
Acta Polytechnica Hungarica Vol. 18, No. 8, 2021

 – 47 –

Transforming Hierarchical Data Structures –

a PSVDAG–SVDAG Conversion Algorithm

Branislav Madoš, Norbert Ádám

Department of Computers and Informatics, Faculty of Electrical Engineering and

Informatics, Technical University of Košice, Letná 9/A, 042 00 Košice, Slovakia

e-mail: branislav.mados@tuke.sk, norbert.adam@tuke.sk

Abstract: This paper examines the issues of domain-specific hierarchical data structures,

based on directed acyclic graphs, dedicated to the representation of the geometry of three-

dimensional scenes. In this paper, the authors introduce two versions (out-of-core and

semi-out-of-core) of an algorithm to transform hierarchical data structures – pointerless

sparse voxel directed acyclic graphs, into sparse voxel directed acyclic graphs. Pointerless

sparse voxel directed acyclic graphs are not suitable for immediate traversing, due to the

absence of pointers to the child nodes; however, they are suitable for archiving and

streaming, as they have a more compact binary-level representation. Sparse voxel directed

acyclic graphs, on the other hand, allow quick traversing during visualization or other

forms of processing, since their nodes include pointers to child nodes. The disadvantage of

this, is that the binary-level representation, requires more operating memory or secondary

storage space. Both hierarchical data structures – sparse voxel directed acyclic graphs and

pointerless sparse voxel directed acyclic graphs – and both versions of the proposed

conversion algorithm are described in the first part of the paper. Results of tests, performed

on various models – previously surface polygonal models, stored in the Wavefront

Technologies geometry definition file format (OBJ) – now voxelized to the respective

resolutions, are summarized in the second part of the paper. The binary-level

representation lengths of both data structures, along with the time consumption of both

versions of the proposed conversion algorithms, are detailed in the last part of the paper.

Keywords: pointerless sparse voxel octrees; PSVO; sparse voxel octrees; SVO; pointerless

sparse voxel directed acyclic graphs; PSVDAG; sparse voxel directed acyclic graphs;

SVDAG; hierarchical data structures; volume dataset; three-dimensional image; lossless

data compression

1 Introduction

Hierarchical data structures (HDS), based on the use of octant trees (octrees) and

Directed Acyclic Graphs (DAGs), are popular solutions to represent the geometry

of three-dimensional scenes, especially if the scenes are voxelized from three-

dimensional polygonal surface models [1]. In voxelized scenes, the uncompressed

B. Madoš et al. Transforming Hierarchical Data Structures – a PSVDAG–SVDAG Conversion Algorithm

 – 48 –

geometry is represented as a three-dimensional regular grid, using 1 b per voxel –

active (filled) voxels are encoded as “1” bits and passive (empty) voxels are

encoded as “0” bits. In such scenes, most voxels are passive (often, these represent

99.99% of all voxels, or even more).

Hierarchical data structures, based on octrees and directed acyclic graphs, can

cope with this sparsity and use it in lossless data compression, and that is why

they can store scene geometry using unprecedentedly small space. A compression

level of 10-5 bits per voxel (b/vox) can be achieved in case of a 64 K3 scene

(65536 × 65536 × 65536 voxels), using 315.3 MB of space to store the particular

scene geometry [2] [3]. In comparison, to store this geometry in its uncompressed

form, as a regular three-dimensional grid of 1b/vox, one needs 256 TB of space.

Another common feature of voxelized scenes based on polygonal surface models

is the high probability of occurrence of identical subspaces. Hierarchical data

structures use this feature to achieve lossless compression, via Common Subtree

Merging (CSM). Applying this technique, octrees are transformed into DAGs.

There are octree-based hierarchical data structures allowing space-saving

representation of the scene geometry without having any child node pointers

encoded in their nodes – these are Pointerless Sparse Voxel Octrees (PSVOs).

Pointerless hierarchical data structures are suitable for archiving and streaming

purposes, but are less suitable for immediate traversing. Their disadvantage is that

they don’t allow using the CSM technique. Sparse Voxel Directed Acyclic Graphs

(SVDAGs) include pointers for quick traversing and CSM. Pointers, though,

require a significant amount of space in SVDAGs. However, the possibility to use

CSM can outweigh this disadvantage. That is why, in total, SVDAGs can be more

space-efficient, compared to PSVOs.

In our previous research, we developed Pointerless Sparse Voxel Directed Acyclic

Graphs (PSVDAGs) [4] – hierarchical data structures incorporating advantages of

both PSVOs and SVDAGs [5]. Due to pointerless encoding, this data structure

saves space, and, due the concept of variable-length Labels/Callers, it allows the

use of CSM. PSVDAGs can exceed the compression ratio of PSVOs and

SVDAGs. However, the absence of pointers makes this data structure unsuitable

for quick traversing. That is why the PSVDAG data structure incorporates a

feature – active child node count (ACHNC) – allowing quick transformation into

SVDAGs. In this paper, we propose and describe two versions of the conversion

algorithm allowing the transformation of PSVDAGs into SVDAGs: an out-of-core

and a semi-out-of-core version.

The contribution of the paper is in the following:

The design of two versions of the PSVDAG – SVDAG conversion algorithm: an

out-of-core and a semi-out-of-core version.

Section 2, hereof summarizes the related works in the field of multi-dimensional

data linearization, hierarchical data structures used to represent the geometry of

Acta Polytechnica Hungarica Vol. 18, No. 8, 2021

 – 49 –

three-dimensional scenes and out-of-core algorithms for the creation of those data

structures. Due to the vast number of papers published in the field, only closely

related works are mentioned.

Section 3, provides a description of the SVDAG and PSVDAG hierarchical data

structures, not only their formal description using the Backus-Naur Form, but also

a brief explanation of their fundamental properties.

Section 4, is an introduction to the main contribution of the paper, i.e. the out-of-

core and semi-out-of-core versions of the conversion algorithm that transforms

PSVDAGs into SVDAGs.

