
Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 83 –

A Contribution to Software Development

Quality Management

Vidan Marković, Zora Konjović

Faculty of Organizational Sciences, Chair of Information Systems, University of

Belgrade, 154 Jove Ilica, 11000 Belgrade, Serbia

University Singidunum, 32 Danielova, 11000 Belgrade, Serbia

vidan.markovic@fon.bg.ac.rs, zkonjovic@singidunum.ac.rs

Abstract: Disruptive digital technologies have increased the potential for international

businesses to access clients’ data in traditionally closed local markets (e.g. insurance,

banking, etc.) without the need for a physical presence. In order to stay competitive in the

long run, local companies have to invest more in both technology and sourcing strategies.

In this paper, we propose an enhancement to the software development suppliers

management process based on a continuous services comparison that can lead to proactive

improvements in suppliers’ quality of services. This paper explains this process and

demonstrates a company case study experiment.

Keywords: Software Quality; Software Processes; Outsourcing

1 Introduction

The ability to react fast to a recognized need for change of the functionality or

performance of an existing software service, or to an emerging business need for a

new software service running in production, is becoming increasingly important

[1]. However, obtaining and keeping the right resources to do this job is

increasingly difficult and complex. Thus, outsourcing in software development

has become inevitable in order to keep pace with these needs [2]. This means that

the in-house software development process must adapt to this new reality as well.

Handling both new software projects development and the maintenance of

existing software services through a mix of internal and external resources is not a

trivial task. Companies need to update/improve their software development

strategies, and practice SW development results interpretations from different

perspectives: from an immediate goal achievement to wider strategic alignments

with business needs.

What really matters at the end of any software development project is the

perceived value of a production and the quality of IT services. These basic

mailto:vidan.markovic@fon.bg.ac.rs
mailto:zkonjovic@singidunum.ac.rs

V. Markovic et al. A Contribution to Software Development Quality Management

 – 84 –

objectives must be the top priority during the whole software development

supplier engagement life cycle: from the supplier selection process, to on-going

operations, to the supplier’s contract closure.

The internet of things, social networking, big data analysis, cloud technologies,

and high mobility all require that user interfaces be available on various platforms

and in various environments at any time. These developments have only increased

the need for better management of simultaneous projects’ developments, technical

implementations, and operations’ teams [3]. Agility, internal and external

collaboration (with users, customers, partners, competitors, regulatory bodies,

etc.), and the need for frequent deployments have also increased demand for better

security procedures, policies, and tools.

In order to keep pace with these exponentially increased expectations of

businesses, CIOs have to rethink and continuously improve IT human resources

sourcing models and try to find the best fit solution for their particular companies

and eco-system needs. This means creating a desirable balance between

functionality, quality, costs, and risk targets for the company [4].

Even though the number of standardized software solutions for different business

industries and the business processes within them are growing [5] (many are

already available as SaaS Cloud solutions [6]), companies still strive to get

differentiation in the market and gain competitive advantage from the specifics of

their own solutions.

In this paper, we discuss the question of how to measure and manage the quality

of tailored business software solutions when software is increasingly being

developed outside of company control and the gap between knowledge inside the

company and the knowledge of the code is growing. Finally, how do you mitigate

that kind of risk for the business?

In order to answer this, we propose utilization of the Six Step Service

Improvement (3SI) method [7] in managing quality, costs, risks, and general

relationships with programming outsourcers. This method enforces continuous

communication with outsourcers, which is a particularly important factor that

influences the quality of software services.

The 3SI method can be used in supporting transparent, performance based

relationships with suppliers. However, in order to gain the most benefit from using

this method, it is very important that the IT organization is mature and capable

enough to professionally plan, execute, and control products and services

procurement in its best interest (based on predefined procedures, polices, and

expectations fulfillment criteria).

We verified this method with a case experiment on a selected instance of the use

cases’ class. This case company was characterized by a relatively stable business

environment, by the internal processes, organization, and culture of an

experienced team, and by a relatively stable system architecture (company was at

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 85 –

CMMI level 4). However, this method could be applied in the various

implementation scenarios (i.e. different business domains/eco systems, different

companies’ CMMI levels, different programming languages, etc.).

