
Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 25 –

FPGA HW Accelerator of the First Step of

Systematic Two-Level Minimization of Single-

Output Boolean Function

Branislav Madoš, Norbert Ádám, Zuzana Bilanová,

Martin Chovanec

Department of Computers and Informatics, Faculty of Electrical Engineering and

Informatics, Technical University of Košice

Letná 9, 042 00 Košice, Slovak Republic

e-mail: {branislav.mados, norbert.adam, zuzana.bilanova,

martin.chovanec}@tuke.sk

Abstract: Boolean function minimization is an area important not only in the development

and optimization of digital logic, but also in other research and development areas, such

as, the optimization of control systems, simplifying program logic, artificial intelligence,

etc. The aim of this paper is to present a hardware accelerated first step of the systematic

minimization of single-output Boolean functions – the generation of a set of prime

implicants for both the disjunctive normal form (DNF) and the conjunctive normal form

(CNF), having defined the OFF and ON sets and – alternatively – also the DC (“don't

care”) set. The proposed hardware accelerator is designed as combinational logic,

described in VHDL. Its advantages include an extremely short prime-implicant-generation

time in the order of ns and/or tens of ns – in case of Boolean functions with small amount of

input variables – and the possibility to generate the valid-prime-implicant set of Boolean

functions having a defined number of input variables at a constant time, regardless of the

cardinality of the ON or, eventually, the DC sets. However, these advantages come with a

large spatial complexity – the number of utilized implementation elements – of the

respective combinational module, generating the prime-implicant set. The authors verified

the proposed design using Field Programmable Gate Array (FPGA) technology,

implementing the hardware using a Xilinx Kintex-7 KC-705 Evaluation Kit development

board.

Keywords: Boolean function minimization; prime implicant generation; combinational

logic; FPGA; disjunctive normal form; DNF; conjunctive normal form; CNF; hardware

accelerator; systematic minimization; heuristic minimization

B. Madoš et al. FPGA HW Accelerator of the First Step of Systematic Two-Level Minimization of
 Single-Output Boolean Function

 – 26 –

1 Introduction

Boolean function minimization is a significant problem not only in academia and

scientific research, but also in many research and development areas. This

includes, for example, the development of logic designs, such as Programmable

Logic Array (PLA) technology, Field Programmable Gate Array (FPGA)

technology, Application Specific Integrated Circuit (ASIC) technology, as well as

the design and development of control systems including the vast and important

domain of controlling intelligent buildings and houses [1], software engineering

(to optimize logic used in software), artificial intelligence, security of computer

systems [2] and many others. Boolean function minimization is a significant

challenge mainly if the input variables are numerous (counting hundreds or

thousands), rendering many minimization approaches impractical, since these

cannot provide minimization using available hardware in considerable, practical

time.

Today, logic design optimization may be classified by various criteria, such as

design characteristics (i.e. combinational logic or sequential logic), the amount of

levels (two-level or multi-level minimization), or the implementation method

(algebraic, table-based or graphic minimization). Some algorithms are based on

using human expertise in finding patterns, thus these are implemented “manually”.

Further approaches are algorithmic – these implement the respective algorithms in

software running on the CPUs and GPGPUs of traditional computers [3] [4] [5].

Another way of classifying optimization is to take the minimality of the solution

into account – in this case, the categories are systematic and heuristic

minimization. Systematic minimization will always find the minimum solution for

the specified minimization criteria. The most famed approaches of systematic

minimization include graphical minimization using Karnaugh maps (KM) and a

tabular method using the Quine-McCluskey (Q-M) algorithm. On the contrary,

heuristic minimization often yields a near-minimal solution, with an advantage: a

cut (often radical) in processing time and resources. Thus, the aim of using

heuristic minimization is to utilize it even in case of Boolean functions having

high amounts of input variables, in case of which systematic minimization would

not be of any practical use. The most famed solutions of heuristic Boolean

function minimization include Espresso – the de-facto industry standard in

Boolean function minimization – and its derivatives, as well as the BOOM and

BOOM-II algorithms, respectively. For a discussion of both systematic and

heuristic minimizations see section 2 herein.

In this paper, the authors focused on the field of systematic, two-level

minimization of single-output Boolean functions – when implementing the

algorithm, instead of using the CPU and/or the GPGPU to write software, they

chose to implement the algorithm in a hardware-accelerated form, using Field

Programmable Gate Array (FPGA) technology. The proposed solution is based on

previous development – in [6], the authors presented a hardware-accelerated

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 27 –

generator of prime implicants for single-output Boolean functions, based on

combinational logic. In this paper, the authors describe an enhancement of the

aforementioned solution, allowing the generation of prime implicants both the

disjunctive (DNF) and conjunctive (CNF) normal form; compared to the previous

version, the solution proposed herein allows the definition of not only of the OFF

and ON sets, but also of the DC (don't care) set. The aim was to create a circuit

that would significantly minimize the prime-implicant-generation time to the order

of ns and/or tens of ns in case of Boolean functions with small amount of input

variables.

The contribution hereof lies in the following:

 Design of a hardware-accelerated implementation of the first step of the

systematic two-level minimization of single-output Boolean functions, based

on a combinational logic module, to generate prime implicants; the proposed

hardware accelerator allows processing of Boolean functions with output

values defined not only by means of OFF and ON sets, but also the DC set.

The structure of the paper is as follows:

Section 2 deals with the related work in the field of systematic and heuristic

Boolean function minimization. Due to the abundance of papers published in this

field, the authors resorted to a selection of the fundamental works.