Section 5, describes the results of the tests performed on various three-

dimensional scenes, originally stored in the Wavefront Technologies geometry

definition file format (OBJ), subsequently voxelized to the respective resolutions

and then stored as PSVDAGs. Using the algorithm described in Section 4, the

transformation of their representation from PSVDAG into SVDAG was tested.

Section 6, the last section of the paper, draws conclusions from the test results

stated in the previous section of the paper.

2 Related Work

Due to the vast number of papers published in this field, this section lists only the

closely related works.

Linearization of multi-dimensional data. Space-Filling Curves (SFC), introduced

by Peano and Hilbert at the end of the 19th Century [6] [7], are used to linearize

multi-dimensional data. Very popular in computer graphics is the Morton order

[8]. Hilbert Space Filling-Curves (HSFCs) are used in computer science for better

locality preserving [9]. Examples of linearization of a two-dimensional space

using Morton order and Hilbert SFCs of levels 1 and 2 are depicted in Figure 1.

Hierarchical data structures for three-dimensional data representation. Octrees –

hierarchical data structures – have been used for representation of three-

dimensional scenes for decades. Works from the 1980s include Srihari [10], Rubin

and Whitted [11], Jackins and Tanimoto [12] and Meagher [13] [14] [15], to name

only a few. Different encoding schemes of child node header tags in PSVO

leveraging fixed-length and variable-length header tags appeared in [16].

Not only homogenously empty subtrees, but also homogenously filled subtrees

were removed: PSVOs – hierarchical data structures allowing the removal of not

only homogenously empty subtrees, but also those homogenously filled with any

symbol from a defined set of symbols – were proposed in [17]. The symbol set

can be encoded using a fixed-length or variable-length binary-level representation.

B. Madoš et al. Transforming Hierarchical Data Structures – a PSVDAG–SVDAG Conversion Algorithm

 – 50 –

Figure 1

Linearization of the two-dimensional space of various levels,

using a, b) Morton order and c, d) Hilbert curves

Efficient Sparse Voxel Octrees (ESVOs), introduced in 2010, are sparse voxel

octrees, in which whole subtrees may be efficiently replaced with 32 b-long

contour information (i.e. a 24 b-long contour pointer and an 8 b-long contour

mask) [18].

High Resolution Sparse Voxel Directed Acyclic Graphs (SVDAGs), proposed in

2013, are DAGs incorporating pointers to the child nodes into their internal nodes

and allowing common subtree merging, when two or more child node pointers

point to the same node of the data structure [5]. Child node pointers are 0 b and 32

b-long, respectively. Each part of the data structure is 32 b-aligned. In 2016,

Symmetry-aware Sparse Voxel Directed Acyclic Graphs (SSVDAG) were

introduced in [2] [3]; these incorporate pointers to the child nodes of 0 b, 16 b, 32

b and 33 b lengths, which is why 2 b header tags of the child node mask with an

overall length of 16 b are used. Three bits of child node pointers are used to

encode a reflective symmetry transformation (separately, in each main axis of the

scene) when common subtree merging is used, for improved lossless compression

of the data structure. CSM is applicable not only to identical subtrees, but also to

subtrees identical after applying reflective symmetry transformation.

SSVDAG* is a small modification of the SSVDAG data structure, proposed in

2019 in [19], replacing 33 b-long pointers with another 16 b-long pointer without

the symmetry transformation representation. This allows a higher compression

ratio but smaller overall size of the binary representation of the data structure, due

to the smaller overall addressing space of pointers in each level of data structure.

Pointerless Sparse Voxel Directed Acyclic Graphs (PSVDAGs) were proposed in

2020 in [4]. This hierarchical data structure allows common subtree merging using

the concept of Labels/Callers, with variable-length and their frequency-based

compaction. See subsection 3.2 for further details.

Out-of-core construction of Sparse Voxel Octrees (SVOs) from triangle meshes

was introduced in [20] [21]. The algorithm consists of two basic steps. The first is

a voxelization process, in which the triangles representing the scene form an

intermediate product – a high-resolution three-dimensional voxel grid. In the

second step, this intermediate product is transformed into SVOs. The algorithm

Acta Polytechnica Hungarica Vol. 18, No. 8, 2021

 – 51 –

allows the size of the binary representation of the input triangle mesh, the output

SVO, and the intermediate product – a three-dimensional voxel grid generated at a

high resolution and represented by a Morton order – to exceed the available

computer memory by far. Compared to the in-core algorithm, it uses only a

fraction of the memory and has comparable processing time.

3 Hierarchical Data Structures

This section describes the SVDAG and PSVDAG data structures – the formal

description in the Backus-Naur Form (BNF) is accompanied by a brief

explanation of the basic features of those data structures.

3.1 Sparse Voxel Directed Acyclic Graphs

The formal description of the SVDAG hierarchical data structure using Backus-

Naur Form is as follows:

SVDAG ::= (n) <NODE>

NODE ::= <INODE> | <LNODE>

INODE ::= <CHNM> (p) <BIT> <PTS>

LNODE ::= <CHNM> (q) <BIT>

CHNM ::= (8) <HT>

PTS ::=(1) * (8) <PT>

PT ::= (r) <BIT>

HT ::= <BIT>

BIT ::= “0“ | “1“

(1)

Where the following applies:

<SYM> - mandatory non-terminal symbol SYM,

“sym“ – terminal symbol sym,

(n) <SYM> - symbol SYM, concatenated n times,

(n)*(m) <SYM> - symbol SYM, concatenated from n to m times

| - alternative

Juxtaposition – concatenation.

SVDAGs represent the three-dimensional grid of voxels R that comprises N3

voxels, where N ≥ 2; N = 2m. If N = 2, the root node of the SVDAG data structure

is constructed as the leaf node LNODE. If N >2, the root node of the SVDAG data

structure is constructed as the internal node INODE.