This paper begins in this introduction section by defining the problem and

providing a brief summary of our work, then continues through an overview of

related work and the hypothesis of the potential solution. After that, it gives a

detailed explanation of the proposed solution based on the utilization of the 3SI

methodology. It continues by describing the results tested and verified in the case

study experiment, along with a description of the benefits of the proposed method

utilization. Finally, the paper finishes with a conclusion, further work proposal,

and the references list.

2 Related Work and Hypothesis

Managing the requirements in iterations and building solutions based on the

integration of developed and tested components and packages represent, the core

of modern software development processes [8, 9]. The complexity of software

solutions is growing because of an increased need to dynamically exchange

information with a high number of open systems and databases.

The complexity, is also reflected in a need for higher operating capacity,

performances, and highly efficient development tools and components to cover an

increasingly larger area of the application domain by integrated systems. Often

without proper methodological management of all possibilities and risks of new

technologies.

The pressure to shorten delivery times (agile solutions to software projects) leads

to a quick release of a valid version, but can lead to problems in the future

maintenance if the critical knowledge about the current version of system is not

systematically storied in suitable, understandable and precise form.

In order to manage the increased expectations for software services it is important

to manage the associated costs and risks (that could be again mapped to the costs).

COCOMO II, and other similar methods, can give a good approximation of the

software cost estimation [10, 11, 12, 13, 14].

The main issue with using these methods in today’s business environments is the

fact that business needs fast answers that ideally could be automated and ran

regularly for decision making support. Typical scientific software economic

measurements and costs estimate tools (e.g. KSLOC (thousands of Source Line of

Code), function points, etc.) unfortunately, do not get enough attention from

business to be used in a real-time environment. Another issue with the traditional

scientific approach is that the data calculated and analysed in most scenarios do

not consider the specifics of the organization business and its eco-system

V. Markovic et al. A Contribution to Software Development Quality Management

 – 86 –

dynamics and because of that are conceived as micromanagement tools rather than

strategic decision making support tools.

That is the reason why, in business practice, most estimations are based on a rule

of thumb principle. These estimates are more accurate when applied on similar

projects (i.e. the same architecture, same platform to be developed and to run on,

similar teams, etc.). Previous experience and lessons learned play an important

role in these calculations.

However, with an open enterprise architecture, the increasing size of externally

programmed code, and without sufficient and sustainable internal knowledge,

setting a reference point for the quality, costs, and risk assessments of new

software scheduled for deployment becomes extremely cumbersome.

There are principles like the Quality Improvement Paradigm (QIP), that define

software discipline as evolutionary and experimental [15, 16]. This means that

there is very little repetition in software development, which using statistical

control in software quality control, like that used in manufacturing sciences,

makes it extremely difficult and dubious [11]. The developers of QIP take a

different approach than, for example, the authors of the CMMI and a number of

other models that are based on the idea of statistical control of processes [16].

However, meeting the quality needs of software services includes the principles

written by Deming [17, 18] and found in Total Quality Management (TQM)

practice. Regardless of the particular flavour of TQM implemented, process

definition, control, and improvement are always included as core TQM principles

[19]. The main idea behind process control is that organizations are sets of

interlinked processes, and improvement of these processes is the foundation of

performance improvement [20, 21].

The oldest model that can be seen as an improvement action life-cycle model is

the PDCA (Plan-Do-Check-Act) model developed by Shewhart and Deming [18].

It was originally devised for improving quality in manufacturing, and has its

foundation in statistical quality control, i.e. controlling quality by applying metrics

to the process.

All the basic principles of quality improvements still exist, but they now must

work on higher dynamics and higher complexity. The time to market criteria has a

higher weight coefficient within dynamic business environments (e.g. fast changes

in products portfolio’s, new organizations and processes due to mergers and

acquisitions, economic crises, regulation requirements, etc.).

