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Abstract: Enterprise data storage is usually designed to operate as a highly available 
system, which needs continuous monitoring and diagnosing of a system state. However, 
applying the traditional approach to administration tasks with manual analysis of event log 
files is infeasible due to the complexity of such systems. Multiple levels of monitoring and 
the heterogeneous nature of diagnostic data require an autonomous solution that provides 
a combination of model-based, knowledge-based and data-based approaches. An ontology-
based diagnostic model, that integrates an expert knowledge of diagnostic parameters, 
typical storage configurations, and common failure modes, can be considered a promising 
solution for this task. The implementation goal for such an autonomous diagnostic 
approach would be not to substitute, but to complement existing diagnostic infrastructure. 
Hence, software and system event log files can be viewed as additional diagnostic data to 
be analyzed. This paper presents a new approach to event log analysis, which is supported 
by the ontology-based diagnostic model: structure of supporting ontology classes, text 
preparation algorithm, key implementation points, and assessments of the data mining 
algorithm suitability for the task. 
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1 Introduction 

Companies, which use data storage systems for business-sensitive data, require 
seamless service delivery and have zero tolerance for data loss, loss of service, 
and performance degradation [1]. A reason for a data storage system failure can be 
a hardware component fault, software error, or misconfiguration. As a result, a 
data storage system usually employs a combination of redundancy techniques and 
implements a health and fault management strategy to detect and diagnose 
developing issues and provide access to the data in presence of a possible failure 
[2]. 
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A typical configuration of an enterprise data storage system includes several 
enclosures with drives to store data, a cluster of storage controllers to manage user 
requests and perform service functions, and network infrastructure to connect 
users, storage controllers and drives [3]. To provide the necessary diagnostic data, 
continuous monitoring must be performed at all levels of a data storage system. 
The lowest level of monitoring gets diagnostic data from terminal sources with no 
data regarding causes of reported states: built-in self-test functions or embedded 
sensors data. Some examples of such data are S.M.A.R.T. or SCSI diagnostic data 
for disks, signal quality for a network transceiver, fan speed, and temperature 
readings. For the next, system-level, monitoring, a hierarchy of distributed tools 
gathers monitoring data across hardware and software components of the lowest 
level to get a full operational picture of the system: components health reports, 
ambient parameters, network performance readings, as well as metrics of storage 
and computing nodes workload, performance, capacity, and power consumption. 
Finally, a file or block-level performs service-level monitoring across the 
corresponding physical, virtual and, if present, cloud components. 

Such health and performance monitoring is usually executed by a combination of 
vendor-specific and third-party software. Monitoring tools gather data by polling 
status data and recording alarms, errors, and miscellaneous messages. Machine-
learning techniques for anomaly detection can provide additional data for analysis. 
Further diagnostic tasks include error and event correlation, Root Cause Analysis 
(RCA), and deciding on necessary management procedures. Because of the 
heterogeneous nature of a diagnostic data and because these diagnostic tasks 
require a detailed understanding of a system architecture, field experience, and 
best practices knowledge, diagnostics are primarily performed by an administrator 
[3]. As a result, monitoring data are often stored in the form of human-readable 
log files. Section 2 gives a review of current monitoring and diagnostic practices. 

The embedded ontological approach is a way towards automation of the 
diagnostic procedures in a data storage system. Applying autonomous monitoring 
and embedded diagnostics as part of a self-management strategy for a storage 
processor results in a faster real-time fault detection as opposed to reactive 
administrator intervention. When using the presented ontological approach, a 
hybrid diagnostic model of a particular system is created, including an 
unstructured heterogeneous expert knowledge in a formalized form, an explicit 
white-box like reliability model of the data storage system and a black-box-like 
model in the form of pre-trained machine learning algorithms. Section 3 contains 
the key details regarding the implementation of the ontological approach. Section 
4 contains the details regarding the application of the approach with the traditional 
event log data. 

The scientific contribution of the presented research is the ontological approach 
that allows to create a sophisticated, but flexible and easily upgradable diagnostic 
solutions for data storage systems despite a wide range of possible faults of 
varying origin and importance. This paper extends the work originally presented 
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in the 17th IEEE International Symposium on Intelligent Systems and Informatics 
[4] and aims to provide a thorough description of the suggested ontological 
approach, methods to define symptoms, and its application in case of event log 
files as monitoring data. It provides results and recommendations based on 
practical evaluation of the approach for a medium-sized enterprise data storage 
system. 