B. Madoš et al. Transforming Hierarchical Data Structures – a PSVDAG–SVDAG Conversion Algorithm

 – 52 –

Each internal node (INODE) of the data structure comprises a Child Node Mask

(CHNM) and an array of pointers (PTS). The CHNM comprises 8 b, where each

potential child node is represented by a 1 b header tag (HT). If HT is set to 0, the

related subDAG of the grid R is homogenously filled by passive voxels and there

is no need for pointer representation, because the subDAG is pruned out. If HT is

set to 1, it represents the subDAG of the grid R, in which at least one of the voxels

is active, and therefore the child node is present in the data structure and the

related pointer PT is included in the PTS. The CHNM is concatenated with p

reserved bits, to align the size of this part of the node. The next part of the node is

the PTS, containing 1 to 8 pointers PT, each of them r bits long. The order of HTs

in the CHNM and that of the pointers in the PTS depends on the selected

linearization.

Two or more pointers from different nodes at the same level n of the data structure

and even from the same node may point to the same address and therefore to the

same node (their child node) in level n + 1 of the data structure. This allows

common subtree merging and further lossless compression without any

decompression overhead in comparison to the octree version of the data structure,

which does not allow two pointers to point to the same node. In SVDAGs

proposed in [5], each part of the node and therefore each node and the overall data

structure is 32 b-aligned, when parameters p and q are set to 24 and r is set to 32.

Figure 2 shows an example of a two-dimensional (for the sake of simplicity) grid

of pixels and the corresponding directed acyclic graph that can be transformed

into a binary-represented SVDAG. Each node has four potential child nodes in the

Morton order [8]. Passive pixels are set in white, active pixels in red. Two

subgrids of 4×4 pixels are pruned out along with four 2×2 subgrids. Each of the

two other subgrids of 2×2 pixels is represented in the grid twice; that is why

common subtree merging is performed two times. For linearization, we used the

Morton order.

a) b)

Figure 2

Example of a) a two-dimensional grid of pixels with passive voxels (white) and active voxels (red);

and b) a directed acyclic graph that can be transformed into a sparse voxel directed acyclic graph using

common subtree merging

Acta Polytechnica Hungarica Vol. 18, No. 8, 2021

 – 53 –

3.2 Pointerless Sparse Voxel Directed Acyclic Graphs

The formal description of the PSVDAG hierarchical data structure using the

Backus-Naur Form is as follows:

PSVDAG ::= <NODE>

NODE ::= <INODE> | <LNODE>

INODE ::= <ACHNC> <CHNM>

ACHNC ::= (3) <BIT>

CHNM ::= (1)*(8) <HT>

HT ::= “00“ | “01“ <LAB> <NODE> | “10“ <CAL> | “11“ <NODE>

LAB ::= <SIZ><VAL>

CAL ::= <SIZ><VAL>

SIZ ::= (5)*<BIT>

VAL ::= (1)*(32) <BIT>

LNODE ::= (8) <BIT>

BIT ::= “0“ | “1“

(2)

A PSVDAG represents a three-dimensional grid of voxels R comprising N3

voxels, where N ≥ 2; N = 2m. The PSVDAG data structure comprises the root node

(NODE) that represents the overall 3D scene. If N = 2, the root node of the

PSVDAG data structure is constructed as the leaf node LNODE. If N > 2, the root

node of the PSVDAG data structure is constructed as the internal node INODE

and is further iteratively decomposed into 8 child nodes, dividing the scene into 8

suboctants. Each node can be either an INODE or an LNODE (if the node is

located in the last level of the hierarchical data structure).

The INODE consists of the Active Child Node Count (ACHNC) and the Child

Node Mask (CHNM). The ACHNC is a 3 b unsigned integer value showing the

number of active child nodes of the particular node (using a value decremented by

1). It allows potential lossless compression of the CHNM. The ACHNC facilitates

the reconstruction of pointers in the PSVDAG–SVDAG transformation process.

The Child Node Mask comprises header tags HT ordered according to the selected

linearization. All HTs indicating passive child nodes (set to “00”), placed beyond

the last active child node HT (the active child node indicator HT is encoded as

“01”,”10” or ”11”) in the CHNM are omitted, as it can be seen in Figure 3, in

which 4 HTs are omitted.

Figure 3

An example of the node structure, where ACHNC set to 1 indicates 2 active child nodes (here: HT0 and

HT3) and four omitted HTs (HT4 to HT7). For the sake of simplicity, only HT indicators are

represented, without concatenated Labels and Callers.

B. Madoš et al. Transforming Hierarchical Data Structures – a PSVDAG–SVDAG Conversion Algorithm

 – 54 –

The meaning of HT indicator values is as follows:

 00 – a passive child node header tag indicating that there is no active voxel in

the corresponding suboctant of the grid R. There is no further information

concatenated (the passive subtree is pruned out).

 01 – an active child node header tag indicating a child node being the root

node of a subtree present in the data structure multiple times. The header tag

indicator is concatenated with the Label along with the representation of that

child node.

 10 – an active child node header tag indicating a child node being the root

node of a subtree present in the data structure multiple times. The HT is

concatenated with the Caller. No other information is needed, because the

whole subtree is pruned out.

