
Acta Polytechnica Hungarica Vol. 18, No. 5, 2021

 – 187 –

Reading Volume Datasets from Storage – Using

Segmentation Metadata, for an Enhanced User

Experience

Branislav Madoš, Norbert Ádám

Department of Computers and Informatics, Faculty of Electrical Engineering and

Informatics, Technical University of Košice, Letná 9/A, 042 00 Košice

e-mail: branislav.mados@tuke.sk, norbert.adam@tuke.sk

Abstract: This paper deals with the issues of volume dataset representation as an important

part of data storage and processing in many fields including science, research and

development, medicine or industry. Due to the significant amount of data included in

volume datasets, operations performed on them are often, time- and space-consuming.

One of those operations – loading data from secondary storage into the operating memory

of computer or memory of graphics card – can be time-consuming and lead to a bad user

experience and significantly delay the subsequent processes. Therefore, the main

contribution hereof is the design and introduction of an algorithm to generate volume

dataset segmentation metadata. It allows (with a small data overhead, as a trade-off) to

prepare metadata about splitting the particular volume dataset into segments with different

priority levels. Subsequently, it is possible to reorganize the volume dataset according to

the priority of the data segments, in descending order. The algorithm proposed herein

allows to start the visualization of the volume dataset in its final quality (resembling

visualization of the complete volume dataset, although only a part of the data was loaded

from the secondary storage), within a fraction of the total load time of the volume dataset.

The remaining data are continually read in the background during data visualization,

without affecting volume data visualization quality. The first section herein, contains an

introduction to the proposed algorithms. Results of tests, performed with different

parameter setups on non-invasive medical imaging volume datasets, obtained by computed

tomography and magnetic resonance imaging, are included in the second part of the paper.

Conclusions, drawn from test results, are summarized in the last part of the paper.

Keywords: volume dataset; three-dimensional image; 3D image, image segmentation

algorithm; metadata; user experience; computed tomography; CT; magnetic resonance

imaging; MRI

B. Madoš et al. Reading Volume Datasets from Storage – Using Segmentation Metadata,
 for an Enhanced User Experience

 – 188 –

1 Introduction

Volume datasets are often represented as regular three-dimensional grids of scalar

values or vectors of scalar values. Volume dataset representation, pre-processing,

visualization and other forms of processing are important in the field of science,

research and development [1] [2], medicine [3], industry [4] [5], etc. The amount of the

space that volume datasets need for their representation in the operating memory

of computer or memory of graphics card and even the secondary storage has

always been a challenge. Although the capacities of computers, in terms of system

memory, secondary storage size and data throughput are constantly and

significantly growing, as do the storage space requirements of volume datasets –

in terms of their geometrical resolutions and the size of their binary

representations (the number of bits) of voxels.

Computed tomography, invented by Sir Godfrey Hounsfield in 1967, was first

used to scan a patient in 1971 [6]. Back then, computed tomography produced

volume datasets of 643 voxels (262144 voxels), taking 2.5 hours to compute.

Nowadays, 5123 voxel computed tomography scans are common: when using

12b/vox, without any compression, they need 192 MB of secondary storage space

(256MB when using 16b/vox). Raising the resolution of common volume datasets

to 2𝐾3 (2048 × 2048 × 2048) voxels and using 16b/vox, their size on the

secondary storage and in system memory will rise to 16 GB. While in 2007, 70

million CT scans were performed in the USA alone, this number raised to 80

million in 2015 [7].

Not only the size of volume datasets itself can be significant challenges (in terms

of both time and space), but also operations performed on them during their pre-

processing, visualization and other forms of processing. Modern approaches to

volume dataset visualization, in combination with virtual reality, augmented

reality [8] [9] or computer vision [10] are even more demanding. Spatiotemporal

volume datasets are even more demanding to process. One of those time-

consuming operations – loading the volume dataset from secondary storage into

system or graphics memory – can result even in bad user experience and can

significantly delay the subsequent processes.

That is why the authors decided to work on an algorithm that can enhance the user

experience, concerning the loading of the volume dataset, from secondary storage,

into operating memory of computer. In [11], we designed an algorithm

decomposing the volume dataset into two segments, creating a three-dimensional

image – segmentation metadata – and rearranging the volume dataset to allow

reading of the important segment of voxels from secondary storage preceding the

unimportant segment. In comparison to the original volume dataset, the produced

segmentation metadata represent a significant amount of data and that is why we

applied lossless compression to the volume dataset metadata (see: Related works

section of the paper).

Acta Polytechnica Hungarica Vol. 18, No. 5, 2021

 – 189 –

In this work, we build on this previous research, proposing an algorithm to create

volume dataset segmentation metadata, to rearrange the volume dataset and to

enhance reading the volume dataset from storage.

The contribution lies in the following:

 An algorithm splitting the volume dataset into data blocks, assigning a level

of priority (importance) to each data block of the volume dataset, creating

volume dataset segmentation metadata to represent the information stored

in the dataset and reorganizing the volume dataset (linearizing the

segments, ordered by the level of priority in descending order).

The segmentation metadata allow reconstruction of the original location of

the voxels for each segment of the volume dataset.

 An algorithm that allows to start the visualization of the volume dataset in

its final quality (resembling visualization of the complete dataset, although

only a corresponding fraction of the dataset was loaded from secondary

storage), within a fraction of the total load time of the dataset.

The remaining data are continually read in the background, during data

processing, without affecting data visualization quality.

The structure of the remainder of this paper is as follows:

Section 2 presents the related works concerning multi-dimensional data

linearization, volume dataset segmentation metadata and lossless compression of

those segmentation metadata using domain-specific hierarchical data structures

based on octant trees and directed acyclic graphs and other lossless compression

algorithms including Run-Length Encoding and ∆𝑅𝐿𝐸.

Section 3 introduces the proposed algorithms: one performing volume dataset

segmentation and creating the volume dataset segmentation metadata and the

other, improving the user experience concerning reading the volume dataset from

storage. The inputs of these algorithms, their particular steps and outputs are

described in detail.