Squale quality models are concentrated on visualization of metrics where

distribution maps, tree views, tree rings, etc. help in better understanding the

quality of software, specifically by adding practice as an intermediate level

between metrics and criteria as defined by ISO 9126 (that promotes a three-level

model of quality: factors, criteria, and metrics) to support improvements actions

[22]. However, even though with the Squale the visualization helps in

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 87 –

understanding the software quality issues from different a perspective (i.e. from

software development level to CIO level), it still requires significant preparation

and high-level of technical expertise in understanding the potential quality issues

because of its strong bottom-up approach in software quality assessment.

We believe that in operational utilization of software quality improvement

technics, where decision about improvements have to be made quickly (due to

business ecosystems factors), it is critical to have a balanced mix of internal

complexity (white box) consideration and external results, visible to end users

(black box). It means that bottom–up and top-down approaches need to be in line

with specifics of the business and software development environment.

Emerging DevOps methodology integrates development and operation activities

in order to frequently generate new software deployments (i.e. in matter of

minutes in some cases). New tools are arising in the market to support continuous

deployment with high-level of automation.

Although all the above methods and software processes emphasize the need for

continuous quality improvements, there is no clear and systematic approach on

how to successfully manage and achieve continuous quality improvements in

continuously changing business and technical environments.

We limit our analysis for the domain of business software solutions in services

oriented industries such as banking, insurance, education, government, tourism,

etc., where their core processes are heavily supported and influenced by various

software utilization (made in-house, bought from third parties, and mixed

solutions).

Hypothesis definition: There is a holistic solution that supports building higher

quality software (for the business domain defined above, within specific industry,

for the specific business function: i.e. claims management software for claims

management department in an insurance company, or child care management

software for social services department in a municipal government) by means of

continuous improvements based on regular/periodical (with a particular sense of

the business’s pulse) utilization of the given methodology on defined sets of

empirical, real-time data generated during software development and operations

processes.

3 The Solution Proposal

“An incident is an unplanned disruption or degradation of service. A problem is a

cause of one or more incidents. Quite often, in operations, these two terms are

used interchangeably” [23, 24].

V. Markovic et al. A Contribution to Software Development Quality Management

 – 88 –

Minor outstanding incidents in some parts of the software product will be

naturally discovered in production system utilization because with the higher

complexity of software systems, there is a higher probability that some bugs will

pass through all predefined levels of testing and quality assurance. That is the first

reason why continuous improvements are necessary.

The second reason for software changes is a result of changes in the operating

environment (i.e. infrastructure changes, operating system changes, other

interconnected systems’ changes, interfaces’ changes, etc.) that require software

adaptation to the new production environment.

Performance-related reasons also influence software changes. There are the

“Would like to have type” of end-users’ requests (MoSCoW rule) that are often

purposely left as non-critical and dealt with in future software releases.

However, the most significant change requests come from a business’s

new/changed functional needs for a software service. More than 15% of software

defects are related to requirement’s errors [10]. Errors that were not detected in

earlier phases of software development contribute to a higher cost in fixing defects

later on [8, 14].

If, besides the above reasons for software services changes, a software service

suffers unexpected degradation of quality (e.g. more bugs, more production fixes,

non-compliant SLA, etc.), higher development and/or maintenance costs and risks,

and if similar incidents repeat in the same or other parts of the system, then this

would normally need to be escalated as an issue [24, 25]. Moreover, if the

software program code has been signed by the same supplier of the programming

services, and there is a recognizable pattern (rather than just a normal variation of

errors within predefined statistical control boundaries [17, 23, 26]), then the

company has a problem that needs to be resolved.

The normal engineering tendency is to technically rationalize increasing numbers

of incident occurrences as (for example): too many changes on initial

requirements, no ability or stability to define firm scope, poor business analysis,

not properly done design (e.g. no UML diagrams, just a simple user-story or some

kind of specification with a fractions of pseudo-code), no standards, etc. However,

despite this rationalizing tendency, there are reasons to believe that in many cases

the root of the problem was in communications’ procedures and policies pitfalls.