 11 – an active child node header tag, concatenated with the root node of the

subtree, present in the data structure only once.

a) b)

c)

10 00 01 000000 01 11 1001 00 00 01 000000 0101 10 000000 11 00 10 000000

d)

Figure 4

An example of a) a two-dimensional grid of 8 8 pixels, b) a quadtree with labels and callers marked to

illustrate the relation to the PSVDAG, c) the structure of PSVDAG nodes and d) the final binary

representation of the PSVDAG data structure in its version for 2D where only two bits are used for the

active child node count (ACHNC)

Acta Polytechnica Hungarica Vol. 18, No. 8, 2021

 – 55 –

PSVDAGs are pointerless data structures allowing merging of common subtrees

(CSM). If two or more subtrees are identical in the data structure, only one full

decomposition of the subtree is present in the data structure: in its root node, the

HT is set to “01”, concatenated with the Label. For all other instances of this

subtree, the HT is set to “10” and a Caller (with the same binary representation as

the Label) is used, but the subtree is not decomposed (its root node and whole

decomposition is pruned out and the Caller represents the link to the template

subtree used instead when traversing the data structure). This way, complete

representations of subtrees can be referenced in PSVDAGs, multiple times. When

depth-first traversing the PSVDAG, to the first occurrence of this common

subtree, the Label is assigned and to all other occurrences, the Caller.

The Label has two components – label size (), which is a 5 b unsigned integer

and value (VAL). SIZ represents the length of the value VAL in bits, decremented

by 1. If SIZ is n, the length of value is n + 1 bits. VAL can be from the range of

<0; 2n+1-1>. For each level l of the data structure nodes, the labels are generated

separately, from the smallest value of SIZ and VAL (SIZ = 0 and VAL = 0).

For each following label in a particular level, the value of VAL is incremented and

when the capacity of this size of VAL is filled, size SIZ is incremented and VAL is

set to 0 for the next label. Taking only SIZ and VAL into account, each Label

within level l is unique. Considering level l, SIZ and VAL, each label within the

whole data structure is unique – see Figure 4.

The Caller structure follows the same principles as that of the Label, when it

comprises SIZ and VAL. A Caller with the same values of l, SIZ and VAL as the

particular Label points to the subtree labelled with this particular Label.

This allows common subtree merging, using the concept of variable-length

Labels/Callers.

To each level l of the data structure, frequency-based compaction is applied, when

all nodes referenced from level l - 1 more than once are ordered by their frequency

of referencing in descending order and labels generated for this level of nodes are

ordered by their binary-representation length SIZ and value of the VAL in

ascending order. The most frequently referenced node in the level is therefore

assigned the label with the shortest binary-level representation and vice versa.

This allows to obtain the lowermost possible number of bits forming

Labels/Callers for this principle of Label/Caller-encoding.

Leaf nodes (LNODE) contain one bit per voxel – active voxels are set to 1, passive

voxels are set to 0. In the leaf node, voxels are ordered according to the selected

linearization (Morton order [8] in Figure 4).

For detailed information regarding PSVDAG encoding principles and features,

refer to [4].

B. Madoš et al. Transforming Hierarchical Data Structures – a PSVDAG–SVDAG Conversion Algorithm

 – 56 –

4 The Proposed Conversion Algorithm

One of the basic features of PSVDAGs is that considering binary-level encoding,

internal nodes are not encoded as uninterrupted sequences of bits, but quite the

opposite: binary-level representations of internal nodes are intermittent, when

child node representations are inserted. Internal node representation can be

therefore distributed across the whole data structure. Child node pointers are

absent, while some of them are replaced by Labels and Callers having a variable-

length binary-level representation.

The CHNM of the internal nodes can have a variable-length binary representation

and HT indicators are encoded using 2 b. On the contrary, in SVDAGs, internal

nodes are encoded as uninterrupted sequences of their binary-level representation,

the CHNM has a constant length with 1b HTs and child nodes are referenced using

constant-length pointers.

The conversion algorithm must therefore perform four important tasks:

 Extract the binary-level representation of the PSVDAGs internal nodes and

transform them into compact sequences of binary-level representation, as

used in SVDAGs

 Transform the PSVDAG CHNM into the SVDAG CHNM, i.e. transform 2 b

PSVDAG HT indicators into 1b SVDAG HTs

 Generate child node pointers referencing child nodes in SVDAG internal

nodes and those that are missing in PSVDAG HDS

 Replace PSVDAG Labels and Callers by SVDAG pointers to the child nodes

in SVDAG in the way allowing CSM

The binary-level representation of the PSVDAG is the linearized form of the

HDS, obtained as the product of depth-first traversing of the particular directed

acyclic graph. When processed by the transformation algorithm, it is transformed

into a SVDAG in one pass, progressively generating particular internal and leaf

nodes of the target SVDAG, processing only one SVDAG node at a time, for each

level of nodes. During the processing, we use a data structure having a

significantly shorter binary representation than the whole input PSVDAG and the

output SVDAG and store this structure in the main memory of the computer.

During the transformation, a Label Transformation Table (LTT) – to convert

Labels/ Callers into child node pointers – is needed; the binary representation of

the LTT can be considerably larger. Thus, if this table is stored in the main

memory of the computer, the algorithm is considered to be the semi-out-of-core

version and if the LTT table is stored in secondary storage, it is considered to be

the out-of-core version.

When the conversion of the PSVDAG internal node starts, the nearest free address

in the SVDAG is assigned to this node as the final address where this node will be

stored as the new SVDAG internal node; it will be finalized after its conversion.

Acta Polytechnica Hungarica Vol. 18, No. 8, 2021

 – 57 –

This address is 32 b-long; its value will be used also when child node pointers to

this child node will be constructed. Using the ACHNC of the PSVDAG node,

which is also stored in the operating memory during node transformation and

which was read as the first part of the PSVDAG node when its transformation

started, it is possible to determine the length of the binary-level representation of

the corresponding SVDAG node, although not all components of this node have

been read and transformed yet. Therefore, it is possible to evaluate the next free

address in the SVDAG for the next node to be transformed. This allows to

determine addresses and binary-level representation lengths for all nodes

processed at this time. As soon as one of those nodes gets finally processed, this

node may be stored at the final address in the target HDS immediately.