Section 3 contains a detailed description of the proposed hardware accelerated

Boolean function minimizer. In the introductory part of this section, the authors

describe the encoding of the hardware accelerator's input and output vectors. In

the last part of the section, the authors describe the structure of the hardware

accelerator itself, split into three submodules: the prime-implicant-generation

mode selection module; the prime-implicant-generation module (implemented as a

combinational logic circuit); and the invalid-prime-implicant-exclusion module.

Section 4 summarizes the testing results of the hardware-accelerator (implemented

using a Xilinx Kintex-7 KC-705 Evaluation Kit evaluation board) for various

numbers (2 to 8) of input variables of single-output Boolean functions.

Section 5 contains the conclusions, distilled from the results of the implemented

tests, described in the previous section.

2 Related Work

Due to the large amount of work published in the field of systematic and heuristic

Boolean functions minimization, this section of the paper contains only the

selection of papers that are representing fundamental works related to the solution

designed as the part of this work and presented in this paper.

B. Madoš et al. FPGA HW Accelerator of the First Step of Systematic Two-Level Minimization of
 Single-Output Boolean Function

 – 28 –

Systematic minimization. In 1881, Allan Marquand presented his diagrams,

which allowed the simplification of the graphical presentation of Venn diagrams

for a larger number of variables [7]. In 1951, the Harvard minimizing charts were

presented by Howard H. Aitken, described in detail in [8]. In 1952, Edward

Westbrook Veitch developed a Boolean function minimization method [9], along

with the corresponding diagrams, often called Marquand-Veitch diagrams. This

method was later perfected by Maurice Karnaugh in 1953 [10] – today, it is

known as Karnaugh maps (KM or K-maps). In 1956, Svoboda created graphical

aids for systematic Boolean function minimization [11].

Karnaugh maps, sometimes referred to as Karnaugh-Veitch (KV) maps. These are

not only a graphical notation for Boolean functions, but mainly serve for

minimization purposes. These utilize human expertise in finding patterns within

the graphical representation of the Boolean function depicted as a diagram, instead

of minimizing the particular Boolean function using a computer program. to

represent Boolean functions, Karnaugh-maps use a two-dimensional grid

containing 2𝑛 fields, 𝑛 being the number of input variables. The fields are

organised as a 2𝑘 × 2𝑙 grid, where 𝑘 + 𝑙 = 𝑛 and 𝑘 differs from 𝑙 by at most 1.

Each field of the Karnaugh-map contains information about the particular Boolean

function's output value. A limitation of this method is that visual pattern matching

and the subsequent simplification in K-maps is practical only for a very small

number of input variables, while the limit amount is stated to be 5–6 input

variables. A further drawback is the human factor, which may introduce errors

into the process.

The Quine-McCluskey method, also referred to as the Q–M method, is a tabular

method of systematic Boolean function minimization, which is, in terms of the

achieved results, analogous to the K-map method. It was developed in 1952 by

Willard Quine and Edward McCluskey [12] [13] as a two-step method. In the first

step, the algorithm generates the prime implicants of the Boolean function, while

in the second step, it solves the issue of covering the Boolean function by the

prime implicants. Compared to the K-map method, the advantage of this method

is that it does not rely on the capacity of a human to find patterns, but rather it

introduces an algorithm ready to be implemented in a computer, thus it may be

used to process Boolean functions with significantly more variables. The

systematic approach of this method prevents its practical use in case of high

amounts (i.e. hundreds or thousands) of input variables – this method is time and

resource hungry.

Heuristic minimization. The MINI heuristic minimizer was presented by Hong et

al. in 1974 [14]. It generates a solution without the necessity to generate all prime

implicants of the Boolean function to be minimized. The Espresso logic minimizer

was presented by R. K. Brayton et al. with the goal to minimize logic circuits

using heuristic methods [15]. The Espresso-MV (Multi-valued) method is a

derivative of the Espresso method; it was developed in 1986 by Richard L. Rudell.

Both the heuristic and systematic minimization approaches were described in [16].

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 29 –

The C language source code of the Espresso algorithm is available in [17]. Further

improvements to the Espresso method include the Espresso-Exact and Espresso

Signature methods [18].

The two-level Boolean minimization tool called BOOlean Minimizer (BOOM),

developed by Hlavička and Fišer, is based on the new paradigm of implicant

generation: unlike other minimization methods, generating implicants using the

bottom-up approach, the BOOM method uses a top-down approach. A further

advantage is also in the reduction of the amount of prime implicants. The

proposed algorithm is well suited for Boolean functions with the large number of

variables (up to thousands), when other algorithms are not able to yield results in

reasonable time [19] [20] [21] [22] [23]. The FC-Min Boolean minimizer was

introduced by Fišer and Kubátová in [24]; later, it was combined with the BOOM

algorithm as the BOOM-II Boolean minimizer [25] [26].

3 Proposed HW Accelerator

The hardware accelerator proposed herein uses a combinational logic circuit as its

most important part, aimed at the generation of prime implicants of the Boolean

function. The circuit design is described using the VHDL language. In the phase

of testing the design, its practical implementation was performed using Field

Programmable Gate Array (FPGA) technology.

The aim of this section is to describe the encoding of two binary input vectors –

containing the OFF set and the ON set – and/or the DC set of the single-output

Boolean function. Then, the description of the encoding of the output vector –

representing the prime implicant set of the particular Boolean function – follows.

The last part of this section contains the description of the three modules of the

hardware accelerator itself: the prime-implicant-generation mode selection

module; the prime-implicant-generation module (implemented as a combinational

logic circuit); and the invalid-prime-implicant-exclusion module.