Communication issues cannot only enlarge a small incident, but if dealt with

properly, can also effectively solve a big one. Thus, treating communication as a

main tool for supplier management will help in solving problems with

outsourcers, especially in the area of supplier’s quality of service expectations.

Agile methodologies (e.g. SCRUM, Dynamic Systems Development Method

(DSDM), Extreme Programming (XP), etc.) emphasise utilization of suitable

prototypes [27, 28] and effective mapping of user stories [27, 29] to improve

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 89 –

communications of centralized or distributed development teams and users, and to

lower development risks.

In most scenarios, in order to solve a complex problem it is a good idea to

decompose the whole problem into smaller, better manageable, and

understandable parts [9, 29, 30]. This means both simplifying and diversifying the

views of the existing problem. We should limit our analysis of programming

services outsourcers as manufacturers of these parts.

We also believe that a holistic view of the problem needs to be introduced in order

to change the predominant focus on the technical side of each single instance of

the problem class (that are normally hard to track [31, 32, 33]) to the more

statistical and processes sides of the problem as a whole (i.e. a view of the

problem class conducted in parallel with a view of a single problem instance).

Thus, a holistic view of the project set-up and maintenance process set-up with

suppliers can be a prerequisite for further analysis. The main goal would be to

build mutual trust and improve the quality of overall services. This also means

moving outstanding issues (errors/bugs) back to predefined and mutually agreed

limits of the statistical control.

In addition, we propose that with continuous cooperation on improving predefined

KPIs (Key Performance Indexes), the agreed limits of statistical control could also

become a target for improvements. This plan could become a common part of

contracts, with the idea of rewarding high quality in the interest of both parties

(i.e. introduction of incentive types of contracts rather than time and material or

fixed term). Thus, software problems would be first transferred into the

relationship and provider management domains for a solution, and then, once

solved in the soft (people) problem area, transferred back to the hard (technology)

problem area – the program code.

This holistic approach does not substitute inner software development process,

regardless of the type: agile (SCRUM, DSDM, etc.) or procedural (e.g. Rational

Unified Process) for whatever reasons they were chosen for the particular software

development. It is a better tool to manage new developments based on the

opportunity designed in a systematic, methodological way to learn from

production behaviour of software and humans that use them in the particular

environment. It is more like an attempt to prescribe a particular patient continually

improved medicines based on the data collected on his reactions over time on

different medicines (and their ingredients) for the particular disease.

We have selected the 6 Step Service Improvement methodology [7] as a method

that could support systematic and transparent improvements in suppliers’ services.

The main characteristics of the method are:

 The result of method utilization is an improvement in the overall quality of

the software service.

V. Markovic et al. A Contribution to Software Development Quality Management

 – 90 –

 It does not pre-estimate services without measuring their outcomes first. This

means that nobody is the best supplier by definition. Measurements taken

during selected real time production period cycles (e.g.. month, quarter, half

year, and year) in the given environment will give better answers than

forecasts based only on past experiences in different environments.

 The method uses a ranking principle for services groupings in order to

provide meaningful comparisons among similar type of services within the

same rank (apples to apples).

 The method uses LSP (Logical Scoring of Preferences) for comparison

purposes among predefined elementary criteria.

 The method is conducted in improvement cycles until it makes sense to

continue to another cycle (cost/benefit sense) to avoid “gold plating”

scenarios. Kaizen practice is good thing to do, but it has a cost side to be

addressed as well [31].

 Learning about services is continuous, and the view of the services is

holistic. This means that the method supports a continuous improvements

paradigm and embraces uniqueness of each service, as well as their shared

characteristics. Each service is described by the dimensions of soft (people

interactions) and hard (technical, i.e. code that works) elements. These

elements are interconnected in multidimensional services’ cubes.

Recognition, based on measurements and comparison, of what makes some

elements of one cube better than another helps in improving the other service

and vice-versa.

We propose the use of the method for multidimensional comparison of

preferences in spiral cycles in repeatable time cycles that reflect the particular

business pulse (dynamics of the business changes). In some cases where, for

example, the business pulse is at the elephant level (25-35 bpm resting), the time

cycle periods will be longer (i.e. quarterly or semi-annually); on the contrary, for a

business with the mouse pulse level (450-750 bpm resting), weekly cycle periods

might be the right choice.