Section 4 represents the test results of the algorithms described in the previous

section using various medical imaging volume datasets using CT and MRI and

various parameter setups.

The Conclusions section summarizes the conclusions based on the tests, described

in Section 4.

2 Related Works

This section mentions only very close related works, related to the linearization of

the multi-dimensional data, to the enhancement of the user experience concerning

reading volume datasets from secondary storage and compression of volume

datasets using hierarchical data structures.

B. Madoš et al. Reading Volume Datasets from Storage – Using Segmentation Metadata,
 for an Enhanced User Experience

 – 190 –

Linearization of multi-dimensional data. Space-Filling Curves (SFC), introduced

by Peano and Hilbert at the end of the 19
th

 Century [12] [13], are used for

linearization not only of two- or three- but in general of multi-dimensional data.

The Morton order is an SFC popular in computer graphics for its better addressing

abilities [14] and Hilbert Space Filling-Curve (HSBC) is used in computer science

for better locality preserving [15].

Volume dataset segmentation metadata. In [11], we designed an algorithm

assigning 1b of metadata to each voxel of the volume dataset – this allows

including that voxel into the background (the unimportant voxel segment) or into

the region of interest (the important voxel segment) of the volume dataset.

It allows rearranging the volume dataset in the manner that all voxels from the

important segment are linearized in the first part of the dataset, to be read before

the unimportant voxels, stored in the second part of the dataset. In each segment

of the rearranged dataset, the order of voxels is the same as it is in linearized form

of the original dataset. The size of metadata is 1b per voxel – if 16b are used as the

size of the binary representation of voxels, metadata represent 1/16 of the volume

dataset size. That is too much, which is why lossless compression of the volume

dataset metadata is applied. The 3D metadata image of the volume dataset allows

reconstruction of the original location of voxels, for each segment of the volume

dataset.

Lossless compression of volume segmentation metadata. In connection with the

above-mentioned algorithm, lossless compression of the image segmentation

metadata was proposed and different Run-Length Encoding (RLE) schemes were

used [16]. Then, ∆𝑅𝐿𝐸 – a new compression algorithm based on the combination

of Delta encoding and Run-Length Encoding – was tested on the image

segmentation metadata of the volume datasets.

Suitable solutions for compressing volume dataset segmentation metadata – the

volume dataset itself – are octree-based Hierarchical Data Structures (HDS), also

in their pointerless versions [17] [18] (these are suitable for dense volume datasets

and can encode multi-bit-value voxels), and sparse, octree-derived, hierarchical

data structures - directed acyclic graphs (DAGs) – e.g. Sparse Voxel Directed

Acyclic Graphs (SVDAGs) [19], Symmetry-aware Sparse Voxel Directed Acyclic

Graphs (SSVDAGs) [20] and Pointerless Sparse Voxel Directed Acyclic Graphs

(PSVDAGs) [21]. The latter are suitable for compressing metadata if the volume

dataset has only two segments e.g. one bit per voxel can be used for the geometry

representation.

3 Proposed Algorithms

This section introduces the main contribution of the paper: an algorithm to create

the volume dataset segmentation metadata (described in subsection 3.1) and an

Acta Polytechnica Hungarica Vol. 18, No. 5, 2021

 – 191 –

algorithm to enhance the user’s experience concerning reading the volume dataset

from the secondary storage (described in subsection 3.2).

3.1 An Algorithm to Generate Volume Dataset Segmentation

Metadata

This section describes the input, the steps of algorithm and the outputs of the

proposed algorithm.

3.1.1 Input

The inputs of the proposed algorithm are as follows:

1) The volume dataset 𝑅[𝑋, 𝑌, 𝑍], organized as a regular three-dimensional grid

of voxels, with 𝑋, 𝑌, 𝑍 ∈ ℕ grid dimensions. Each voxel 𝑣[𝑥, 𝑦, 𝑧] ∈ 𝑅: 𝑥 ∈<
0; 𝑋 − 1 >; 𝑦 ∈< 0; 𝑌 − 1 >; 𝑧 ∈< 0; 𝑍 − 1 >; 𝑥, 𝑦, 𝑧 ∈ ℕ0 is represented

by a scalar value 𝑣𝑎𝑙 ∈< 0; 𝜈𝑚𝑎𝑥 >, where 𝜈𝑚𝑎𝑥 is the maximal value.

2) The size of the volume dataset data block that is represented by its

dimensions 𝐵𝑥 ∈< 1; 𝑋 >, 𝐵𝑦 ∈< 1; 𝑌 >, 𝐵𝑧 ∈< 1; 𝑍 >; 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧 ∈ ℕ.

3) Number of priority levels 𝜌𝑚𝑎𝑥 ∈ ℕ.

3.1.2 Steps

The following five steps of the algorithm are performed consecutively:

Step 1 of the algorithm divides the volume dataset 𝑅[𝑋, 𝑌, 𝑍] into a regular three-

dimensional grid 𝑅´[𝑋′, 𝑌′, 𝑍′] of voxel data blocks (from the volume dataset);

𝑋′ = ⌈
𝑋

𝐵𝑥

⌉ , 𝑌′ = ⌈
𝑌

𝐵𝑦

⌉ , 𝑍′ = ⌈
𝑍

𝐵𝑧

⌉ ; 𝑋′, 𝑌′, 𝑍′ ∈ ℕ are the dimensions of the grid. Each

data block [𝑥′, 𝑦′, 𝑧′] ∈ 𝑅′: 𝑥′ ∈ < 0; 𝑋′ − 1 >; 𝑦′ ∈ < 0; 𝑌′ − 1 >; 𝑧′ ∈ < 0; 𝑍′ −

1 >; 𝑥′, 𝑦′, 𝑧′ ∈ ℕ0.