2 Related Work 

2.1 Methods of Data Analysis for Data Storage Diagnostics 

Identifying occurring or emerging problems in the form of an event or 
performance deviation is the first step of diagnosing, which needs the details of 
logical or physical entities of a system. Storage resource management tools [5] 
provide an administrator of a data storage system with necessary remote 
monitoring and diagnosis services: dashboarding, thresholding, and custom policy 
configuration [6]. Some tools additionally perform data-driven anomaly detection 
[7-9]. 

The next step is RCA to diagnose the cause of the detected problem, which allows 
deciding on further management actions. One way to perform RCA is to manually 
trace down the history of events in error and configuration log files. A monitoring 
tool can assist in this task by mapping the detected problem to the network 
topology, searching for event correlations, and showing the related resources. 
However, for networks alone, RCA is a challenging task [10], and adding hosts, 
power supply and storage devices to the systems only adds to its complexity, 
resulting in hundreds of event types that demand administrator attention. Hence, 
manual RCA becomes impractical. 

An example of automated RCA is IPASS algorithm for Storage Area Networks 
(SAN) [11], which reconstructs I/O paths and performs an informed search for the 
root cause of a performance problem. IPASS requires a graph representation of a 
SAN, which could not be reused as a diagnostic model for another SAN or other 
data storage system. Another limitation is that IPASS uses only performance 
metrics and does not account for the health or capacity metrics of the network 
nodes. 

Another example is RCA implemented for IT environments in eG Enterprise [12]. 
This RCA algorithm discovers dependencies and connections between system 
components with corresponding health metrics, then creates pairs of relational 
maps and dataflow graphs to describe them and searches for correlations among 
connected or dependent problematic components. This approach has a visibility 



O. Mamoutova et al. Ontological Approach to Automated Analysis of Enterprise Data Storage Systems Log Files 

 – 30 –

limitation as it operates at the application level and does not take into account the 
internal structure of the devices, which limits its insight into problems. 

The new approach, presented in this paper, aims to solve the problem of automatic 
RCA by implementing an embedded service that runs on a storage processor. Such 
embedded diagnostic leverages visibility of internal organization of a data storage 
system and allows a storage processor to perform real-time diagnosis and self-
management. Furthermore, the new approach uses an ontology to solve the 
problem of constructing a diagnostic model for arbitrary data storage systems with 
various redundancy schemes and types of monitoring data and also to introduce 
heterogeneous expert knowledge into the model. 

2.2 Ontologies for Diagnostics 

In computer science, ontology is a type of knowledge representation model that is 
able to formally specify a shared knowledge in a certain subject area. Concepts, 
objects, and relations between them can be described by a hierarchy of classes and 
individuals, their attributes, and object and data properties [13]. 

Ontologies are widely used in the field of technical diagnostics. They provide a 
unified terminology between communicating distributed diagnostic agents [14], 
replace a standard way to describe configurations of industrial equipment [15], 
and describe communicating components in the system [16]. Another popular 
approach is to augment diagnostic models with ontologies to verify sensor data 
[16-18]. 

There are approaches, in which an ontology serves as a core of a diagnostic 
model. However, they are designed for other knowledge domains: mainly the 
automotive domain [19-21], but also for steam turbines [22] and ventilation 
systems [23] – and are not applicable for data storage system diagnosis.             
For example, Saeed et al. [24] describe a general ontological approach to the 
active diagnosis of sensors and actuators in embedded systems. 

Schoenfisch et al. [25] proposed to perform RCA for IT infrastructures by 
reasoning over a Markov logic network, obtained from an ontology that models a 
system being diagnosed. The ontology defines types of components and possible 
relations between them, including a dependency graph. However, the ontology 
includes the information only regarding the potential risks for the components, 
therefore, it cannot be used for fault detection purposes. Moreover, the approach is 
centered around a user, who constructs a model and performs RCA, which limits 
its applicability for autonomous embedded diagnosis. 

Similarly, to work by Dendani et al. [26], the presented approach resembles a 
knowledge-based system within a case-based reasoning methodology [27], 
namely, its case representation and case matching and retrieval aspects. A new 
ontology at the core of the presented approach aims to support all steps of 
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diagnosis for a data storage system: monitoring, fault detection, RCA, and 
deciding on management actions. 