3.1 Boolean Function Truth Table Encoding

The input of the hardware accelerator is the representation of the truth table of the

single-output Boolean function of 𝑛 input variables, as 2𝑛-sized binary vectors.

The size of vectors results from the line-count of the Boolean function truth table.

Each such line of the truth table has a binary code assigned pursuant to the input

variable configuration. If the input variable is in complementary form, 0 is used,

while for variables in true form, 1 is used. This binary code may be transformed to

a decadic equivalent (DE), as shown in Table 1. On its input, the hardware

accelerator accepts a Boolean function output value from the set {0, 1,×}, where ×

is the „don't care” value, i.e. the output value has no importance.

B. Madoš et al. FPGA HW Accelerator of the First Step of Systematic Two-Level Minimization of
 Single-Output Boolean Function

 – 30 –

Table 1

Generation of decadic equivalents (DE) assignment of the respective minterms and maxterms of two

input variable Boolean function

DE Binary code Minterm Maxterm

0 00 𝑥0̅̅ ̅𝑥1̅̅ ̅ 𝑥0 + 𝑥1

1 01 𝑥0̅̅ ̅𝑥1 𝑥0 + 𝑥1̅̅ ̅

2 10 𝑥0𝑥1̅̅ ̅ 𝑥0̅̅ ̅ + 𝑥1

3 11 𝑥0𝑥1 𝑥0̅̅ ̅ + 𝑥1̅̅ ̅

3.1.1 Input Vector Encoding

The hardware accelerator input is encoded using two binary vectors, 𝐴 and 𝑋,

where 𝐴 consists of 2𝑛 bits, 𝐴(2𝑛 − 1: 0)

𝐴 = (𝑎2𝑛−1, 𝑎2𝑛−2, 𝑎2𝑛−3, … , 𝑎2, 𝑎1, 𝑎0) (1)

To ∀𝑎𝑝 ∈ 𝐴 ∶ 𝑝 ∈ < 0; 2𝑛 − 1 > it applies that 𝑎𝑝 ∈ {0,1}

The order of bits in the 𝐴 input binary vector is selected so that the bit in position

𝑝 represents the output value of the Boolean function with a decadic equivalent

equal to 𝑝. If the particular Boolean function output value is set to 1, the

corresponding bit of the 𝐴 input binary vector is set to the same value – 1. If the

particular Boolean function output value having a decadic equivalent 𝑝 is set to 0

or ×, the corresponding bit with the 𝑝 position in the 𝐴 input binary vector is set

to 0.

The 𝑋 vector also consists of 2𝑛 bits: 𝑋(2𝑛 − 1: 0)

𝑋 = (𝑥2𝑛−1, 𝑥2𝑛−2, 𝑥2𝑛−3, … , 𝑥2, 𝑥1, 𝑥0) (2)

To ∀𝑥𝑝 ∈ 𝑋 ∶ 𝑝 ∈ < 0; 2𝑛 − 1 > it applies that 𝑥𝑝 ∈ {0,1}

The order of bits in the 𝑋 input binary vector is selected so that the bit in position

p represents the output value of the Boolean function with a decadic equivalent

equal to 𝑝. If the particular Boolean function output value is set to ×, the

corresponding bit of the 𝑋 input binary vector is set to the value 1. If the particular

Boolean function output value having a decadic equivalent of 𝑝 is set to 0 or 1, the

corresponding bit with the 𝑝 position in the 𝑋 input binary vector is set to 0.

If the truth table of the Boolean function defines outputs only from the {0, 1} set,

only the 𝐴 binary input vector creates input to the hardware accelerator input and

the 𝑋 binary input vector bits have to be set to 0.

3.2 Prime-Implicant-Set Encoding

The output of the hardware accelerator allows us to generate the set of prime

implicants of the particular n input variable single-output Boolean function. The

truth table of this Boolean function, encoded in vectors 𝐴 and 𝑋, acts at the input

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 31 –

of the hardware accelerator. The output of the circuit shows the prime implicants

set for DNF or CNF form, depending on the values of the corresponding control

signals.

The hardware accelerator output is encoded as the 𝑂 output binary vector,

consisting of 3𝑛 + 1 bits: 𝑂(3𝑛: 0)

𝑂 = (𝑜3𝑛, 𝑜3𝑛−1, 𝑜3𝑛−2, … , 𝑜2, 𝑜1, 𝑜0) (3)

To ∀𝑜𝑝 ∈ 𝑂 ∶ 𝑝 ∈ < 0; 3𝑛 > it applies that 𝑜𝑝 ∈ {0,1}

The corresponding bit of the 𝑂 output binary vector at its position 𝑝 in the

aforementioned vector shows whether the prime implicant having the 𝑝 value of

its decadic equivalent is or is not a prime implicant of the particular Boolean

function. If the corresponding bit of the vector is set to 1, it is a prime implicant of

the particular Boolean function. It is not a prime implicant of the particular

Boolean function, this bit is set to 0. The decadic equivalent of 0 and 3𝑛 is

dedicated for the single-output Boolean functions producing a constant output 0

and 1 respectively, as shown in Table 3.

For the remaining decadic equivalents, one may find out the corresponding prime

implicants by converting the specific decadic equivalent to a ternary code of 𝑛

ternary digits (𝑛 is the number of input variables of the particular Boolean

function). Then, each such ternary digit is encoded to the corresponding variable

pursuant to Table 2, i.e. in DNF form, the variable in the prime implicant

description is not used (if the ternary digit is set to 0), the variable is in

complementary form (the digit is a 1), or the variable is in true form (the digit is a

2).