Each volume dataset data block has a size 𝐵𝑠𝑖𝑧𝑒 determined by its dimensions

𝐵𝑥 , 𝐵𝑦 and 𝐵𝑧, expressed in number of voxels. This can be calculated using the

following formula:

𝐵𝑠𝑖𝑧𝑒 = 𝐵𝑥 ∗ 𝐵𝑦 ∗ 𝐵𝑧 (1)

The data block count 𝑁 (i.e. the number of data blocks, to which the volume

dataset is divided), can be calculated as follows:

𝑁 = ⌈
𝑋

𝐵𝑥

⌉ ∗ ⌈
𝑌

𝐵𝑦

⌉ ∗ ⌈
𝑍

𝐵𝑧

⌉
(2)

Step 2 To each data block 𝛿[𝑥′, 𝑦′, 𝑧′] ∈ 𝑅′[𝑋′, 𝑌′, 𝑍′] of the volume dataset, its

priority level is assigned from the set Ρ with the cardinality |𝜌𝑚𝑎𝑥|, when this set

is defined as

B. Madoš et al. Reading Volume Datasets from Storage – Using Segmentation Metadata,
 for an Enhanced User Experience

 – 192 –

Ρ = {0,1,2, … , 𝜌𝑚𝑎𝑥 − 3, 𝜌𝑚𝑎𝑥 − 2, 𝜌𝑚𝑎𝑥 − 1} (3)

𝑅′′[𝑋′′, 𝑌′′, 𝑍′′], where 𝑋′′ = 𝑋′, 𝑌′′ = 𝑌′, 𝑍′′ = 𝑍′; 𝑋′′, 𝑌′′, 𝑍′′ ∈ ℕ, is the regular

three-dimensional grid of scalar values, each of these represents the priority level

of the particular data block in the volume dataset. Priority level 0 is assigned to

the data blocks having the highest priority, while priority level 𝜌𝑚𝑎𝑥 − 1 is

assigned to the data blocks having the lowest priority in the volume dataset.

The above-mentioned assignment is performed using function 𝑓 (this function can

be designed according to the specific needs of the particular volume dataset

segmentation):

𝑅′′[𝑋′′, 𝑌′′, 𝑍′′] = 𝑓: (𝑅′[𝑋′, 𝑌′, 𝑍′]) → Ρ (4)

The priority level of each volume dataset data block is encoded in binary. If fixed-

length encoding in the form of unsigned integer values is used, the encoding

requires ⌈log2 𝜌𝑚𝑎𝑥⌉ bits per data block. The overall number of volume dataset

data blocks is quantified using (2) as 𝑁, so the overall size of 𝑅′′[𝑋′′, 𝑌′′, 𝑍′′], the

𝑅′′𝑠𝑖𝑧𝑒 value, in bits, is:

𝑅′′𝑠𝑖𝑧𝑒 = 𝑁 × ⌈log2 𝜌𝑚𝑎𝑥⌉ [𝑏] (5)

All data blocks constituting 𝑅′ and having the same particular priority level

𝑝 ∈ 𝑃; 𝑝 ∈< 0; 𝜌𝑚𝑎𝑥 − 1 >; 𝑝 ∈ ℕ0 assigned in 𝑅′′, constitute segment 𝑆𝑝 of that

particular priority in the volume dataset. The set of segments Σ with the

cardinality |𝜌𝑚𝑎𝑥| may be described as follows:

Σ = {𝑆0, 𝑆1, 𝑆2, … , 𝑆𝜌𝑚𝑎𝑥−3, 𝑆𝜌𝑚𝑎𝑥−2, 𝑆𝜌𝑚𝑎𝑥−1} (6)

Each data block from 𝑅′ belongs to one of the above segments and therefore:

𝑅′[𝑋′, 𝑌′, 𝑍′] = ⋃ 𝑆𝑟

𝜌𝑚𝑎𝑥−1

𝑟=0

(7)

Step 3 Volume dataset 𝑅′ is linearized, when all of its data blocks are ordered in a

one-dimensional stream according to the selected linearization.

Step 4 Volume dataset 𝑅′ is rearranged, when its data segments are ordered

according to the priority in the linearized one-dimensional stream of data blocks,

in descending order. In each volume dataset segment, the data blocks are ordered

according their order in the linearized volume dataset obtained in Step 3 of the

algorithm.

Step 5 Voxels of volume dataset 𝑅′ are linearized separately in each volume

dataset data block according to selected linearization.

Acta Polytechnica Hungarica Vol. 18, No. 5, 2021

 – 193 –

3.1.3 Outputs

The output of the algorithm is represented by the volume dataset segmentation

metadata stored in 𝑅′′ and by the linearized rearranged volume dataset 𝑅′ obtained

in Step 5.

3.1.4 Metadata Generation and Volume Dataset Rearrangement – an

Example

Figure 1 shows the steps of the proposed algorithm – for the sake of simplicity,

using two-dimensions. Figure 1a contains a grid 𝑅′ of 8 × 8 pixels.

Figure 1

A two-dimensional (for the sake of the simplicity) example of the steps of the algorithm generating

volume metadata and rearranging dataset

In Step 1, as shown in Figure 1b, the grid is divided into 16 data blocks forming

the 4 × 4 grid 𝑅′′. Each data block has 2 × 2 pixels.

In Step 2, each data block is assigned a priority from the set 𝑃 = {𝑝0, 𝑝1, 𝑝2, 𝑝3}.

Priority values are encoded in binary as the vectors

𝑝0 = ”00”, 𝑝1 = ”01”, 𝑝2 = ”10”, 𝑝3 = ”11”

and also in color – see the color coding table in Figure 1.

Data blocks constitute the segments Σ = {𝑆0, 𝑆1, 𝑆2, 𝑆3} of the volume dataset.

In Step 3, the data blocks are linearized as shown in Figure 1c. The linearized

sequence of the binary priority codes shown in Figure 1c constitutes the linearized

form of the segmentation metadata in the algorithm output.