The ACHNC of internal PSVDAG node stores the number of active child nodes of

the corresponding SVDAG internal node, decremented by 1. In the SVDAG node,

each active child node will have its 32 b child node pointer and another 32 b will

comprise the 8 b CHNM of the node and 24 reserved bits (to align this part of the

node to 32 b). The size of the SVDAG node SVDAGnodesize in bits can be

calculated from the ACHNC of the related PSVDAG node using this formula:

SVDAGnodesize = (ACHNC + 2) * 4 [B] (3)

Another component describing the SVDAG node is an 8 b vector, representing its

child node mask CHNM. While in PSVDAGs, the CHNM of the child nodes is

represented using 2 b HT indicators and some of those HTs can be omitted, in

SVDAGs, there are always eight 1 b HTs in the CHNM. When transforming the

PSVDAG CHNM, the passive child node – i.e. the node encoded in the PSVDAG

node as the “00” HT indicator – is transformed into HT “0” in SVDAG. Active

child nodes – nodes encoded in the PSVDAG node with the “01”, “10” or “11”

HT indicator – are transformed into HT “1” in SVDAG. HTs omitted in the

PSVDAG node are inserted into the SVDAG, encoded as HT “0”. Due to the

selected linearization, the HT order in the SVDAG HDR will be the same as the

one in the PSVDAG HDR.

Another part of the SVDAG node is the array of pointers PTS, where each pointer

has a constant – 32 b – length. Their number varies from 1 to 8. When processing

PSVDAG nodes, each processed node has an array for 8 potential pointers, each

32 b-long. Each processed node has also a pointer ptpt showing where the next

pointer can be stored in the PTS array of the node.

When constructing a node pointer to the child node that is indicated by HT “11“

in the PSVDAG CHNM, in the SVDAG, the address of the child node will be –

after its completion – the next free address, stored in the variable nnadr.

This address is also used as the value of the pointer to this child node. Considering

that this child node is referenced by the pointer in the HDS only once, there is no

need to store the value of this pointer in the operating memory after it has been

generated and stored into the node and after the child node‘s address has been

assigned. After this step, the algorithm starts the conversion of the child node.

B. Madoš et al. Transforming Hierarchical Data Structures – a PSVDAG–SVDAG Conversion Algorithm

 – 58 –

When constructing the child node pointer for the active child node that is indicated

by the HT set to “01“ in the PSVDAG CHNM, the corresponding Label of the

child node – containing SIZ and VAL – is read. Level l, representing the level of

the particular node, is also known. The next free address in the SVDAG, stored in

the nnadr variable, is assigned to this child node and this child node will be stored

at this address in the SVDAG after its finalization. This address is used as the

value of the pointer to this child node and as the value of the corresponding Label

in the LTT. After the pointer is generated and stored into the node and the address

is assigned to the child node, the processing of this child node starts.

During the PSVDAG data structure transformation, there is need to store

information about addresses assigned to the particular labels, because those

addresses will be used one or more times when processing the Callers. That is why

the particular Labels and their addresses are progressively stored in the Label

Transformation Table (LTT). For each triplet [level, SIZ, VAL] of a particular

Label, the address assigned to this Label is written into the LTT. If the LTT is

stored in the operating memory of the computer, the semi-out-of-core version of

the algorithm is used; if the LTT is stored in the secondary storage of the

computer, the out-of-core version of the algorithm is used.

When constructing the child node pointer for the child node indicated by the HT

set to “10“ in the PSVDAG CHNM, the related Caller of the child node –

containing SIZ and VAL – is read. Level l, representing the level of the particular

node, is also known. The value of the pointer to this child node that will be used

when constructing the SVDAG node is then read from the LTT table, where it

may be found using the triplet [level, SIZ, VAL] of the Caller when the same triplet

of the Label is found and the assigned address is used as the pointer.

For each constructed internal node of the SVDAG, the 32 b target address, stored

in adr is known. The number of active child nodes, calculated from the ACHNC,

is stored in the 8 b achnc variable. There is a 32 b chnm variable, representing the

node’s CHNM. The pts array may store at most 8 child node pointers, 32 b each.

The number of node pointers actually processed for this node is stored in the 8 b

ptpt. Each node is therefore represented in memory by the 336 b structure node,

consisting of adr, achnc, chnm, pts and ptpt. The array nodes comprise one node

structure for each level of internal nodes of the HDS. After each pointer is added

to the pts array of the particular node, the algorithm checks if it was the last

pointer expected for this node. If yes, the node is finalized and stored at the adr

address in the SVDAG. The related node structure is then initialized and prepared

for processing another node of the same level.

The proposed conversion algorithm has three steps. Step 3 is called iteratively.

Step 1 nnadr = 0; level = 0;

if (maxl == 1) Step 2; end;

 if (maxl >1) Step 3; end;

Acta Polytechnica Hungarica Vol. 18, No. 8, 2021

 – 59 –

Step 2 readLNODE();

 writeLNODE();

 nnadr += 4;

 return;

Step 3 level++;

 nodes[level].achnc = readACHNC() + 1;

 nodes[level].adr = nnadr;

 nnadr += (nodes[level].achnc + 1) * 4;

 nodes[level].ptpt = 0;

 until (nodes[level].achnc > nodes[level].ptpt) {

ht = readHT();

 switch (ht) {

case 0: updateCHNM(nodes[level].chnm, 0);

 break;

case 1: updateCHNM(nodes[level].chnm, 1);

 [siz, val] = readLabel();

 putInLTT(level, siz, val, nnadr);

 updatePTS(nodes[level].pts[ptpt++], nnadr);

 if (level < lmax-2) Step 3;

 if (level == lmax-2) Step 2;

 break;

case 2: updateCHNM(nodes[level].chnm, 1);

 [siz, val] = readCaller();

 adr = getFromLTT(level, siz, val);

 updatePTS(nodes[level].pts[ptpt++], adr);

 break;

case 3: updateCHNM(nodes[level].chnm, 1);

updatePTS(nodes[level].pts[ptpt++], nnadr);

 if (level < lmax-2) Step 3;

 if (level == lmax-2) Step 2;

 break;

 }

 }

 writeINODE(nodes[level]);

 return;

B. Madoš et al. Transforming Hierarchical Data Structures – a PSVDAG–SVDAG Conversion Algorithm

 – 60 –

The input of the proposed conversion algorithm is represented by the stream of

bits of the binary-level representation of the PSVDAG (described in subsection

3.2), and maxl, the number of node levels in this data structure (maxl > 0). Node

levels are from the range of <0; maxl - 1>: the root node is located in level 0, the

internal nodes are located in levels <0; maxl - 2>, the leaf nodes are located in

level maxl - 1.