Table 2

Encoding variables in disjunctive normal form (DNF) and conjunctive normal form (CNF), depending

on the digit of ternary equivalent (TE)

Ternary digit DNF CNF

0

1 𝑥�̅� 𝑥𝑖

2 𝑥𝑖 𝑥�̅�

In CNF form, the variable in the prime implicant description is not used (if the

ternary digit is set to 0), the variable is in true form (if the digit is a 1), or the

variable is in complementary form (if the digit is a 2). Assigning the variables to

the respective digits of the ternary equivalent of the particular prime implicant to

encode its description respects the order of the input variables in the truth table of

the Boolean function.

A list of all decadic equivalents, their corresponding ternary equivalents and prime

implicants for the DNF and CNF forms for a two-input Boolean function is

specified in Table 3.

B. Madoš et al. FPGA HW Accelerator of the First Step of Systematic Two-Level Minimization of
 Single-Output Boolean Function

 – 32 –

Table 3

Equivalence of decadic equivalents (DE), ternary equivalents (TE) and prime implicants (PI) for both

the DNF and CNF forms

DE TE DNF PI

description

DNF PI CNF PI

description

CNF PI

0 00 0 + 1

1 01 𝑥1̅̅ ̅ 𝑥1̅̅ ̅ + 𝑥1 𝑥1

2 02 𝑥1 𝑥1 + 𝑥1̅̅ ̅ 𝑥1̅̅ ̅

3 10 𝑥0̅̅ ̅ 𝑥0̅̅ ̅ 𝑥0 + 𝑥0

4 11 𝑥0̅̅ ̅𝑥1̅̅ ̅ 𝑥0̅̅ ̅𝑥1̅̅ ̅ 𝑥0 + 𝑥1 𝑥0 + 𝑥1

5 12 𝑥0̅̅ ̅𝑥1 𝑥0̅̅ ̅𝑥1 𝑥0 + 𝑥1̅̅ ̅ 𝑥0 + 𝑥1̅̅ ̅

6 20 𝑥0 𝑥0 𝑥0̅̅ ̅ + 𝑥0̅̅ ̅

7 21 𝑥0𝑥1̅̅ ̅ 𝑥0𝑥1̅̅ ̅ 𝑥0̅̅ ̅ + 𝑥1 𝑥0̅̅ ̅ + 𝑥1

8 22 𝑥0𝑥1 𝑥0𝑥1 𝑥0̅̅ ̅ + 𝑥1̅̅ ̅ 𝑥0̅̅ ̅ + 𝑥1̅̅ ̅

9 100 1 0

3.3 Proposed Hardware Accelerator Module Design

The prime-implicant-generation module of the hardware accelerator for n variable

single-output Boolean functions consists of 2𝑛 prime-implicant-generation mode

selection modules, the prime-implicant-generation module itself and 3𝑛 + 1

modules to exclude invalid prime implicants.

3.3.1 Prime-Implicant-Generation Mode Selection Module

The prime-implicant-generation mode selection module allows the user to select,

whether to generate prime implicants consisting of the Boolean function outputs,

where the function output is a member of the {0,×} set (for CNF) or the {1,×} set

(for DNF) or the {×} set (to identify invalid prime implicants consisting

exclusively of DC output values). Generation mode selection is possible using the

𝑚0 and 𝑓 control signals, their effects are stated in Table 4.

Table 4

Accepted output values of the Boolean function for different 𝑚0 and 𝑓 control signal settings when

generating prime implicants for CNF, DNF forms and for identifying invalid prime implicants (IPI)

𝒎0 𝒇 Mode Accepted output values

of the Boolean function

0 0 IPI {×}

0 1 IPI {×}

1 0 CNF {0,×}

1 1 DNF {1,×}

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 33 –

If the 𝑓 control signal is set to 1, DNF prime implicants are generated; a 0 setting

of this signal indicates generation of CNF prime applicants. If the 𝑚0 control

signal is set to 0, the accelerator shall generate information only concerning prime

implicants for which the Boolean function output has always an × value (flagged

as invalid prime implicants). If the 𝑚0 control signal is set to 1, the accelerator

shall generate information only concerning prime implicants for which the

Boolean function output is a 1 or an × (for DNF); or a 0 or an × (for CNF). The

output of the OP module is set to 1 if the particular output value of Boolean

function belongs to the accepted set of output values, as specified in Table 4.

For the hardware accelerator of an 𝑛 variable single-output Boolean function the

authors used 2𝑛 of these modules to select the mode of prime implicant

generation. Every pair of 𝑎𝑝 ∈ 𝐴 and 𝑥𝑝 ∈ 𝑋 bits of the accelerator input binary

vectors (where 𝑝 ∈ < 0; 2𝑛 − 1 > represents their position in the vector) is the

input of the corresponding prime-implicant-generation selector module; in Fig. 1,

particular inputs are denoted as the 𝐼𝐴 and 𝐼𝑋. Further inputs of the module

include the 𝑚0 and 𝑓 control signals. The module output, denoted as 𝑂𝑃, is a bit

of the 𝑃(2𝑛 − 1: 0) vector having the 𝑝 position in the vector; this shows whether

the particular Boolean function output shall be included in the prime-implicant-

generation in the particular generation mode (the OP value is set to 1) or it will be

excluded from the generation (if the OP value is set to 0).

