13 10240 2.50 0.003 

d - Human skull 

23 324435 15.47 90337 4.31 835 0.04 1681545 80.18 2097152 512.00 3.125 

43 82412 31.44 3574 1.36 10 0.00 176148 67.20 262144 64.00 0.391 

83 18093 55.22 34 0.10 0 0.00 14641 44.68 32768 8.00 0.049 

163 3383 82.59 0 0.00 0 0.00 713 17.41 4096 1.00 0.006 

e – Pancreas 

23 232906 2.96 6970321 88.63 15 0.00 661078 8.41 7864320 1920.00 1.563 

43 60037 6.11 843948 85.85 0 0.00 79055 8.04 983040 240.00 0.195 

83 14979 12.19 98721 80.34 0 0.00 9180 7.47 122880 30.00 0.024 

163 3616 23.54 10784 70.21 0 0.00 960 6.25 15360 3.75 0.003 

 
a) b) 
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c) d) 

 
e) 

Figure 5 

Shares of the respective segments of the corresponding volume datasets and block sizes, where the 

number of voxels in the block is: 𝐵2 = 23 voxels, 𝐵4 = 43 voxels, 𝐵8 = 83 voxels and 𝐵16 = 163 

voxels 

Tests show that, in most optimistic case, the user can start working with the 

volume dataset after only 4.52% of the total time required to load the whole 

volume dataset from secondary storage, when image segmentation metadata and 

all 𝑆0 data blocks are loaded. 

Table 3 

Share of data blocks, when loading only segment 𝑆0, both 𝑆0 and 𝑆1 and all of 𝑆0, 𝑆1 and 𝑆2, 

respectively, for the corresponding volume datasets and data block sizes. Loading all segments 

(𝑆0 ∪ 𝑆1 ∪ 𝑆2 ∪ 𝑆3) represents 100% of the dataset 

Block size 

𝒔𝟎 
[%] 

𝑺𝟎 ∪ 𝑺𝟏 
[%] 

𝑺𝟎 ∪ 𝑺𝟏 ∪ 𝑺𝟐 
[%] 

a – Head 

23 11.85% 37.92% 38.08% 

43 22.45% 45.59% 45.65% 

83 36.36% 55.26% 55.27% 

163 55.47% 67.41% 67.41% 

b-Brain 

23 10.64% 33.20% 33.23% 

43 25.99% 46.32% 46.32% 

83 53.37% 69.96% 69.96% 

163 84.31% 94.86% 94.86% 
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Block size 

𝒔𝟎 

[%] 

𝑺𝟎 ∪ 𝑺𝟏 

[%] 

𝑺𝟎 ∪ 𝑺𝟏 ∪ 𝑺𝟐 

[%] 

c – Abdomen 

23 5.22% 53.46% 53.46% 

43 9.60% 55.11% 55.11% 

83 16.68% 57.62% 57.62% 

163 28.51% 61.87% 61.87% 

d - Human skull 

23 15.47% 19.78% 19.82% 

43 31.44% 32.80% 32.80% 

83 55.22% 55.32% 55.32% 

163 82.59% 82.59% 82.59% 

e – Pancreas 

23 2.96% 91.59% 91.59% 

43 6.11% 91.96% 91.96% 

83 12.19% 92.53% 92.53% 

163 23.54% 93.75% 93.75% 

We may assume that using the same volume dataset at a higher resolution and 

using the same data block size, the share of the 𝑆0 segment – in terms of both data 

blocks and voxels, compared to all data blocks and voxels – will be smaller.     

That will result in a shorter load time of the 𝑆0 segment, compared to the load time 

of the total volume dataset. 

Another possible use case allows loading of the 𝑆0, 𝑆1and 𝑆2 segments of the 

volume dataset, excluding the 𝑆3 segment (the unimportant data outside the region 

of interest). This is useful when the system or the graphics card is short on 

memory or to shorten the total load time of the volume dataset. In the performed 

tests, the load time of the  𝑆0, 𝑆1and 𝑆2 segments of the volume datasets using 23 

data block size ranged from 19.82% (in case of dataset 𝑑) to 91.59% (in case of 

dataset 𝑒). Considering also metadata, the values range from 22.95% (in case of 

dataset 𝑑) to 93.15% (in case of dataset 𝑒). 

Conclusions 

This paper examined the issues of volume data representation. Due to the large 

amount of data included in volume datasets, many operations, including loading 

into operating memory of computer or graphics card memory, can be time 

consuming and lead to a negative user experience. For this reason, the algorithm 

generating segmentation metadata and subsequently rearranging the volume 

dataset, was developed. It improves the user experience, concerning loading the 

data from secondary storage, into the operating memory of the computer or the 

graphics card memory. 

In performed tests, it allowed for work to begin on the volume dataset, in a 

fraction (4.52% – 18.60%) of the total time required to load the whole volume 
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dataset into operating memory, giving the impression of loading the complete 

volume dataset. However, this comes with a trade-off – a 1.563% and 3.125% data 

overhead, respectively. The algorithm allows for the stepwise loading of the 

volume dataset – each step represents the loading of a less important portion        

(a segment having lower priority) of the volume dataset. This process can be 

interrupted after each step. Therefore, loading unimportant data can be omitted, 

decreasing the total load time. The time required, for loading the 𝑆0, 𝑆1and 𝑆2 

segments, using 23 data block size, ranged from 19.82% to 91.59% in the 

performed tests. These values rose from 22.95% to 93.15%, when also considering 

metadata. 

In future research, we will focus on the structure and encoding of the volume 

dataset segmentation metadata. The constant yet relatively high ratio of metadata 

size and data block size, can be significantly decreased, using lossless 

compression. Hierarchical data structures may also be used, albeit, their potential, 

has yet to be investigated. Smaller metadata size can contribute to further 

minimization of the load time of the first segments of the volume datasets. 
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