Step 1 of the algorithm sets the next node variable nnadr to 0, as well as the

PSVDAG node level indicator, the variable level. Subsequently, it has to be tested

if the root node of the PSVDAG data structure is a leaf node or an internal node.

If the input parameter maxl is set to 1, the root node of the PSVDAG is a leaf

node, Step 2 of the algorithm is performed and then execution of the algorithm

ends. If the input parameter maxl > 1, the root node of the PSVDAG is an internal

node, Step 3 of the algorithm is performed and then the execution of the algorithm

ends.

Step 2 processes the leaf node of the PSVDAG, encoded in the PSVDAG as an 8-

bit vector, where each bit represents one voxel. readLNODE() reads 8 bits from

the input stream. writeLNODE() writes an 8-bit vector representing the leaf node

of the SVDAG data structure and adds 24 reserved bits to the output stream at the

address nnadr. The value of nnadr (in bytes) is then incremented by 4.

Step 3 processes an internal node of the PSVDAG. The level value is incremented

and the ACHNC, a 3-bit vector, is read from the input stream. Its incremented

value shows how many child node pointers will the SVDAG node have. Its final

address is set to the nnadr value and stored in adr. The value of nnadr (next new

node address) is computed, and pointer ptpt is set to 0.

Until the last active child node HT is read, the following is repeated:

ht is read using readHT().

If the ht is set to 0 (“00“), chnm in the node structure of SVDAG nodes, stored in

nodes array, is updated using updateCHNM(), setting the corresponding HT to 0.

If ht is set to 1 (“01“), chnm in the node structure of SVDAG nodes, stored in the

nodes array, is updated using updateCHNM(), setting HT to 1. The Label is read

using readLabel() and LTT table is updated using putInLTT(), using the particular

level, siz and val values to set the Label address to nnadr. The pointer array pts of

the particular structure node is updated using updatePTS() – the new pointer is

written into this array and ptpt, showing the number of pointers stored for this

node, is incremented. Then, child node construction starts and – depending on the

level in which it is stored – Step 3 (if the child node is an INODE) or Step 2 (if it

is an LNODE) is performed.

If ht is set to 2 (“10“), chnm in the node structure of SVDAG nodes, stored in the

nodes array, is updated using updateCHNM(), setting the related HT to 1.

The caller is read using readCaller(), and from the LTT table, the address is

retrieved for particular level, siz and val values, using getFromLTT(). The pointer

Acta Polytechnica Hungarica Vol. 18, No. 8, 2021

 – 61 –

array pts of the particular structure node is updated using updatePTS() – the new

pointer is written into this array and ptpt, showing the number of pointers stored

for this node, is incremented.

If ht is set to 3 (“11“), chnm in the node structure of SVDAG nodes, stored in the

nodes array, is updated using updateCHNM(), setting the related HT to 1.

The pointer array pts of the particular structure node is updated using

updatePTS() – the new pointer is written into this array and ptpt, showing the

number of pointers stored for this node, is incremented. Then, child node

construction and – depending on the level in which it is stored – Step 3 (if the

child node is an INODE) or Step 2 (if it is an LNODE) is performed.

After all active child node HTs are processed, the particular INODE is written to

the output using writeINODE().

5 Results

Various 3D scenes, originally stored in Wavefront OBJ geometry definition file

format (examples of those scenes with their visualizations are in Figure 5), were

used for test purposes. The “Angel Lucy” model consisted of 488 880 triangles,

the “Skull” model had 80 016 triangles and the “Porsche” model had 22 011

triangles. These were voxelized to different resolutions, ranging from 1283 to

10243 (1 K3). The voxelized scenes were then encoded as PSVDAG hierarchical

data structures.

a) b) c)

d) e) f)

Figure 5

Visualization of voxelized scenes for testing purposes: a) “Angel Lucy” 5123;

b) “Skull” 5123; c) “Porsche” 5123; d) detail of the “Angel Lucy” 2563 model;

e) detail of the “Angel Lucy” 5123 model; f) detail of the “Angel Lucy” 1 K3 model

B. Madoš et al. Transforming Hierarchical Data Structures – a PSVDAG–SVDAG Conversion Algorithm

 – 62 –

Details of particular models and their particular voxelizations to the respective

resolutions can be found in Table 1.

Table 1

Parameters of particular models, voxelized to the particular resolutions and stored as PSVDAGs,

for test purposes

Active voxels

Angel Lucy Skull Porsche

Resolutio

n [vox]

Voxels

[×220] [103] [%] [103] [%] [103] [%]

1283 2 22,48 8,78 74,10 28,95 54,20 21,17

2563 16 91,52 4,47 298,85 14,59 233,04 11,38

5123 128 366,58 2,24 1192,04 7,28 969,11 5,91

By converting PSVDAGs into SVDAGs, the space needed to store the scene

geometry increased. In case of the particular models and voxelization resolutions,

the increase ranged from 3.01-fold (in case of the “Skull” model at 1 K3 scene

voxelization resolution) to 3.70-fold (in case of the “Angel Lucy” model at 1283

scene voxelization resolution). So, in general, higher voxelization resolutions led

to smaller inflation rates. See Table 2 for absolute sizes of the PSVDAGs and

SVDAGs (in KB) for the respective models and voxelization resolutions.