Figure 1

Combinational module for the selection of prime implicant generation mode

3.3.2 The Main Prime-Implicant-Generator Module

The input of the prime-implicant-generator module, a combinational logic circuit,

is the vector 𝑃(2𝑛 − 1: 0) – for a description of its computation, please refer to the

previous subsection. The output of the module is the 𝑅(3𝑛: 0) binary output

vector. The module consists of 𝑙 = 𝑛 + 1 layers of NAND gates, representing the

potential prime implicants of the n variable Boolean function. The 𝑙0 gate layer,

containing two NAND gates, determines whether the Boolean function has a

constant output value of 0 or 1. Layers 𝑙1 – 𝑙𝑛 contain gates representing the

respective potential prime implicants (PPI). Particular NAND gate residing in

layer 𝑙𝑦 ∶ 𝑦 ∈ < 1; 𝑛 > represents the prime implicant described using 𝑦 variables.

B. Madoš et al. FPGA HW Accelerator of the First Step of Systematic Two-Level Minimization of
 Single-Output Boolean Function

 – 34 –

The total count of these gates in layer 𝑙𝑦 equals to the number of potential prime

implicants of the particular n variable Boolean function that may be described

using 𝑦 variables.

The gate in layer 𝑙𝑦 receives information from the 𝑃 input vector and from the

𝑙𝑧 ∶ 𝑧 ∈ < 1; 𝑦 − 1 > gates layers, containing gates for the potential prime

implicants described by a number of input variables lower than the particular

prime implicant, specifically from that part of the gates that cover the particular

prime implicant. The output of the gate is set to 1 if the particular potential prime

implicant is not a prime implicant of the particular Boolean function, or, to 0, if

the potential prime implicant is the prime implicant of the particular Boolean

function. Before constructing the 𝑅 output vector, the output signal of each

NAND gate is inverted to ensure that the 𝑅 output vector of the module contains a

bit set to 1 if the particular potential prime implicant is really a prime implicant of

the particular Boolean function.

To allow a potential prime implicant to be a real prime implicant of the particular

Boolean function, three conditions must be met:

 Condition 1: Each bit of vector 𝑃 representing output values of Boolean

function which are relevant for particular prime implicant, must be set to 1.

Meeting this condition may be tested using the information gained from the

𝑃 input vector of the module.

 Condition 2: The Boolean function must not produce a constant value at its

output.

Meeting this condition may be tested using the information generated in the

𝑙0 gate layer.

 Condition 3: The potential prime implicant must not be covered by any other

prime implicant (described with a lower amount of variables).

Meeting this condition may be verified in case of a gate in layer 𝑙𝑦 by

acquiring the information from the respective gates of layers 𝑙𝑧 ∶ 𝑧 < 𝑦.

The schematic representation of the prime-implicant generator module of two-

variable Boolean function is stated in Fig. 2, showing the input of the module as

an input layer and three levels of NAND gates in levels 0 to 2. Layer 0 contains

two gates that indicate whether the Boolean function has a constant output of 0 or

1. Layer 1 contains four gates for the potential prime implicants, interpreted for

the purposes of DNF as �̅�, 𝑎, �̅�, 𝑏. Layer 2 contains four gates for the potential

prime implicants, interpreted for the purposes of DNF as �̅��̅�, �̅�𝑏, 𝑎�̅�, 𝑎𝑏.

The meaning of the respective bits of the module's 𝑅 output vector is analogous to

the meaning of the respective bits of the accelerator's O output vector, as stated in

section 3.2 above.

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 35 –

Figure 2

Gate-level schematic representation of the design of FPGA hardware accelerator module that

determines prime implicants on the output of the module in the form of the 𝑅 output binary vector for a

two-variable Boolean function, represented on input of the module in the form of binary vector 𝑃.

Source: Madoš et al. [6]

B. Madoš et al. FPGA HW Accelerator of the First Step of Systematic Two-Level Minimization of
 Single-Output Boolean Function

 – 36 –

3.3.3 Invalid-Prime-Implicant-Exclusion Module

The invalid-prime-implicant-exclusion module ensures that no prime implicant,

for which the Boolean function output values belong exclusively to the DC set, is

included in the final set of prime implicants of the particular Boolean function.

For an 𝑛 variable Boolean function, 3𝑛+1 modules were used to exclude invalid

prime implicants. For each bit of the output vector 𝑅 of the prime-implicant-

generator module, such invalid-prime-implicant-exclusion module was used. The

corresponding bit of the vector 𝑅 at position p, is assigned to the input of the

specific invalid-prime-implicant-exclusion module at the position 𝑝, brought to

the input denoted as 𝐼𝑅.

Depending on the setting of the 𝑚0 and 𝑚1 control signals, respectively, the bit of

the R output vector, assigned to the 𝐼𝑅 input, is stored in the flip-flop 𝐹𝐷𝐸0 (if

signal 𝑚0 is set to 1) or in the flip-flop 𝐹𝐷𝐸1 (if signal 𝑚1 is set to 1), as stated in

the Fig. 3.

By setting signal 𝑚0 to 1, the circuit will generate information concerning all

prime implicants, i.e. both valid and invalid. The corresponding bit at the 𝐼𝑅 input

will be stored in the flip-flop 𝐹𝐷𝐸0 in this case.

By setting signal 𝑚1 to 1, the circuit will generate information concerning invalid

prime implicants, i.e. those covering the outputs of the Boolean function, in which

the output is solely from the DC set. The corresponding bit at the 𝐼𝑅 input is in

this case stored in the flip-flop 𝐹𝐷𝐸1 and the 1 value of this bit indicates the

invalidity of the prime implicant.