2.3 Software Logs as a Source of Diagnostic Data 

A typical enterprise data storage system contains multiple server-based nodes, 
such as storage controllers, fabric controllers, and other components with a 
sophisticated software ecosystem on top of these hardware components.             
The software includes operation systems, security and authentication services, 
data managing services, clustering services, hardware monitoring, and 
management services. Most of them provide some kind of logging features and, as 
a result, a typical data storage system generates large volumes of different 
software logs. 

According to their source type, software logs can be classified [28, 29] into event 
logs, application logs, service logs, and system logs (or into operation system logs, 
service logs, and application logs as in [30]). System and event logs, such as 
“dmesg”, “faillog” and “messages”, are the most obvious sources of diagnostic 
data, but other types of logs contain useful information as well. 

Although the aforementioned logs can be exceptionally important as a source of 
knowledge about the system’s health, there are some difficulties that make them 
hard to use in enterprise products. Perhaps the main issue, as stated by Zhu [31], is 
an excessive amount of details in software logs: a typical application log contains 
a lot of data not related to any particular issue or error. Because of that, during the 
process of identifying the root cause of a fault, administration staff is forced to 
manually analyze hundreds of megabytes (or even gigabytes) of event logs, which 
makes such a procedure extremely time-consuming. 

A possible solution to this problem is automated log mining. The most common 
approach to automated log analysis relies on the interpretation of a log as a 
structured chain of consecutive events and on log template extraction (see Pande 
et al. [32], He et al. [33], and Hamooni et al. [34]). These methods usually require 
some a priori knowledge about the log structure, log message’s structure, reasons, 
and sources of different message types. Hence, some degree of manual analysis of 
each log type, used as a source of diagnostic data, is still needed. 

Another possible approach, presented for example by Bertero et al. [35], handles a 
software log as raw text data, which can be analyzed using natural language 
processing methods. As a result, each log type can be used as a source of 
diagnostic data without prior study. Because of that, although these methods 
provide less accurate results compared to the methods, based on a log structure 
analysis, they are more preferable in case of an implementation coupled with an 
ontological diagnostic model. 
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3 Ontological Approach to Data Storage System 
Diagnostics 

3.1 Ontology of Data Storage System Health 

A set of root disjoint classes and a set of property types as an ontology schema are 
the basis for the presented diagnostic approach. Each root class has a tree of 
subclasses that represents related concepts in the data storage reliability domain: 
for example, subclasses from the Parameter tree are the names of known types of 
monitoring data as diagnostic parameters, subclasses from the SystemFault tree 
are the names of known types of system events. Object properties describe 
relationships between particular concepts: for example, a relationship 
may_lead_to between two subclasses from the ComponentFault indicates that one 
particular type of fault is known to lead to another type of fault. Figure 1 shows all 
root classes of the schema and types of object properties that can be used to 
describe relationships between pairs of subclasses. Data and annotation properties 
provide specific characteristics of separate concepts to support further 
implementation of diagnostic procedures. 

The target users of the ontology are developers of the diagnostic system, who can 
be considered experts in the field. They may extend existing core ontology by 
adding subclasses and object and data properties to describe specific knowledge of 
data storage systems. Then, in order to represent a hierarchical model for a data 
storage system being diagnosed, that is declared by a StorageSystem individual, 
they should create individuals of subclasses from Component and 
StorageSubsystem trees connected by consists_of object properties (see Fig. 1). 

 

Figure 1 

Schema of data storage health ontology 
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A particular knowledge base derived from this schema should cover the following 
competencies: 

 system configuration competency: what is the current configuration of the data 
storage system and what are the names of its components and subsystems 
(consists_of object properties); 

 symptom competency: which monitoring data may be available and how to 
identify faults based on the monitoring data (shows_in_parameter object 
properties, also data and annotation properties for subclasses from Parameter 
and ComponentFault); 

 component operational status competency: how to identify a component's level 
of performance based on the detected faults (if_fatal_manifests_in and 
if_warning_manifests_in object properties); 

 subsystem reliability function competency: how a subsystem's operational 
status depends on its components' statuses (strongly_depends_on, 
majorly_depends_on, and depends_with_ecc_on object properties); 

 root cause competency: what may have caused the fault and which system-
level events are caused by the detected faults (may_lead_to object properties, 
also if_warning_causes and if_failed_causes object properties); 

 system health competency: what is the severity level of a system-level event 
(interprets_as object properties); 

 management competency (optional): which fault containment procedures can 
be recommended for the detected faults (can_be_solved_by_or_with object 
properties); 

 source information competency (optional): what are the synonyms and 
translations of specific terms and which sources of information can be 
referenced (various annotation and data properties). 