Table 2

Size of particular models at various voxelization resolutions,

stored as PSVDAG and SVDAG hierarchical data structures

Size [KB]
Resolution

1283 2563 5123

Angel Lucy
PSVDAG 8.62 35.10 132.37

SVDAG 31.88 127.01 462.85

Skull
PSVDAG 28.11 104.31 366.48

SVDAG 100.39 356.75 1182.45

Porsche
PSVDAG 15.80 61.28 227.13

SVDAG 56.78 222.41 788.76

During the conversion process, it was necessary to maintain 32 b addresses

assigned to the individual Labels in the LTT table. The smallest number of these

addresses (182) was needed for the Angel Lucy 1283 model, requiring 0.71 KB of

space. The largest number of these addresses (9179) was needed in the case of the

Skull 5123 model, requiring 35.86 KB of space.

The semi-out-of-core version of the conversion algorithm that stores the Label

Transformation Table in the operating memory, transformed PSVDAGs into

SVDAGs with a higher data throughput and therefore faster for each model and

voxelization resolution, in comparison to the out-of-core algorithm storing the

Label Transformation Table in the secondary storage.

Acta Polytechnica Hungarica Vol. 18, No. 8, 2021

 – 63 –

Table 3

Time in seconds and data throughput in MB for particular models at various voxelization resolutions –

conversion from PSVDAG hierarchical data structure into SVDAG hierarchical data structure,

for the semi-out-of-core (SOoC) and out-of-core (OoC) versions of the algorithm

Time [s]

Data throughput [KB/s]

Resolution

1283 2563 5123

Angel Lucy

SOoC
0.28*1

112*2

1.14

111

4.62

100

OoC
0.30*1

106*2

1.21

105

4.73

98

Skull

SOoC
0.81*1

124*2

3.24

110

13.59

87

OoC
0.85*1

118*2

3.43

104

14.44

82

Porsche

SOoC
0.44*1

129*2

1.97

113

7.33

108

OoC
0.47*1

121*2

2.04

109

7.51

105
*1 Conversion time in seconds
*2 Data throughput measured on the output in KB/s

The time required for the conversion of the particular models and voxelization

resolutions ranged from 0.28 s for the “Angel Lucy” model at 1283 resolution and

the semi-out-of-core version to 14.44 ms for the “Skull” model at 5123 resolution

and the out-of-core version. The time consumption of the out-of-core version was

1.024–1.057-times higher than that of the semi-out-of-core version.

Data throughput was 82 KB/s – 129 KB/s and was strongly affected by the seek

operation, performed when storing the completed nodes in the final output file.

Output data throughput at the level of 34.5 MB/s was achieved in the case when a

fully in-core transformation was performed on the model “Skull“ having a 5123

resolution. Both the PSVDAG and the LTT structures were stored in the

computer's operating memory, together with the SVDAG hierarchical data

structure, which was consecutively stored into the secondary storage after its

finalization.

Conclusions

This paper examined the issues related to three-dimensional scene geometry

representation, using domain-specific hierarchical data structures, building on

previous work in the field – Pointerless Sparse Voxel Directed Acyclic Graphs.

This data structure is well suited for archiving and streaming purposes; however,

quick traversing requires reconstruction of pointers. That is why PSVDAG

incorporates a feature that facilitates pointers reconstruction. Two versions – an

out-of-core and a semi-out-of-core – of the PSVDAG–SVDAG conversion

B. Madoš et al. Transforming Hierarchical Data Structures – a PSVDAG–SVDAG Conversion Algorithm

 – 64 –

algorithm were proposed and introduced as the contribution of this paper, along

with test results that were performed on different models voxelized to various

resolutions.

During the conversion of PSVDAGs into SVDAGs, pointers are generated.

Pointers take significant amount of space in SVDAGs, so conversion causes

inflation of the space required for storing this HDS, in the operating memory of

computer or in the memory of the graphics card. For particular models and

voxelization resolutions, the resulting inflation ranged from 3.01-fold (in case of

the “Skull” model at a 1 K3 scene voxelization resolution) to 3.70-fold (in case of

the “Angel Lucy” model at a 1283 scene voxelization resolution). In general,

higher voxelization resolutions need more space for Labels/Callers in PSVDAGs,

which results in a relatively smaller inflation ratio when converting to the SVDAG

data structure. Considering conversion time, the out-of-core version of the

algorithm (storing the Label Transformation Table on secondary storage), has a

disadvantage, compared to the semi-out-of-core version of the algorithm (storing

the Label Transformation Table in the operating memory of the computer). Thus,

the out-of-core version of the algorithm was 1.024 to 1.057 times slower than the

semi-out-of-core version of the algorithm, for all models and voxelization

resolutions. When testing the in-core version of the algorithm, a data throughput

34.5 MB/s was achieved.

Acknowledgement

This research was supported by the Slovak Research and Development Agency,

project number APVV-18-0214 and by KEGA 002TUKE-4/2021 Implementation

of Modern Methods and Education Forms in the Area of Cybersecurity towards

Requirements of Labour Market.

References

[1] C. Crassin, F. Neyret, S. Lefebvre and E. Eisemann, GigaVoxels: Ray-

Guided Streaming for Efficient and Detailed Voxel Rendering. ACM

SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D.