The module output, having the form of the 𝑂𝑥 signal is then set to 1 only if the

value if flip-flop 𝐹𝐷𝐸0 is set to 1, which indicates that the potential prime

implicant belongs to the set of prime implicants of the Boolean function and the

𝐹𝐷𝐸0 flip-flop does not indicate the invalidity of the prime implicant. The 𝑂𝑥

output of the module at position 𝑝 is then forming the corresponding bit of the

accelerator's O output vector, while the position of the bit in this vector is also 𝑝.

Figure 3

Schematic representation of the invalid-prime-implicant-exclusion module

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 37 –

If the Boolean function is defined to have an output values belonging solely to set

{0, 1}, the set of prime implicants of the particular Boolean function may be

acquired in a single step:

Step 1: setting the 𝑚0 control signal to 1, the 𝑚1 control signal to 0 and the 𝑓

control signal to 0 for CNF and to 1 for DNF, respectively.

If the Boolean function is defined to have an output values belonging to set

{0, 1,×}, the set of prime implicants of the particular Boolean function may be

acquired in two steps:

Step 1: setting the 𝑚0 control signal to 1, the 𝑚1 control signal to 0 and the 𝑓

control signal to 0 for CNF and to 1 for DNF, respectively.

Step 2: setting the 𝑚1 control signal to 1 and the 𝑚0 control signal to 0.

With the first step, the accelerator finds out the set of prime implicants of a

particular Boolean function containing valid and also invalid prime implicants

(consisting solely of DC points). Therefore, the second step is executed, which

yields a set of invalid prime implicants of the particular Boolean function,

consisting solely of DC points. After the execution of the second step, the invalid-

prime-implicant-exclusion modules ensure assembly of the output vector,

containing only valid prime implicants of the particular Boolean function.

4 Results

The implementation language of the proposed modules is VHDL. As the target

platform, the authors chose the use a Xilinx KC705 development board, using a

Kintex-7 XC7K325T-2FFG900C series FPGA chip. The KC705 board used for

synthesis has the speed grade -2 and a 2.5V LVDS differential 200 MHz

oscillator. The output frequency could be changed within the range of 10 MHz to

810 MHz. The defined maximum clock speed limits the minimum response time,

i.e. the time defined by the shortest clock period, in which any module

implemented on the chip will work correctly (without violating the time

constraints). With this FPGA chip, this value amounted to 1.23 ns.

The circuit synthesis was performed for Boolean functions with 2-8 input

variables. A set of 7 top modules was created – these were implemented in VHDL

using the Xilinx Vivado Design Suite HLx Edition 2016.2 development tool. The

aim of testing the proposed module was to find out the hardware resource

requirements of the synthesis and to measure the time required to generate the

prime implicants.

Then, the authors compared the hardware resource requirements of the respective

implementations of the particular top modules. The aim of the authors was to

check if their expectations related to the resource consumption growth rate and

B. Madoš et al. FPGA HW Accelerator of the First Step of Systematic Two-Level Minimization of
 Single-Output Boolean Function

 – 38 –

response time growth rate were realistic. They expected that the resource

consumption growth rate and time growth rate would directly correlate with the

size of the input vectors defining the potential prime implicants of the Boolean

function. Therefore, the authors expected the resource consumption growth rate of

the implementation to be close to 3, since the number of potential prime

implicants triples by adding a further input variable to the Boolean function and

the response time growth rate to be much under 2. The time required to calculate

the prime implicants using the particular modules was set using the minimum

clock period allowing correct operation of the particular module. The authors also

monitored the development of this characteristic in comparison with the input and

output vector size.

As it has been stated in the previous sections, the module design was based on

modules implemented as combinational logic circuits without any clock signal.

Since specifying the minimum clock period using the Xilinx Vivado Design Suite

HLx Edition 2016.2 tool requires using a flip-flop on both the input and the output

side of the circuit, every top module had to be extended by a clock input. For

testing purposes, the authors used the default circuit synthesis strategy, Vivado

Synthesis Defaults 2016.

A summary of the implementation result may be found in the tables below. Figure

4 and Table 5 show the lookup table (LUT) and flip-flop consumption for the

particular modules. The synthesis results confirmed a sub-linear increase in the

number of consumed LUT resources, even though this was due to the increase of

the AND/NAND gate input count (see also Figure 2), representing the prime

implicants, the growth rate of the consumed LUT resources exceeds 3. As it is

evident from Figure 4, there is a slight oscillation in the growth factor of the

consumed LUT resources. The LUT resource consumption growth rate oscillation

is caused by the Vivado synthesis tool, which uses an LUT-optimization technique

to combine 3-input and 4-input LUTs to 5 and 6-input LUTs, implemented in

Kintex-7 FPGA chips. Table 6 and the Figure 5 show a timing report of

implemented modules. The authors focus their attention on the data path delay.

The data path delay is the delay measured on the data path from the source to the

destination. It indicates the module speed; in other words, it defines the response

time. The results show that growth rate of the response time is much lower than 2,

as was expected.

However, it is worth noting that the particular times define the minimum clock

period on condition of implementing the computation for Boolean functions

having an output from the set {0, 1} solely; in this case, the computation time is

the one stated in the table 5. Of the computation is implemented for Boolean

functions with the output values from the set {0, 1,×}, two computation steps have

to be performed, as it has been stated in section 3 above and so the response time

doubles.