Besides the support of diagnostics, this ontology can also be used for fault 
injection during system reliability validation and for a preliminary reliability 
evaluation at early design stages. 

The verification plan for the ontology includes formal coherency and consistency 
check, checks on compliance with common ontology design rules (with OntOlogy 
Pitfall Scanner!1), unit tests, and crowd-sourcing validation. Custom unit tests 
capture the following requirement: for every individual associated with the current 
system configuration, the ontology has to have a full path of related object 
properties to cover all the ontology competencies. Otherwise, a diagnostic model 
of the system is not complete. On the other hand, if ontology contains a full path 
for some concept, like a component type or a diagnostic parameter, but the fault 

                                                           
1  Can be found at http://oops.linkeddata.es/ 
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and health management architecture does not include a corresponding entity, a 
review of that architecture may be initiated. 

The ontology is implemented in Protégé software [36], which is the most often 
used ontology-editing tool for scientific and academic projects. Currently, the core 
knowledge base in the form of ontology contains around 2300 axioms and over 
500 classes to describe reliability aspects of a data storage system with domain-
specific standards, articles, application notes, and in-house expert knowledge as 
sources of information. The collection of classes includes various components 
(storage, network, and processing devices, software services), subsystems (storage 
pool and volume, cluster, network, and other elements of control and data paths), 
faults (faults by component type, risk factors as environmental factors, human 
errors or non-monitorable component faults and system faults by subsystem type), 
extensive set of monitoring parameters (including SMART and SCSI log 
parameters for disks and typical network interface parameters) and fault 
management solutions (primarily for network-related faults) 2. 

3.2 Knowledge Base Implementation 

The recommended approach to implement a particular diagnostic system is to 
convert a knowledge base from a human-friendly RDF/XML format of an 
ontology to the N-Quads format of a graph database, which is more appropriate 
for further machine interpretation. The alternative currently used approaches 
employ Java frameworks and have limited applicability in the case of embedded 
implementation. A graph database of choice would be Dgraph (v1.1): compared 
with alternatives it has an outstanding performance level, is open-source with 
Apache Public License 2.0, uses Go as a native language and implements 
GraphQL+– query language3. 

Figure 2 shows the overview of the presented approach. Experts use Protégé as an 
ontology editor to update the data storage health ontology. Further knowledge 
manipulations are supposed to be executed by services embedded in a storage 
controller of a data storage system: custom reporting service provides a system 
configuration and current monitoring data; a knowledge base builder service 
converts an ontology to a graph database and supplements it with a system 
configuration data; and diagnostic service performs the necessary queries to a 
graph database in order to execute a diagnostic algorithm. Obtained fault detection 
results and additional interpretation information should be forwarded by a storage 
processor to an administrator of the system. 

                                                           
2  Can be found at https://github.com/Mamoutova/data-storage-diagnostic. 
3  Documentation on GraphQL+– can be found at https://docs.dgraph.io/query-language. 
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Figure 2 

Key elements of the ontological approach to data storage fault diagnosis 
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   <owl:someValuesFrom 
rdf:resource="urn:#BadHealth"/> 
</owl:Restriction> </rdfs:subClassOf> </owl:Class> 

N-Quads 
<urn:#Component><urn:#if_fatal_manifests_in><urn:#Bad
Health>. 

This simplified schema of a graph database allows streamlining the further 
implementation of a diagnostic algorithm. Table 2 shows an example of a query to 
the ontology and a corresponding query to the graph database: both queries search 
for the name of a system event resulting from the transition of a storage pool to 
the health level “warning”. 

Table 2 

Queries to knowledge base in the form of ontology (SPARQL language)  

and in the form of graph database (GraphQL+–) 

Query language Query example 

SPARQL 
(ontology) 

SELECT ?event 
WHERE{ 
  ?entity rdfs:label "StoragePool_id" . 
  ?entity rdfs:subClassOf ?aux . 
  ?aux owl:onProperty ?property . 
  ?property rdfs:label "if_warning_causes" . 
  ?aux owl:someValuesFrom ? event. } 

GraphQL+– 
(graph database)

status (func: uid(StoragePool_uid)) { 
  causes 
  @facets(eq(rank, if_warning_causes)) { 
    name } 

Besides simplified queries, this transition from the ontology format to the graph 
database format allows accelerated machine processing of queries to the 
knowledge base due to better inherent data indexing. As a result, higher 
performance of the diagnostic algorithm enables its easier real-time 
implementation in presence of large amounts of monitoring data. 