In Step 4, the data blocks are rearranged (Figure 1d), when all data blocks from

the same segment 𝑆𝑟: 𝑟 ∈< 0; 3 > are located, within the segment, in the order of

appearance in the linearized form (Figure 1c). The segments are ordered according

to their priority levels, in descending order.

B. Madoš et al. Reading Volume Datasets from Storage – Using Segmentation Metadata,
 for an Enhanced User Experience

 – 194 –

Step 5, in which each data block is linearized according the selected linearization,

is missing from Figure 1. The rearranged form of the data blocks is the output of

the algorithm.

It is possible to reconstruct the original position of each voxel in the volume

dataset for each data block loaded from the secondary storage, using rearranged

volume dataset and metadata (volume segmentation metadata 𝑅′′), even if the

volume dataset is loaded only partially, i.e. if only some segments of the dataset

are loaded from the secondary storage.

In Step 1, volume segmentation metadata is transformed from the linearized form

into the three-dimensional grid 𝑅′′, respecting selected linearization.

In Step 2, volume dataset data blocks forming particular priority segment are

placed into the locations of particular priority codes respecting order of volume

dataset data blocks in the priority segment.

The number of data blocks in each segment can be obtained as the result of

analysis of segmentation metadata 𝑅′′ in time of original volume dataset

reconstruction from rearranged volume dataset and therefore can be omitted from

the metadata representation.

3.2 An Algorithm for Improved Reading of Volume Datasets

from Storage

The algorithm is based on the above-mentioned algorithm, when all its steps have

been performed, using a specific function 𝑓 for the assignment of the priority level

to volume dataset data blocks, on a pre-processed volume dataset.

3.2.1 Input

The proposed algorithm has the following inputs:

1) The volume dataset 𝑅[𝑋, 𝑌, 𝑍], organized as a regular three-dimensional grid

of voxels, with 𝑋, 𝑌, 𝑍 ∈ ℕ grid dimensions. Each voxel 𝑣[𝑥, 𝑦, 𝑧] ∈ 𝑅: 𝑥 ∈<
0; 𝑋 − 1 >; 𝑦 ∈< 0; 𝑌 − 1 >; 𝑧 ∈< 0; 𝑍 − 1 >; 𝑥, 𝑦, 𝑧 ∈ ℕ0 is represented

by a scalar value 𝑣𝑎𝑙 ∈< 0; 𝜈𝑚𝑎𝑥 > where 𝜈𝑚𝑎𝑥 is the maximal value.

2) The size of the volume dataset data block that is represented by its

dimensions 𝐵𝑥 ∈< 1; 𝑋 >, 𝐵𝑦 ∈< 1; 𝑌 >, 𝐵𝑧 ∈< 1; 𝑍 >; 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧 ∈ ℕ

3) Number of priority levels 𝜌𝑚𝑎𝑥 = 4

4) Threshold 𝜏 ∈< 0; 𝜈𝑚𝑎𝑥 >

Acta Polytechnica Hungarica Vol. 18, No. 5, 2021

 – 195 –

3.2.2 Steps

Steps P1 and P2 are the pre-processing steps of the algorithm; after these, all five

steps of the volume dataset segmentation and metadata generation algorithm are

performed, applying function 𝑓 designed specifically for this algorithm.

Step P1. This step decomposes the volume dataset 𝑅[𝑋, 𝑌, 𝑍] (a slice of example

volume dataset is shown in Figure 2a) into two segments (unimportant, i.e.

background and important, i.e. foreground voxels) and creates a three-dimensional

grid 𝑅𝑠[𝑋, 𝑌, 𝑍]. As a proof of concept, the authors used a segmentation threshold

value 𝜏 (that is why 𝜏 is one of the inputs of the algorithm):

𝑅𝑠[𝑥, 𝑦, 𝑧] = {
0 𝑖𝑓 𝑅[𝑥, 𝑦, 𝑧] < 𝜏

1 𝑖𝑓 𝑅[𝑥, 𝑦, 𝑧] ≥ 𝜏

(8)

Two segments Τ0 and Τ1 are formed, when:

𝑅[𝑥, 𝑦, 𝑧] ∈ 𝑇0: 𝑅𝑠[𝑥, 𝑦, 𝑧] = 0

𝑅[𝑥, 𝑦, 𝑧] ∈ 𝑇1: 𝑅𝑠[𝑥, 𝑦, 𝑧] = 1

(9)

Each volume dataset voxel from 𝑅 belongs to one of those segments and

therefore:

𝑅[𝑋, 𝑌, 𝑍] = Τ0 ∪ Τ1 (10)

After the Step P1 of the algorithm is performed:

 Segment Τ0 contains each voxel of 𝑅, having a value lower than the threshold

𝜏 (the corresponding value is set to 0 in 𝑅𝑠). In Figure 2b, these are displayed

in grey.

 Segment Τ1 contains each voxel of 𝑅, having a value equal or greater than the

threshold 𝜏 (the corresponding value is set to 1 in 𝑅𝑠). In Figure 2b, these are

displayed in green.

Step P2. The volume dataset is segmented further, into set Φ of four segments

𝑈0, 𝑈1, 𝑈2 and 𝑈3:

Φ = {𝑈0, 𝑈1, 𝑈2, 𝑈3} (11)

Each volume dataset voxel from 𝑅 belongs to one of those segments, therefore:

𝑅[𝑋, 𝑌, 𝑍] = ⋃ 𝑈𝑟

3

𝑟=0

(12)

After Step P2:

 Segment 𝑈0 contains all voxels of the surface of the region of interest

(foreground). In Figure 2c, these are displayed in red.

B. Madoš et al. Reading Volume Datasets from Storage – Using Segmentation Metadata,
 for an Enhanced User Experience

 – 196 –

 Segment 𝑈1 contains all important voxels within the region of interest that are

not constituting its surface. In Figure 2c, these are displayed in green.

 Segment 𝑈2 contains all unimportant voxels within the region of interest.

In Figure 2c, these are displayed in grey.