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 39 –

Figure 4

Resource consumption growth rate

Table 5

Summary of resource utilization and timing

Variable

count

Resource Utilization Timing Summary

LUT as

Logic

Register as Flip

Flop

Data Path Delay

(Max Delay

Path)

[ns]

Logic

Levels

2 20 28 2.818 2

3 74 72 4.396 3

4 272 196 7.77 6

5 962 552 11.336 8

6 3453 1588 14.328 10

7 15960 4632 21.88 27

8 67080 13636 30.052 39

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

2 3 4 5 6 7 8

fa
ct

o
r

of input variables

Resource growth rate
{ON, DC}

LUT as Logic Register as Flip Flop

B. Madoš et al. FPGA HW Accelerator of the First Step of Systematic Two-Level Minimization of
 Single-Output Boolean Function

 – 40 –

Figure 5

Timing summary

Conclusions

In this paper, the authors focused on the issue of accelerating Boolean function

minimization. Systematic minimization, such as, the visual minimization method

using Karnaugh map or the Quine-McCluskey algorithm implemented as a

program, are two-step methods. The first step is the systematic generation of all

prime implicants of a particular Boolean function. The second step is finding

coverage of a particular Boolean function using the least possible prime

implicants.

The work herein, is based on the previous development in this field [6], that

proposed a combination logic circuit allowing the execution of the first step of

systematic Boolean function minimization, i.e. allowing the generation of prime

implicants of Boolean functions, on condition the particular function had fully

defined output values. Defining DC output of the Boolean function was

impossible. The solution proposed in this paper is an enhancement of the previous

work, in which the possibility to select the mode of prime-implicant-generation

for the DNF or CNF forms was added, along with the possibility to define DC

outputs of the Boolean function. To generate prime implicants, the proposed

hardware accelerator uses combinational logic; if the output values of the Boolean

function belong only to the ON and OFF sets, it allows the generation of the prime

implicant set of a particular Boolean function in a single step. If the output values

of the particular Boolean function belong to the ON, OFF and DC sets, prime

implicants will be generated in two steps. First, the prime implicants are

0,000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

0

5

10

15

20

25

30

35

40

45

D
at

a
P

at
h

 D
el

ay
 (

M
ax

 D
el

ay
 P

at
h

)

[n
s]

Lo
gi

c
le

ve
ls

Timing vs Logic levels
{ON, DC}

Logic levels Data Path Delay (Max Delay Path)

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 41 –

generated, including those for which the Boolean function has only DC output

values, i.e. they don't belong to the set of valid prime implicants of the particular

Boolean function. In the second step, these invalid prime implicants are identified

and then excluded from the set of prime implicants. The output of the proposed

hardware accelerator is then a vector concerning valid prime implicants of the

particular Boolean function.

The aim of this paper was to create a solution with exceptionally low time

requirements, to generate the prime implicants of the particular Boolean function,

which was achieved when the set of prime implicants could be generate for the

tested Boolean functions in a matter of nanoseconds to tens of nanoseconds, the

authors consider to be the main advantage of the proposed solution. Another

advantage is that the time complexity depends only on the number of input

variables of the Boolean functions and for the particular variable count, it is

constant, regardless of the cardinality of the ON, OFF and DC sets. These

advantages were achieved at the cost of spatial complexity of the proposed

solution, thus, the implementation of the circuit is resource intensive, which is a

disadvantage of the solution. The test of the proposed hardware accelerator, with

its implementation for various amounts of input variables of the Boolean function,

was performed using the Xilinx Kintex-7 FPGA KC705 Evaluation Kit evaluation

board.

In future research, the authors shall focus on the possibility of decreasing the

spatial complexity of the proposed solution, while maintaining the exceptionally

low time requirements and allow the implementation of a further level of

systematic minimization, i.e. the solution of Boolean function coverage using a

FPGA hardware accelerator.

Acknowledgements

This research was supported by the Slovak Research and Development Agency,

project number APVV-18-0214 and by KEGA Agency of the Ministry of

Education, Science, Research and Sport of the Slovak Republic under Grant No.

003TUKE-4/2017 Implementation of Modern Methods and Education Forms in

the Area of Security of Information and Communication Technologies towards

Requirements of Labor Market.

References

[1] A. Zhaparova, D. Titov, A. Y. Balkanov, G. Gyorok, G. "Study of the

Effectiveness of Switching-on LED Illumination Devices and the Use of

Low Voltage System in Lighting", Acta Polytechnica Hungarica, Óbuda

University, Budapest, Hungary, Vol. 12, Issue 5, pp. 71-80, 2015, ISSN:

1785-8860

[2] A. Baláž and R. Hlinka, "Forensic analysis of compromised systems," 2012

IEEE 10
th
 International Conference on Emerging eLearning Technologies

and Applications (ICETA), Stara Lesna, 2012, pp. 27-30

B. Madoš et al. FPGA HW Accelerator of the First Step of Systematic Two-Level Minimization of
 Single-Output Boolean Function

 – 42 –

[3] V. Siládi and T. Filo, „Quine-McCluskey algorithm on GPGPU“, 3
rd

 World

Conference on Innovation and Computer Science (INSODE-2013) April

26-29, 2013, Antalya, Turkey, pp. 815-820, DOI: 10.13140/2.1.2113.1522

[4] V. Siládi, M. Povinsky, M. Povinsky, Ľ. Trajtel and M. Satymbekov,

„Adapted parallel quine-McCluskey algorithm using GPGPU“, 2017 IEEE

14
th

 International Scientific Conference on Informatics, November 14-16,

2017, Poprad, Slovakia, DOI: 10.1109/INFORMATICS.2017.8327269

[5] I. Savran and J. D. Bakos, „GPU Acceleration of Near-Minimal Logic

Minimization“,Symposium on Application Accelerators in High

Performance Computing, 2010

[6] B. Madoš, Z. Bilanová, E. Chovancová and N. Ádám, “Field

Programmable Gate Array Hardware Accelerator of Prime Implicants

Generation for Single-Output Boolean Functions Minimization”, ICETA

2019 – 17
th

 International Conference on Emerging eLearning Technologies

and Applications, November 21-22, 2019, The High Tatras, Slovakia

[7] Marquand, “XXXIII: On Logical Diagrams for n terms”, The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 5.