Seasonality effects in each business would need to be taken in account; thus some

arrhythmic cycles could be desirable as well (i.e. monthly cycles normally, and

during the summer only one quarterly cycle).

4 Case Study Experiment and Results

The 3SI method starts with identification of the SW services that can be classified

within the same rank. As mentioned above, the quality of software services is

strongly influenced by service providers’ characteristics. In order to compare

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 91 –

service providers’ characteristics we first rank them based on the flavour of their

software services domains (i.e. programming language, system architecture

environment, team structure, etc.), and then drill into further hierarchical

decompositions until we reach elementary criteria [34]. The formula to calculate

the estimates of each defined criteria [34, 35] is given below (1):

Ε = (∑ 𝜔𝑖
𝑘
𝑖=1 𝑒𝑖

𝑟) 1/𝑟, 0 ≤ 𝜔 ≤ 1, ∑ 𝜔 = 1𝑘
𝑖=1 ,

 𝑒 ∈< 0; 1 >, Ε ∈< 0; 1 >, 𝑘 ≥ 2 (1)

where the coefficient “𝜔“ represents the weight coefficient associated with the

comparative importance of each estimated elementary preference belonging to the

same hierarchical group preference, and the “𝑒“ represents an elementary

preference estimate. The "𝑘" represents the number of features in the aggregation

blocks. The “𝑟” represents the correlation function to be applied on the specific

level. The values of “𝑟” are defined on the basis of the expectation of the

combined influence of the estimated preference at the group level (e.g., synergy

effects). The values for “𝑟” vary from full conjunction (C, 𝑟 = - ∞) to full

disjunction (D, 𝑟 = + ∞). The arithmetic mean (AM) is given at 𝑟 = 1. More

details about the mathematical aspects of the LSP method can be found in [36].

The strength of LSP resides in the power to model different logical relationships

[34]:

 Simultaneity: when it is perceived that two or more input preferences must

be present simultaneously,

 Replaceability: when it is perceived that two or more attributes can be

replaced (there exist alternatives, i.e., the low quality of an input preference

can always be compensated by the high quality of some other input),

 Neutrality: when it is perceived that two or more input preferences can be

grouped independently (neither conjunctive nor disjunctive relationship),

 Symmetric relationships: when it is perceived that two or more input

preferences affect evaluation in the same logical way (though possibly with

different weights),

 Asymmetric relationships: when mandatory attributes are combined with

desirable or optional ones.

The service grouping, as the first step of identification, was done based on the

identified service class's group attributes [7]:

 Technology group (TDi) - represents the technical attributes that better

describe the influence of applied technology tools on service development

and operations.

 Complexity group (Ci) - represents the observed level of complexity in

creating a solution. More tiers in the solution implementation in most cases

represent more complexity in operating that service.

V. Markovic et al. A Contribution to Software Development Quality Management

 – 92 –

 Development process group (DPi) - represents the possibility to lever

influence on the service by an applied development process. Some

development processes could create a very stable service, but have a problem

with the low level of flexibility to change.

 Development team group (DTi) - team experiences, skills, and cohesion, and

in-house and outsourced options affect the ability for quality maintenance on

a specific service.

 Business support domain group (BDi) - related to the end user profile, the

number, location, and type of application being used (e.g. OLTP, reports,

etc.).

Based on the above definitions of group attributes, each instance of service class

𝑆𝑖 from the catalogue was assigned values as following (2):

𝑆𝑖 = (𝑇𝐷𝑖 , 𝐶𝑖 , 𝐷𝑃𝑖 , 𝐷𝑇𝑖 , 𝐵𝐷𝑖), 𝑖 ≥ 0 (2)

We analysed the use case in which there are more teams (in-house and outsourced

teams) working on the same software and hardware platform, but on different

projects. Thus, these projects are environmentally similar, but size and complexity

vary depending on the needs of the end users. The end user stakeholders are

employed with the same company. Internal variations within the internal teams

were minimal.