10.1145/1507149.1507152

[2] A. J. Villanueva, F. Marton and E. Gobbetti, Symmetry-aware Sparse

Voxel DAGs (SSVDAGs) for compression-domain tracing of high-

resolution geometric scenes, Journal of Computer Graphics Techniques

(JCGT), May 8, 2017, Vol. 6, No. 2, p. 30, 2017, ISSN 2331-7418,

http://jcgt. org/ published/0006/02/01/

[3] A. J. Villanueva, F. Marton, and E. Gobbetti, SSVDAGs: Symmetry-aware

Sparse Voxel DAGs. In Proceedings of the 20th ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games (I3D '16) February 27-

28, 2016, Redmond, WA, USA, pp. 7-14, ACM, New York, NY, USA,

ISBN: 978-1-4503-4043-4/16/03, DOI: https://doi.org/ 10.1145/285

6400.2856420

Acta Polytechnica Hungarica Vol. 18, No. 8, 2021

 – 65 –

[4] L. Vokorokos, B. Madoš and Z. Bilanová, PSVDAG: Compact Voxelized

Representation of 3D Scenes Using Pointerless Sparse Voxel Directed

Acyclic Graphs", In: Computing and Informatics: Computers and Artificial

Intelligence - Bratislava (Slovakia), Vol. 39, No. 3 (2020), pp. 587-616,

[print] - ISSN 1335-9150

[5] V. Kämpe, E. Sintorn, and U. Assarsson., High Resolution Sparse Voxel

DAGs. ACM Transactions on Graphics. 32, 4, Article 101 (July 2013), pp.

8, ISSN 0730-0301, DOI: https://doi.org/10.1145/2461912.246 2024

[6] A. Laszloffy, J. Long and A. K. Patra, Simple data management, scheduling

and solution strategies for managing the irregularities in parallel adaptive

finite element simulations. Parallel Computing, 26, ISSN 1765-1788

[7] H. Sagan, Space-Filling Curves, Springer Verlag, 1994, ISSN 978-1-4612-

0871-6, ISBN 978-0-387-94265-0, DOI 10.1007/978-1-4612-0871-6

[8] G. M. Morton, A Computer Oriented Geodetic Data Base and a New

Technique in File Sequencing, Research Report. International Business

Machines Corporation (IBM), Ottawa, Canada, 20, p. 20, March 1st, 1966,

Available: https://dominoweb.draco.res.ibm.com/reports/Morton1966.pdf

[9] D. Hilbert, Via the continuous mapping of a line onto a patch of area.

Mathematical annals (orig. Über die stetige Abbildung einer Linie auf ein

Flächenstück. Mathematische Annalen) 38 (1891), pp. 459-460

[10] S. N. Srihari, Representation of Three Dimensional Digital Images.

Technical Report No. 162, Department of Computer Science, State

University of New York at Bufallo, Amherst, New York, pp. 26, 1980

[11] S. M. Rubin, T. Whitted, A 3-Dimensional Representation for Fast

Rendering of Complex Scenes. Proceedings of the 7th Annual Conference

on Computer Graphics and Interactive Techniques (SIGGRAPH ’80),

ACM, 1980, pp. 110-116, doi: 10.1145/800250.807479

[12] C. L. Jackins and S. L. Tanimoto, Octrees and Their Use in Representing

Three-Dimensional Objects. Computer Graphics and Image Processing,

1980, Vol. 14, No. 3, pp. 249-270, doi: 10.1016/0146-664X(80)90055-6

[13] D. J. R Meagher, Octree Encoding: A New Technique for the

Representation, Manipulation, and Display of Arbitrary 3-D Objects by

Computer. Technical Report No. IPL-TR-80-111, Rensselaer Polytechnic

Institute, Troy, NY, 1980

[14] D. J. R. Meagher, Geometric Modeling Using Octree Encoding. Computer

Graphics and Image Processing, 1982, Vol. 19, No. 2, pp. 129-147, doi:

10.1016/0146-664X(82)90104-6

[15] D. J. R. Meagher, The Octree Encoding Method for Efficient Solid

Modeling. Technical Report IPL-TR-032, Image Processing Laboratory,

Rensselaer Polytechnic Institute, Troy, New York, 1982

B. Madoš et al. Transforming Hierarchical Data Structures – a PSVDAG–SVDAG Conversion Algorithm

 – 66 –

[16] B. Madoš, E. Chovancová and M. Hasin, Evaluation of Pointerless Sparse

Voxel Octrees Encoding Schemes Using Huffman Encoding for Dense

Volume Datasets Storage, In: ICETA 2020: 18th IEEE International

conference on emerging elearning technologies and applications:

Information and communication technologies in learning: proceedings -

Denver (USA): Institute of Electrical and Electronics Engineers pp. 424-

430, ISBN 978-0-7381-2366-0

[17] B. Madoš, N. Ádám and M. Štancel, Representation of Dense Volume

Datasets Using Pointerless Sparse Voxel Octrees With Variable and Fixed-

Length Encoding, IEEE 19th World Symposium on Applied Machine

Intelligence and Informatics, SAMI 2021, Herľany, Slovakia, January, 21-

23, 2021, p. 6

[18] S Laine and T. Karras, Efficient Sparse Voxel Octrees. In Proceedings of

ACM SIGGRAPH 2010 Symposium on Interactive 3D Graphics and

Games. I3D '10, Washington D.C, pp. 55-63, ACM Press, New York, NY,

USA, ISBN: 978-1-60558-939-8, DOI: 10.1145/1730804.1730814

[19] P. Čerešník, B. Madoš, A. Baláž and Z. Bilanová, SSVDAG*: Efficient

Volume Data Representation Using Enhanced Symmetry-Aware Sparse

Voxel Directed Acyclic Graph, In: IEEE 15th International Scientific

Conference on Informatics: proceedings - New York (USA): Institute of

Electrical and Electronics Engineers, pp. 70-75 [print] - ISBN 978-1-7281-

3178-8

[20] J. Baert, A. Lagae and Ph. Dutré, Out-of-core Construction of Sparse Voxel

Octrees. In Proceedings of the 5th High-Performance Graphics Conference.

HPG ’13, July 19-21, Anaheim, California, pp. 27-32, ACM, New York,

NY, USA, ISBN: 978-1-4503-2135-8/13/07

[21] J. Baert, A. Lagae and Ph. Dutré, Out-of-Core Construction of Sparse

Voxel Octrees, Computer Graphics Forum Vol. 33, No. 6, pp. 220-227,

ISSN 0167-7055, https://doi.org/10.1111/cgf.12345