3.3 Diagnostic Algorithm 

The proposed diagnostic algorithm has a modular structure: it uses component 
operational status and symptom competencies of the ontology to evaluate a 
component state based on current monitoring data; then it uses system 
configuration, subsystem reliability function, and root cause competencies to find 
relevant subsystems and evaluate their states; finally, it uses system health 
competency to report overall health of a data storage system. Thus, a particular 
diagnostic procedure can be reconfigured by choosing an appropriate trigger and 
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order of the function execution: by monitoring changes in diagnostic parameters 
with a bottom-up approach, or by a massive periodic status check of all 
subsystems and components with a top-down approach. 

The necessary preparation step for the diagnostic algorithm includes the 
actualization of a system configuration followed by ontology verification. Further 
execution of the algorithm can be performed by a storage processor in a real-time 
manner. 

For a bottom-up approach, a change in monitoring data of a component triggers 
algorithm execution. The fault diagnosis algorithm looks like the following, in 
which every step can be implemented with a corresponding GraphQL+– query: 

1) Identify the type of the component and all parent component types. 
2) Search for component faults associated with the tree of component types. 
3) Search for the fault symptoms. 
4) Check whether the current monitoring data confirm any of the symptoms. 
5) Evaluate the component health state. 
6) Recursively search through the system configuration for the subsystems that 
include the component and other subsystems that include the found 
subsystems. For every found subsystem reconstruct its reliability function and 
evaluate its health state. 
8) Identify the names of the system events corresponding to the tuple of 
subsystem health levels. 
9) Interpret the tuple of system events in terms of the overall data storage 
system health. 
10) Search for the associated faults and risk factors for the tuple of detected 
component faults and system events and search for the corresponding 
recommended fault containment procedures. 

For example, suppose that one of the disks in a system reports an increasing 
number of corrected errors while having over a year of accumulated power-on 
hours, which also shows in background scan results. According to the expert 
knowledge, this indicates an expected degradation of the disk media, which can be 
interpreted as a warning state of the disk (see Fig. 3). Suppose that the disk is in a 
storage pool with a 10+2 error correction scheme. When two disks get a warning 
state, the state of the pool becomes vulnerable. Hence, the states of other storage 
pools that include this pool and the state of the whole data path become vulnerable 
as well. 
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Figure 3 

Segment of the ontology of data storage system health regarding health of a storage pool 

3.4 Three Types of Symptom Definition 

The key to successful fault detection is a thorough description of fault symptoms 
together with continuous monitoring of corresponding diagnostic parameters.      
To cover the widest spectrum of symptoms the ontological approach provides 
several methods to define a symptom: the simple threshold-based method, the 
complex expression-based method, and the method with external procedures. 

The simple threshold-based method can be used, when a monitoring parameter has 
a fixed range of normal values and unambiguously gives evidence of a fault.        
A typical example would be a fan failure, which manifests in a zero fan speed. 
This simple method of symptom definition utilizes data properties of ontology: 
core ontology schema includes data properties is_normal_above, 
is_normal_below, and is_normal_when to be used with subclasses from 
Parameter. If a symptom of a fault includes several parameters, values of all 
parameters have to be abnormal to evidence a fault. 

This threshold-based method has several obvious limitations. A data property can 
define normal values of a parameter only with a simple threshold or as a single 
value, but cannot be used in a straightforward manner if a range of normal values 
is a bounded interval or a tuple of values. Moreover, if one parameter has different 
ranges of normal values for different symptoms, has different significance for 
different symptoms or a fault manifests in different combinations of parameters’ 
values, this method also fails. 
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The complex expression-based method of symptom definition overcomes all these 
limitations. An annotation property has_symptom_description for a subclass from 
ComponentFault can store an arbitrary expression to be interpreted in addition to 
shows_in_parameter object properties. In general, such an expression can take 
any form as long as it unambiguously describes a symptom. shows_in_parameter 
object properties although redundant for the fault identification task can still be 
used to identify, which parameters should be included in a set of monitored data. 