 Segment 𝑈3 contains all unimportant voxels beyond the region of interest

(background voxels). In Figure 2c, these are displayed in blue.

In the proof of concept, the authors used flood fill to implement this step.

Step P2a. Voxels constituting the borders of the volume dataset grid are

examined, each voxel 𝑣[𝑥, 𝑦, 0] ∈ 𝑅, 𝑣[𝑥, 𝑦, 𝑍 − 1] ∈ 𝑅, 𝑣[𝑥, 0, 𝑧] ∈
𝑅, 𝑣[𝑥, 𝑌 − 1, 𝑧] ∈ 𝑅, 𝑣[0, 𝑦, 𝑧] ∈ 𝑅, 𝑣[𝑋 − 1, 𝑦, 𝑧] ∈ 𝑅 is added to segment 𝑈3, if

this voxel is a part of segment Τ0. In that case, this voxel is used also as the start

point of the further flood fill (Step 2b). If this voxel belongs to segment Τ1, it is

added to segment 𝑈0.

Step P2b. Flood fill is performed starting from each voxel that was determined as

the starting point in Step 2a and each voxel reached and belonging to segment Τ0,

not yet added to segment 𝑈3, is added to segment 𝑈3 and used for the further flood

fill (Step 2b). Each reached voxel from segment Τ1, not a member of segment 𝑈0,

is added to this segment (it is not used in further flood fill). Flood fill ends when

all reached voxels are members of the 𝑈0 or 𝑈3 segments and there are no more

starting points for further flood fill available.

Step P2c. All voxels from the dataset R that are members of segment Τ0 and were

not added to segment 𝑈3 are now added to segment 𝑈2. All voxels from the

dataset 𝑅 that are members of segment Τ1 and were not added to segment 𝑈0 are

now added to segment 𝑈1.

Step 1 is identical to Step 1 of above-mentioned algorithm (Subsection 3.1.4).

Step 2 is identical to Step 2 of above-mentioned algorithm, with four

segments: 𝑆0, 𝑆1, 𝑆2 and 𝑆3.

Function 𝑓performs the following mapping:

 Segment 𝑆0 represents the set of surface data blocks of the region of interest.

Each data block in this set contains at least one voxel belonging to the 𝑈0

surface voxel set. The assigned priority level is 0. In Figure 2d, these data

blocks are displayed in red.

 Segment 𝑆1 represents the set of important data blocks of the region of

interest. Each data block in this set contains at least one voxel belonging to

the 𝑈1 important voxel set and can contain voxels from segment 𝑈2 but does

not contain any voxels from the 𝑈0 surface voxel set nor from the 𝑈3

unimportant voxel set. The assigned priority level is 1. In Figure 2d, these

data blocks are displayed in green.

Acta Polytechnica Hungarica Vol. 18, No. 5, 2021

 – 197 –

 Segment 𝑆2 represents the set of unimportant data blocks within the region of

interest. Each data block is homogenously filled with voxels from 𝑈2, the set

of unimportant voxels of the region of interest. The assigned priority level is

2. In Figure 2d, these data blocks are displayed in grey.

 Segment 𝑆3 represents the set of unimportant data blocks beyond the region

of interest (the background). Each data block is homogenously filled with

voxels from 𝑈3, the set of unimportant voxels beyond the region of interest.

The assigned priority level is 3. In Figure 2d, these data blocks are displayed

in blue.

Each data block is assigned a 2b priority tag: data blocks from the 𝑆0 segment are

tagged with “00”, from the segment 𝑆1 with “01”, from the 𝑆2 with “10” and from

segment 𝑆3 with “11”. The cardinality – the number of data blocks in the

particular set – of each segment 𝑆0, 𝑆1, 𝑆2 and 𝑆3 is evaluated.

Step 3, Step 4 and Step 5 of the algorithm are identical to the corresponding steps

of the algorithm described in subsection 3.1.

Figure 2

Visualization of algorithm steps: a) slice of the original data; b) slice of binarized data; c) slice of data

with four segments of voxels; d) slice of dataset split into volume data blocks of volume segments; e)

visualization of data blocks constituting segment 𝑆0

3.2.3 Output

The output of the algorithm is represented by the volume dataset segmentation

metadata stored in 𝑅′′ and by the linearized rearranged volume dataset 𝑅′ obtained

in Step 5 of the algorithm. The enhancement of reading volume datasets from

storage lies in the possibility to load the volume dataset segmentation metadata

along with the segment 𝑆0 of the dataset, which allows to start the visualization of

this segment in 3D immediately – with full possibility of interactions and

transformations – while loading the remaining, less important segments on the

B. Madoš et al. Reading Volume Datasets from Storage – Using Segmentation Metadata,
 for an Enhanced User Experience

 – 198 –

background, according to the set priority level. It allows to see surface of all parts

of the region of interest in the final quality after only a fraction of the time needed

to load the whole volume dataset (see Figure 3).

a) b)

Figure 3

Visualization of volume dataset a) only S0 segment b) all segments

4 Test Results

Tests were performed on volume datasets obtained using medical imaging

techniques, including Computed Tomography and Magnetic Resonance Imaging–

see the volume dataset parameters in Table 1 and slice visualizations in Figure 4.

a) b) c)

d) e)

Figure 4

Slices of volume datasets obtained using different medical imaging techniques including Computed

Tomography (CT) and Magnetic Resonance Imaging (MRI) that were used for testing purposes: a)

Head, b) Brain, c) Abdomen, d) Human Skull, e) Pancreas

Acta Polytechnica Hungarica Vol. 18, No. 5, 2021

 – 199 –

Voxels of these volume datasets were represented as scalar values. Some volume

datasets were encoded as 8-bit unsigned integers per voxel (range: <0;255>),

others were encoded as 16-bit unsigned integers per voxel (range: <0;4095>)

(using 12 bits for the value and keeping 4 bits reserved).

For test purposes, the authors used cubic data blocks of 𝑛3; 𝑛 ∈ ℕ voxels. Four

different data block sizes were selected: 23 = 8, 43 = 64, 83 = 512 and 163 =
4096 voxels, respectively.