The observed company uses services from four Java outsourcing providers. The

decision to use four outsourcing companies for the same area of expertise came

from the need to better manage the risks of outsourcing. The company has

gradually moved its strategy towards Java outsourcing from pure in-house

development. The reason for that strategic switch was an increased need for faster

and better solutions from one side, and the limited resources in highly competitive

Java programmers market from the other (unfavourable supply/demand ratios).

Managing different outsourcing companies in supporting the same or similar

business area is not trivial. Differences could be in (but not limited to):

 internal development processes specifics (e.g. agile, procedural, mixture),

 design and coding standards,

 IDE (Integrated Development Environments) tools utilised,

 Version Control standards,

 project management standards,

 culture.

The company has a defined set of internal coding standards to be applied with all

outsourcers, and it has also adopted standards for version control and reporting on

the work assigned progress. The price of each man-day for the same type of work

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 93 –

(Java programming) has been negotiated to the same level for all service

providers. These decisions have made it possible to concentrate on more objective

KPI measurements for each code supplier.

To have a better understanding of the company’s working environment, some

historic facts need to be addressed as well. The company’s IT department has

gradually moved from pure insourcing to outsourcing of its Java programming

activities (Figure 1). The main reason was an increased need for Java

programming jobs without a favourable supply of Java programmers in the local

market for prospective employers. On average, the retention rate was less than 3

years.

Figure 1

An example of the historical trend on insourcing vs. outsourcing FTE consumptions

However, the main issue with selecting the right balance on insourcing vs.

outsourcing strategy was the tactics for managing the quality of outsourcing

activities. If there are more code suppliers, some kind of multi-dimensional

comparison needs to be applied that takes into account the following criteria:

 static criteria (project/activity quality of scope delivery, SPI, CPI, etc.),

 dynamic criteria (service life cycle experiences with outsourcers) including:

o hard (number of bugs reported in period, architecture issues reported in

period, costs in period, etc.),

o soft (team relationships) criteria.

In some cases cutting off one code supplier is not feasible for different reasons

(e.g. legal, no good replacements on the market, etc.). However, it is possible to

learn from good experiences with different outsourcers and different services.

Ideally, new knowledge on how to improve certain service parameters should be

passed to that service in real time. Services should be improved continuously,

ideally without any time breaks.

The suppliers reported the consumption of their Java development resources

continuously for a period of one year as shown below [Table 1].

0

20

40

60

80

100

2007 2008 2009 2010 2011 2012 2013 2014

Insource Outsource

V. Markovic et al. A Contribution to Software Development Quality Management

 – 94 –

Table 1

SW suppliers efforts (in man- days) invested during observed

year

Our primary goal was to compare the quality of services within the same service

class. 𝐶𝑖 attribute values could have significant variation depending on the type of

users’ requirements (e.g. functional scope complexities, non-functional technical

complexities, etc.), but the other environment dependent parameter variations

could be kept stable for the observed time period for the preferences calculations

(i.e. ± 5%, or within the predefined result threshold).

Thus, these constants are calculated (3, 5, 7, 9, and 11):

𝑇𝐷𝑖 = (𝑡𝑑1, 𝑡𝑑2, 𝑡𝑑3), where 𝑡𝑑1𝜖 {2𝑇, 3𝑇, 4𝑇},

𝑡𝑑2𝜖 {𝑊𝑂, 𝑊𝑃, 𝐷𝐶}, and 𝑡𝑑3 𝜖 {𝐽, 𝑉𝐵, 𝐶, 𝐷} (3)

Here, 2T stands for Two-Tier, 3T for Three-Tier, and 4T for Four-Tier application

architecture; WO for Web/Open Source, WP for Web/Proprietary, and DC for

Client (Fat Client) presentation layer; J for Java, VB for Visual Basic, C for C++,

and D for DotNet programming language.

In this use case the values of 𝑇𝐷𝑖 domain are kept as: three-tier, Open Web

platform, and Java programing language (expressions 3 and 4).