12 (75), pp. 266-270, doi:10.1080/14786448108627104

[8] H. H. Aitken, “Synthesis of electronic computing and control circuits”,

Harward University Press, Cambridge, Massachusetts, 1951, p. 294

[9] E. W. Veitch, “A Chart Method for Simplifying Truth Functions”,

Proceedings of the 1952 ACM Annual Meeting (Pittsburgh, Pennsylvania,

USA) New York, USA: Association for Computing Machinery (ACM), pp.

127-133, doi:10.1145/609784.609801

[10] M. Karnaugh, “The Map Method for Synthesis of Combinational Logic

Circuits”, Transactions of the American Institute of Electrical Engineers,

Part I: Communication and Electronics. 72 (5), 1953, pp. 593-599,

doi:10.1109/TCE.1953.6371932

[11] A. Svoboda, „Graficko-mechanické pomůcky užívané při analyse a

synthese kontaktových obvodů” [Utilization of graphical-mechanical aids

for the analysis and synthesis of contact circuits]. Stroje na zpracování

informací [Symphosium IV on information processing machines] (in

Czech) IV. Prague: Czechoslovak Academy of Sciences, Research Institute

of Mathematical Machines. pp. 9-21

[12] M. V. Quine, “The Problem of Simplifying Truth Functions”, Amer. Math.

Monthly, Vol. 59, 1952, No. 8, pp. 521-531

[13] E. J. McCluskey, “Minimization of Boolean functions”, The Bell System

Technical Journal, 35, No. 5, Nov. 1956, pp. 1417-1444

[14] S. J. Hong, R. G. Cain and D. L. Ostapko, “MINI: A heuristic approach for

logic minimization”, IBM Journal of Res. & Dev., Sept. 1974, pp. 443-458

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 43 –

[15] R. K. Brayton, G. D. Hachtel, C. T. McMullen and A. L. Sangiovanni-

Vincentelli, “Logic Minimization Algorithms for VLSI Synthesis” (9
th

printing 2000, 1
st
 ed.). Kluwer Academic Publishers. ISBN 0-89838-164-9

[16] R. L. Rudell, “Multiple-Valued Logic Minimization for PLA Synthesis”,

Memorandum No. UCB/ERL M86-65. 5
th

 June 1986, Berkeley, p. 140

[17] Espresso source code, University of California, Berkeley,

https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/

[18] P. McGeer, J. V. Sanghavi, R. K. Brayton and A. L. Sangiovanni-

Vincentelli, “ESPRESSO-SIGNATURE: A new exact minimizer for logic

functions”, Proc. DAC’93, 1996, pp. 432-440

[19] P. Fišer and J. Hlavička, BOOM, “A Heuristic Boolean Minimizer”,

Computing and Informatics. Vol. 22, pp. 19-51, 25 June 2003, ISSN: 2585-

8807

[20] P. Fišer and J. Hlavička, „Efficient Minimization Method for Incompletely

Defined Boolean Functions”, Proceedings of the 4
th

 International Workshop

on Boolean Problems, University of Mining and Technology, Freiberg,

Germany), IWSBP 4, September 21-22, 2000, pp. 91-98, ISBN: 3-86012-

124-3

[21] J. Hlavička and P. Fišer, A Heuristic Method of Two-Level Logic

Synthesis. Proceedings of The 5
th

 World Multiconference on Systemics,

Cybernetics and Informatics ISAS-SCI’2001, Orlando, Florida (USA),

July, 22-25, 2001, Vol. XII, pp. 283-288, ISBN 980-07-7541-2

[22] P. Fišer and J. Hlavička, “On the Use of Mutations in Boolean

Minimization”, Proceedings of the Euromicro Symposium on Digital

Systems Design, Warsaw, Sep. 4-6, 01, pp. 300-307

[23] J. Hlavička and P. Fišer, BOOM — a Heuristic Boolean Minimizer.

Proceedings of the 2001 IEEE/ACM International Conference on

Computer-Aided Design, ICCAD 2001, San Jose, CA, USA, November 4-

8, 2001, IEEE Computer Society 2001, pp. 439-442, ISBN 0-7803-7249-2

[24] P. Fišer and H. Kubátová, “Boolean Minimizer FC-Min: Coverage Finding

Process”, Proc. 30
th

 Euromicro Symposium on Digital Systems Design

(DSD'04), Rennes, 31.8.-3.9.04, pp. 152-159

[25] P. Fišer and H. Kubátová, Two-Level Boolean Minimizer BOOM-II, Proc.

6th International Workshop on Boolean Problems (IWSBP'04), Freiberg,

Germany, 23-24.9.2004, pp. 221-228

[26] P. Fišer and H. Kubátová, Flexible Two-Level Boolean Minimizer BOOM

II and Its Applications, Proc. 9
th

 Euromicro Conference on Digital Systems

Design (DSD'06), Cavtat, (Croatia), 30.8.–1.9.2006, pp. 369-376