For example, a disk is a component type, whose faults require this expression-
based method of symptom definition. Disks perform complex self-diagnosing and 
report results that demand further analysis. Some of the complex symptoms (based 
on a report on failure trends by Pinheiro et al. [37]) are shown in Table 3. 

When a symptom function is too complex to be expressed in an annotation 
property, a knowledge base can provide a link to an external procedure.           
This method with external procedures can also be used, when a fault manifests in 
some anomaly in the monitoring data and cannot be associated with immediate 
values of diagnostic parameters, which requires the application of machine 
learning techniques. In this case, a black-box diagnostic model would be able to 
detect changes in a component or subsystem performance, while corresponding 
segments of the ontology would be able to provide further insight into the 
problem. 

Table 3 

Examples of symptom descriptions in the ontology of data storage system health 

Fault Symptom description 

Damage due 
to 
temperature 
changes 

<owl:Class 
rdf:about="urn:AbnormalTemperatureDriveDamage"> 
  <has_symptom_description> Grade = consumer AND (  
    Temperature < 30 OR Temperature > 40 AND 
PowerOnHours >= 3 y ) 
  </has_symptom_description> 
</owl:Class> 

Damaged 
disc surface 

<owl:Class rdf:about="urn:DriveSurfaceDefects"> 
  <has_symptom_description> Grade = consumer AND (  
    ScanErrorCount > 0 AND PowerOnHours >= 1 y ) 
  </has_symptom_description> 
</owl:Class> 

<owl:Class 
rdf:about="urn:CriticalDriveSurfaceDefects"> 
  <has_symptom_description> Grade = consumer AND  
    ( ScanErrorCount > 0 AND PowerOnHours < 1 m ) 
  </has_symptom_description> 
</owl:Class> 
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For these purposes additional solves_with and described_by pair of object 
properties is introduced as a method of formal description of implicit relations 
between diagnostic data and system health (see Fig. 4). 

 

Figure 4 

Example of symptoms description with links to external procedure 
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corresponding to the parameters from {P} (F) and an abstract event (F’), for a 
component state without any faults. 

In such a manner a software log can be used as a diagnostic parameter only if it 
meets certain requirements: it should be stored in plain text and all log messages 
should have timestamps. 

4.1 Log Data Preparation 

The proposed fault detection algorithm contains three major steps: 

1) Text preprocessing. 

2) Calculation of the parameter values. 

3) Classification procedure. 

The text preprocessing procedure consists of the message text part extraction and 
text cleaning. Text cleaning is a procedure, commonly used in natural language 
processing. It includes text tokenization, non-numerical tokens removal, 
converting tokens to lowercase, removal of the stop-words, stemming, and 
filtration. 

In the second step, the algorithm takes a resulting token array and calculates a 
final feature vector for each log, combining word embedding and the set of text-
level features, presented in Table 4. Word embedding is a one-hot encoding with 
tf-idf [38] weight coefficients calculation. The text-level features characterize the 
statistical properties of the whole message block. 

Table 4 

Text-level log parameters 

Parameter Type 

Number of tokens in a given time interval Int 

Number of messages in a given time interval Int 

Average log message length in a given time interval Float 

Average tokens per second in a given time interval Int 

Average messages per second in a given time interval Int 

Finally, the classification procedure uses a classifier pretrained to determine the 
most probable text class that corresponds to one of the probable fault events. 
Training and validation data sets should be prepared from log packages, collected 
during previous fault event occurrences. 



O. Mamoutova et al. Ontological Approach to Automated Analysis of Enterprise Data Storage Systems Log Files 

 – 42 –

4.2 Ontology Extension 

The only step of the diagnostic procedure that requires some explicit log structure 
analysis is the process of splitting a log into a header and raw text parts in order to 
extract additional information such as timestamps, process identifiers, etc. Log 
message splitting is based on combinatorial parsing: each log header field has a 
simple parser, and those individual parsers should be applied in a defined 
consecutive order. The ontological model has been supplemented with a set of 
corresponding classes and properties to store the necessary information. 

The Message header class MessageHeaderFormat contains the 
MessageHeaderFormatField subclass for information about header fields and 
their extraction priority and the MessageHeaderFieldDataType subclass with 
information about low-level field data types. Each low-level data type is linked to 
a dedicated individual parser that should be used to extract a header field value. 
See Fig. 5 with the example for the message.log file. 