𝑇𝐷𝑖 = (3𝑇, 𝑊𝑂, 𝐽) (4)

𝐷𝑃𝑖 = (𝑑𝑝), where 𝑑𝑝 𝜖 {𝑆, 𝑅, 𝐴, 𝐻} (5)

Here, S stands for SSA (Structural System Analysis), R for RUP, A for Agility,

and H for Hybrid.

In this use case the value of 𝐷𝑃𝑖 domain is hybrid 5 and 6).

𝐷𝑃𝑖 = (𝐻) (6)

Supplier Effort (m-d)

A 458

B 724

C 307

D 263

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 95 –

𝐷𝑇𝑖 = (𝑑𝑡), where 𝑑𝑡 𝜖 {𝐼𝐻, 𝑂𝐻, 𝑀𝑋} (7)

Here, IH stands for In-House, OH for Out-House, MX for Mixed.

In this use case the value of 𝐷𝑇𝑖 domain is mixed (7 and 8).

𝐷𝑇𝑖 = (𝑀𝑋) (8)

𝐵𝐷𝑖 = (𝑏𝑑1, 𝑏𝑑2, 𝑏𝑑3), where 𝑏𝑑1𝜖 {𝐹𝐸, 𝐵𝐸}, 𝑏𝑑2𝜖 {𝑂𝐿, 𝑅𝐸}, 𝑏𝑑3 𝜖 {𝐼𝑁, 𝐸𝑋} (9)

Here, FE stands for the Front-End and BE for the Back-End parts of the system;

OL for OLTP and RE for Reports; IN for Internal users and EX for External users

made service.

In this use case the values of 𝐵𝐷𝑖 domain are kept as follows: front end

development (FE), OLTP support programs (OL), and internal users of the core

Java-based system (IN) (9 and 10).

𝐵𝐷𝑖 = (𝐹𝐸, 𝑂𝐿, 𝐼𝑁) (10)

The complexity group attribute has had significant variation during the observed

time period of one year. We need to stress that longer time periods for comparison

would increase the risk of other fixed attributes varying. However, a shorter

observation time period might not give proper results because some suppliers

might have a better learning curve, but could later show a lack of service quality.

We propose continuous measurement and immediate internal reporting of poor

performance. However, we also stress that actions be taken wisely – only after

having a proper amount of data during a proper amount of time (i.e. once per

week/month/quarter, regarding the type of the company, the kind of ecosystems,

the amount of concrete work, the acceptable pace of development, etc.).

We classify the complexity 𝐶𝑖 of each ai activity in three levels:

𝐶𝑖 = (𝑙), where 𝑙 𝜖 {1,2, 3} (11)

The semantics of our classification is as follows:

1) Level 1 (𝐶𝑖 = 1) – low range: from minor changes to the existing code

without changes to the data model or component architecture, to medium

changes to the existing code that may include data model modifications,

but not architecture changes.

2) Level 2 (𝐶𝑖 = 2) – medium range: from major changes to the existing

code that may include data model modifications and architecture

changes, to new application development without significant changes to

the surrounding system interconnections.

3) Level 3 (𝐶𝑖 = 3) – high range: new system development that may include

a number of interconnected applications and significant changes in

surrounding system interconnections and replacements.

V. Markovic et al. A Contribution to Software Development Quality Management

 – 96 –

Since 𝑇𝐷𝑖 , 𝐷𝑃𝑖 , 𝐷𝑇𝑖 , and 𝐵𝐷𝑖 values are fixed for this use case, the services

activities outcomes were categorized into three service class ranks depending on

the complexity of these activities (12).

𝑆𝑖 = ((3𝑇, 𝑊𝑂, 𝐽), 𝐶𝑖 , 𝐻, 𝑀𝑋, (𝐹𝐸, 𝑂𝐿, 𝐼𝑁)), 𝑖 = 1, 2, 3 (12)

The service class attributes value assignments are given for each service class

instance, and grouped into predefined services’ class ranks (12). All the services

in the same service group were then compared.