Tests were performed on a computer with a four-core Intel® Core i5-8265U @

1.6 GHz CPU, 8 GB system memory, an NVIDIA GeForce GTX 1050 3 GB

graphics card and a 256 GB SSD as the secondary storage.

Table 1

Summary of parameters of the tested volume datasets obtained by the Computed Tomography (CT)

and Magnetic Resonance Imaging (MRI)

 Dataset Dimensions Voxels

[M]

b/vox Size

[MB]

Threshold Active voxels

[mil] / [pct]

A Head 256 × 256 × 112 7.34 16 14.0 200 2.437 (33.21%)

B Brain 256 × 256 × 96 6.29 16 12.0 1150 1.670 (26.54%)

C Abdomen 512 × 512 × 160 41.94 16 80.0 200 21.646 (51.61%)

D Human skull 256 × 256 × 256 16.78 8 16.0 25 2.199 (13.11%)

E Pancreas 240 × 512 × 512 62.91 16 120.0 1150 57.114 (90.78%)

In all dataset tests, when only data blocks of the 𝑆0 segment – the surface data

blocks of the region of interest – of the volume datasets were loaded from

secondary storage and the size of data block was 23 voxels, only a fraction of data

blocks – ranging from 2.96% (in case of dataset 𝑒) to 15.47% (in case of dataset

𝑑) – had to be read. Considering also metadata, the share of data needed to load

rose, ranging from 4.52% (in case of dataset 𝑒) to 18.60% (in case of dataset 𝑑)

(see Table 2 and Figure 5).

In general, an increase in the data block size generates – compared to the total

voxel count – an increased share of voxels from the 𝑆0 data block set and a

decreased share of voxels from the 𝑆1, 𝑆2 and 𝑆3 data block sets. For example, in

dataset 𝑎, the share of 𝑆0 raised from 11.85% (using 23 voxels pre data block) to

55.47% (using 163 voxels per data block). The total overhead (image

segmentation metadata) is dependent on the data block size. In the tests, this

ranged from 0.003% (using 16
3
 data block size) to 1.563% (using 2

3
 data block

size) with datasets encoded using 16 bits per voxel and from 0.006% to 3.125% in

case of datasets encoded using 8 bits per voxel.

The share of the 𝑆0 segment of the volume dataset and the share of metadata are

inversely proportionate. That is why there is a trade-off between those two

parameters. Increasing the metadata share to 1.563% and/or 3.125% allows a

significant reduction of the share of the 𝑆0 dataset segment, leading to an overall

improvement of the user experience.

B. Madoš et al. Reading Volume Datasets from Storage – Using Segmentation Metadata,
 for an Enhanced User Experience

 – 200 –

Table 2

Test results where image segmentation metadata were created for five volume datasets and four data

block sizes, ranging from 23 to 163 voxels. S0 is the segment of surface blocks, S1 is the segment of

important data blocks within the region of interest, S2 is the segment of unimportant data blocks within

the region of interest and S3 is the segment of unimportant blocks of background data

Block
size

S0 S1 S2 S3 Blocks

 total

Metadata

Blocks % Blocks % Blocks % Blocks % [KB] [%]

a – Head

2
3
 108769 11.85 239105 26.06 1536 0.17 568094 61.92 917504 224.00 1.563

43 25745 22.45 26546 23.15 69 0.06 62328 54.35 114688 28.00 0.195

8
3
 5213 36.36 2709 18.90 2 0.01 6412 44.73 14336 3.50 0.024

16
3
 994 55.47 214 11.94 0 0.00 584 32.59 1792 0.44 0.003

b – Brain

2
3
 83652 10.64 177408 22.56 261 0.03 525111 66.77 786432 192.00 1.563

43 25546 25.99 19989 20.33 0 0.00 52769 53.68 98304 24.00 0.195

83 6558 53.37 2039 16.59 0 0.00 3 691 30.04 12288 3.00 0.024

163 1295 84.31 162 10.55 0 0.00 79 5.14 1536 0.38 0.003

c – Abdomen

23 273824 5.22 2528784 48.23 54 0.00 2440218 46.54 5242880 1280.00 1.563

43 62901 9.60 298245 45.51 0 0.00 294214 44.89 655360 160.00 0.195

83 13664 16.68 33541 40.94 0 0.00 34715 42.38 81920 20.00 0.024

163 2919 28.51 3416 33.36 0 0.00 3905 38.13 10240 2.50 0.003

d - Human skull

23 324435 15.47 90337 4.31 835 0.04 1681545 80.18 2097152 512.00 3.125

43 82412 31.44 3574 1.36 10 0.00 176148 67.20 262144 64.00 0.391

83 18093 55.22 34 0.10 0 0.00 14641 44.68 32768 8.00 0.049

163 3383 82.59 0 0.00 0 0.00 713 17.41 4096 1.00 0.006

e – Pancreas

23 232906 2.96 6970321 88.63 15 0.00 661078 8.41 7864320 1920.00 1.563

43 60037 6.11 843948 85.85 0 0.00 79055 8.04 983040 240.00 0.195

83 14979 12.19 98721 80.34 0 0.00 9180 7.47 122880 30.00 0.024

163 3616 23.54 10784 70.21 0 0.00 960 6.25 15360 3.75 0.003

a) b)

Acta Polytechnica Hungarica Vol. 18, No. 5, 2021

 – 201 –

c) d)

e)

Figure 5

Shares of the respective segments of the corresponding volume datasets and block sizes, where the

number of voxels in the block is: 𝐵2 = 23 voxels, 𝐵4 = 43 voxels, 𝐵8 = 83 voxels and 𝐵16 = 163

voxels

Tests show that, in most optimistic case, the user can start working with the

volume dataset after only 4.52% of the total time required to load the whole

volume dataset from secondary storage, when image segmentation metadata and

all 𝑆0 data blocks are loaded.