 

Figure 5 

Segment of the ontology of data storage system health regarding message.log header extraction 

4.3 Classification Results 

The developed approach was evaluated on a dataset of ~ 6000 log packages, each 
containing up to 116 logs of 33 distinct types. This dataset contains logs, stored 
after the root cause of a fault investigation, mixed with logs for the healthy 
system. The dataset consists of 1600 “faulty” log packages with 41 different fault 
events caused by various problems in a data storage system configuration with 
two storage processors in a cluster and 16 disk enclosures. 

The classification results, presented in Table 5, allow the conclusion that the most 
suitable classifier algorithm for the dataset is the Random Forest classifier. 
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Table 5 

Classification results 

Classifier 
Average
precision 

Average
recall 

Average
f-score 

Model training 
time 

Random Forest 0,74 0,71 0,71 183 s 

Naïve Bayes 0,48 0,27 0,28 205 s 

KNN 0,38 0,39 0,37 166 s 

Logistic regression 0,28 0,33 0,28 498 s 

SVM 0,23 0,26 0,20 430 s 

LSTM 0,47 0,44 0,45 ~4 h 

GRU 0,24 0,22 0,23 ~7 h 

LSTM with attention 0,42 0,39 0,40 ~ 6 h 

Compared with the results acquired by Bertero [35], the presented approach is less 
accurate, but has the advantage of being able to process logs in almost all formats, 
analyze text instead of separate messages, and can be a part of an active diagnostic 
procedure. 

Conclusions 

The presented ontological approach to embedded diagnostics has been developed 
with the goal to support autonomous monitoring, diagnosis and self-management 
within a storage processor with the intent to complement the current data storage 
system diagnostic portfolio. This approach provides machine representation of the 
knowledge base in the domain of data storage reliability and diagnostics. The core 
ontology of the knowledge base provides a schema to store unstructured expert 
knowledge regarding typical redundancy schemes, symptoms of faults, possible 
causes of faults, their severity levels, and fault containment procedures.             
The resulting diagnostic model enables highly heterogeneous monitoring data as 
diagnostic parameters: for a data storage system they range in types of 
information, and their sources range in levels of the data storage system hierarchy. 

A knowledge base converted from the ontology format to the graph database 
format is designed to be stored on a storage processor and updated by an 
administrator when necessary. An embedded implementation of diagnostic model 
provides necessary visibility of the internal organization of a data storage system. 
The graph database format provides an increased speed of queries processing.     
As a result, such direct access of the storage processor to the diagnostic model 
enables autonomous self-diagnostics at the rate of monitoring data updates. 
Another significant advantage of the proposed ontological approach is its 
flexibility, which allows constructing diagnostic models for arbitrary data storage 
systems. 

The limitation of the presented approach is due to no inheritance from existing 
ontologies, which means that an editing expert has to make a preliminary 
acquaintance with the new schema of classes and relations. 
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Another limitation is that the utilization of ontology formalism does not fully 
comply with the standard OWL 2 specification. In particular, object properties are 
heavily used to specify relationships between classes, and domain and range 
properties are used to specify the range of definition for object properties. 
However, such non-standard use of ontologies is fully supported by the Protégé as 
an ontology editing tool and serves the objectives of the diagnostics. In this 
manner, an expert gets a convenient interface for knowledge base editing and after 
the ontology is converted to a graph database the ontological framework is not 
used for further processing. 

Software logs have proven to be a valuable source of diagnostic data.                
The proposed approach to automated log mining performs on par with the most 
popular log analysis techniques without almost any specific research, which 
makes it an appropriate choice for an external procedure as a part of ontological 
fault symptom definition. 

Thus, the new ontological approach to diagnose data storage systems is based on 
the formal model-based representation of expert knowledge about data storage 
system health and employs machine learning algorithms to define relations 
between health states and parameter values. Compared with the methods that 
implement only deterministic rules the new approach allows to automatically 
detect a wider range of fault types, whilst similarly to existing model-based 
approaches it allows to perform fault localization. The developed prototype of a 
diagnostic service allows for detection of more than 40 different fault types using 
log files as a source of diagnostic data, with an average precision of 0.74 and 
model training time of fewer than 4 minutes. The deterministic part of the 
implemented ontology-based diagnostic model contains around 2300 axioms, 
including 25 data and object property types and over 500 classes, with more than 
100 referring to the faults in a data storage system. 
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