Table 3

Share of data blocks, when loading only segment 𝑆0, both 𝑆0 and 𝑆1 and all of 𝑆0, 𝑆1 and 𝑆2,

respectively, for the corresponding volume datasets and data block sizes. Loading all segments

(𝑆0 ∪ 𝑆1 ∪ 𝑆2 ∪ 𝑆3) represents 100% of the dataset

Block size

𝒔𝟎
[%]

𝑺𝟎 ∪ 𝑺𝟏
[%]

𝑺𝟎 ∪ 𝑺𝟏 ∪ 𝑺𝟐
[%]

a – Head

23 11.85% 37.92% 38.08%

43 22.45% 45.59% 45.65%

83 36.36% 55.26% 55.27%

163 55.47% 67.41% 67.41%

b-Brain

23 10.64% 33.20% 33.23%

43 25.99% 46.32% 46.32%

83 53.37% 69.96% 69.96%

163 84.31% 94.86% 94.86%

B. Madoš et al. Reading Volume Datasets from Storage – Using Segmentation Metadata,
 for an Enhanced User Experience

 – 202 –

Block size

𝒔𝟎

[%]

𝑺𝟎 ∪ 𝑺𝟏

[%]

𝑺𝟎 ∪ 𝑺𝟏 ∪ 𝑺𝟐

[%]

c – Abdomen

23 5.22% 53.46% 53.46%

43 9.60% 55.11% 55.11%

83 16.68% 57.62% 57.62%

163 28.51% 61.87% 61.87%

d - Human skull

23 15.47% 19.78% 19.82%

43 31.44% 32.80% 32.80%

83 55.22% 55.32% 55.32%

163 82.59% 82.59% 82.59%

e – Pancreas

23 2.96% 91.59% 91.59%

43 6.11% 91.96% 91.96%

83 12.19% 92.53% 92.53%

163 23.54% 93.75% 93.75%

We may assume that using the same volume dataset at a higher resolution and

using the same data block size, the share of the 𝑆0 segment – in terms of both data

blocks and voxels, compared to all data blocks and voxels – will be smaller.

That will result in a shorter load time of the 𝑆0 segment, compared to the load time

of the total volume dataset.

Another possible use case allows loading of the 𝑆0, 𝑆1and 𝑆2 segments of the

volume dataset, excluding the 𝑆3 segment (the unimportant data outside the region

of interest). This is useful when the system or the graphics card is short on

memory or to shorten the total load time of the volume dataset. In the performed

tests, the load time of the 𝑆0, 𝑆1and 𝑆2 segments of the volume datasets using 23

data block size ranged from 19.82% (in case of dataset 𝑑) to 91.59% (in case of

dataset 𝑒). Considering also metadata, the values range from 22.95% (in case of

dataset 𝑑) to 93.15% (in case of dataset 𝑒).

Conclusions

This paper examined the issues of volume data representation. Due to the large

amount of data included in volume datasets, many operations, including loading

into operating memory of computer or graphics card memory, can be time

consuming and lead to a negative user experience. For this reason, the algorithm

generating segmentation metadata and subsequently rearranging the volume

dataset, was developed. It improves the user experience, concerning loading the

data from secondary storage, into the operating memory of the computer or the

graphics card memory.

In performed tests, it allowed for work to begin on the volume dataset, in a

fraction (4.52% – 18.60%) of the total time required to load the whole volume

Acta Polytechnica Hungarica Vol. 18, No. 5, 2021

 – 203 –

dataset into operating memory, giving the impression of loading the complete

volume dataset. However, this comes with a trade-off – a 1.563% and 3.125% data

overhead, respectively. The algorithm allows for the stepwise loading of the

volume dataset – each step represents the loading of a less important portion

(a segment having lower priority) of the volume dataset. This process can be

interrupted after each step. Therefore, loading unimportant data can be omitted,

decreasing the total load time. The time required, for loading the 𝑆0, 𝑆1and 𝑆2

segments, using 23 data block size, ranged from 19.82% to 91.59% in the

performed tests. These values rose from 22.95% to 93.15%, when also considering

metadata.

In future research, we will focus on the structure and encoding of the volume

dataset segmentation metadata. The constant yet relatively high ratio of metadata

size and data block size, can be significantly decreased, using lossless

compression. Hierarchical data structures may also be used, albeit, their potential,

has yet to be investigated. Smaller metadata size can contribute to further

minimization of the load time of the first segments of the volume datasets.

Acknowledgement

This research was supported by the Slovak Research and Development Agency,

project number APVV-18-0214. The volume datasets are courtesy of the

following: CT Cadaver Head and MR Brain – The University of North Carolina

Volume Rendering Test Data Set; Abdomen – Michael Meißner, Viatronix Inc.,

Human skull – Siemens Medical Solutions; Pancreas – DeepOrgan: Multi-level

Deep Convolutional Networks for Automated Pancreas Segmentation.

References

[1] L. Főző, R. Andoga, L. Madarász, Mathematical model of a small Turbojet

Engine MPM-20. In: Studies in Computational Intelligence Vol. 313:

International Symposium of Hungarian Researchers on Computational

Intelligence and Informatics. - Heidelberg: Springer, 2010, pp. 313-322 -

ISBN 978-3-642-15220-7 - ISSN 1860-949X

[2] L. Nyulaszi, R. Andoga, P. Butka, et al., Fault Detection and Isolation of an

Aircraft Turbojet Engine Using a Multi-Sensor Network and Multiple

Model Approach , In. Acta Polytechnica Hungarica Vol. 1, No. 2, pp. 189-

209, 2018, DOI: 10.12700/APH.15.1.2018.2.10

[3] P. Varga, M. Schnitzer, M. Trebuňová, R. Hudák and J. Živčák, Overview

of the Current Methods for Reduction of Artifacts in CT and MR Imaging

for Implants made by Additive Manufacturing, In: Acta Tecnología:

International Scientific Journal about Technologies. - Šemša (Slovakia),

Vol. 6, No. 2 (2020) pp. 55-58 - ISSN 2453-675X

[4] R. Andoga, L. Főző, R. Kovács, K. Beneda, T. Moravec, M. Schreiner,

Robust Control of Small Turbojet Engines. Machines 2019, 7, 3,

https://doi.org/10.3390/machines7010003

B. Madoš et al. Reading Volume Datasets from Storage – Using Segmentation Metadata,
 for an Enhanced User Experience

 – 204 –

[5] S. Grys, L. Vokorokos and L. Borowik, Size determination of subsurface

defect by active thermography – Simulation research, In: Infrared Physics

& Technology. Vol. 62 (2014), pp. 147-153 - ISSN 1350-4495

[6] C. Richmond (2004) Obituary – Sir Godfrey Hounsfield, BMJ. 329 (7467):

687, doi:10.1136/bmj.329.7467.687

[7] A. Berrington de González, M. Mahesh, KP. Kim, M. Bhargavan, R.

Lewis, F. Mettler and C. Land, (December 2009) Projected cancer risks

from computed tomographic scans performed in the United States in 2007,

Arch. Intern. Med. 169 (22): 2071-7

[8] B. Sobota and M. Guzan, Virtualization of Chua’s Circuit State Space. In:

Recent Advances in Chaotic Systems and Synchronization: From Theory to

Real World Applications. - London, Great Britain : Elsevier Science pp.

127-164 [print] - ISBN 978-0-12-815838-8

[9] Zs. Racz, B. Sobota and M. Guzan, Parallelizing Boundary Surface

Computation of Chua’s Circuit - 2017. In: RADIOELEKTRONIKA 2017 -

Danvers : IEEE, 2017, pp. 1-4 - ISBN 978-1-5090-4592-1

[10] L. Vokorokos, E. Chovancová, J. Radušovský and M. Chovanec, A

Multicore Architecture Focused on Accelerating Computer Vision

Computations - 2013. In: Acta Polytechnica Hungarica. Vol. 10, No. 5

(2013) pp. 29-43 - ISSN 1785-8860

[11] B. Madoš, A. Baláž, N. Ádám, J. Hurtuk and Z. Bilanová, Algorithm

Design for User Experience Enhancement of Volume Dataset Reading from

Storage Using 3D Binary Image as the Metadata - 2019. In: SAMI 2019 :

IEEE 17
th

 World Symposium on Applied Machine Intelligence and

Informatics. - Danvers (USA) : Institute of Electrical and Electronics

Engineers pp. 269-274 [print, online] - ISBN 978-1-7281-0249-8

[12] A. Laszloffy, J. Long and A. K. Patra, Simple data management, scheduling

and solution strategies for managing the irregularities in parallel adaptive

finite element simulations. Parallel Computing, 26, ISSN 1765-1788

[13] H. Sagan, Space-Filling Curves, Springer Verlag, 1994, eBook ISSN 978-

1-4612-0871-6, ISBN 978-0-387-94265-0, DOI 10.1007/978-1-4612-0871-

6

[14] G. M. Morton, A Computer Oriented Geodetic Data Base and a New

Technique in File Sequencing, Research Report. International Business

Machines Corporation (IBM), Ottawa, Canada, 20, pp. 20, March 1
st
, 1966.

Available: https://dominoweb.draco.res.ibm.com/reports/Morton1966.pdf

[15] D. Hilbert, Via the continuous mapping of a line onto a patch of area.

Mathematical annals (orig. Über die stetige Abbildung einer Linie auf ein

Flächenstück. Mathematische Annalen) 38 (1891), pp. 459-460

Acta Polytechnica Hungarica Vol. 18, No. 5, 2021

 – 205 –

[16] B. Madoš and N. Ádám, Evaluation of Encoding Schemas for Optimization

of Bit-Level Run-Length Encoding Within Lossless Compression of Binary

Images - 2019. In: Intelligent Engineering Systems. - Budapest (Hungary):

IEEE Industrial Electronics Society pp. 75-80 - ISBN 978-1-7281-1212-1

[17] B. Madoš, E. Chovancová and M. Hasin, Evaluation of Pointerless Sparse

Voxel Octrees Encoding Schemes Using Huffman Encoding for Dense

Volume Datasets Storage, In: ICETA 2020: 18
th

 IEEE International

conference on emerging elearning technologies and applications- Denver

(USA) : Institute of Electrical and Electronics Engineers pp. 424-430, ISBN

978-0-7381-2366-0

[18] B. Madoš, N. Ádám and M. Štancel, Representation of Dense Volume

Datasets Using Pointerless Sparse Voxel Octrees with Variable and Fixed-

Length Encoding, IEEE 19
th
 World Symposium on Applied Machine

Intelligence and Informatics, SAMI 2021, Herľany, Slovakia, Jan., 21-23,

2021, p. 6

[19] V. Kämpe, E. Sintorn, and U. Assarsson, High Resolution Sparse Voxel

DAGs. ACM Transactions on Graphics. 32, 4, Article 101 (July 2013) p. 8,

ISSN 0730-0301, DOI: https://doi.org/10.1145/2461912.246 2024

[20] A. J. Villanueva, F. Marton, and E. Gobbetti, SSVDAGs: Symmetry-aware

Sparse Voxel DAGs. In Proceedings of the 20
th

 ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games (I3D '16) February 27-

28 2016, Redmond, WA, USA, pp. 7-14, ACM, New York, NY, USA.

ISBN: 978-1-4503-4043-4/16/03, DOI:

https://doi.org/10.1145/2856400.2856420

[21] L. Vokorokos, B. Madoš and Z. Bilanová, PSVDAG: Compact Voxelized

Representation of 3D Scenes Using Pointerless Sparse Voxel Directed

Acyclic Graphs", In: Computing and Informatics: Computers and Artificial

Intelligence. - Bratislava (Slovakia), Vol. 39, No. 3 (2020), pp. 587-616

[print] - ISSN 1335-9150