The selected comparison criteria are based on the hierarchical decomposition of

preferences, which operates until the elementary criteria have been reached. In

order to compare the quality of the services (the programming services) within a

specific rank, we have used the following first, second, and third levels of the

hierarchical decomposition of the preferences (starting from global preferences

that were recognized at the first level of hierarchical decomposition [Table 2]):

Table 2

Software service preferences hierarchical decomposition

P1 QoS (Quality of Solution/Service)

 P11 Maintainability

 P121 Changeability

 P122 Stability

 P123 Testability

 P12 Documentation

 P13 Performance

 P131 Processing time

 P132 Throughput

 P133 Resource consumption

 P14 Reliability

 P141 Maturity

 P142 Fault tolerance

 P143 Recoverability

 P15 Usability

 P151 Understandability

 P152 “Learnability”

 P153 Operability

 P16 Capability

 P17 Installability

 P18 Availability

P2 CoS (Cost of Solution/Service)

 P21 Fixed Costs

 P211 Programming

 P212 Licenses

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 97 –

 P213 Infrastructure

 P22 Variable Costs

 P221 Unplanned Development

 P222 Unplanned Resources Availability

 P223 Travel/Accommodation

 P224 Interest Rates

P3 Risks

 P31 Strategic

 P311 Regulation

 P312 Market Position

 P313 Shareholders

 P32 Operational

 P321 Time to market

 P322 Unplanned costs

 P323 Stakeholders

 P323 Retention

P4 Likeability

The group of experts, consisting of IT personnel, PMO, and user representatives

(with our support), had been given the task of assigning all weight coefficients and

each level correlation logical functions, and providing estimates for each

preference during this study in each monthly cycle.

During the first, kick-off, workshop meeting, we defined together (as a team) all

the weight coefficients and related logical functions for each hierarchical group

level based on our understanding of the importance of each preference estimate

and correlation with other preferences within the same group. Each of us gave

his/her opinion and we discussed all individual views to come up with the

common framework to be used for the measurements and comparisons. We also

set a time table for meetings on a monthly basis to discuss the collected

production data, to make another 3SI run, and to create an action plan for

improvements.

The weight coefficients for the first hierarchical level in this use case are:

 ω1 = 0.4, ω2 = ω3 = 0.25, ω4 = 0.1 (13)

We found that the main features (criteria) of this level of estimation are strongly

dependent on each other because higher QoS will, in most cases, produce lower

CoS [11], and lower the risks. That is the reason the team gave 40% weight to

QoS. We also found that soft features are normally higher with better QoS. This is

the reason the 𝑟 function used in calculation at this level (𝑟0) is a type of weak

conjunction (C-+) (medium week conjunction as defined in [34]).

We introduced Likeability criteria without purposefully drilling in further (this

could be left for further research) to stress the importance that soft criteria be

V. Markovic et al. A Contribution to Software Development Quality Management

 – 98 –

considered at the highest level of hierarchical decomposition. Based on the data

provided, we believe that the core of each successful project or change activity

was good communication management. Better communication management gave

better results on “Likability” criteria.

We used the following values for weight coefficients at the second hierarchical

level (14):

ω11 = ω12 = 0.20, ω13 = ω14 = 0.15, ω15 = ω16 = 0.10, ω17 = ω18 = 0.05;

ω21 = ω22 = 0.50; ω31 = 0.70, ω32 = 0.30 (14)

We used the following values for weight coefficients at the third hierarchical level

(15):

ω111 = ω112 = 0.35, ω113 = 0.30; ω131 = ω133 = 0.35, ω132 = 0.30;

ω141 = ω142 = 0.30, ω143 = 0.40; ω151 = ω152 = 0.20, ω153 = 0.60;

ω211 = 45, ω212 = 0.20, ω213 = 0.35;

ω221 = 40, ω222 = 0.20, ω223 = 0.20, ω224 = 0.20;

ω311 = ω312 = 0.30, ω313 = 0.40;

ω321 = ω323 = 0.30, ω322 = ω324 = 0.20 (15)

All the above values are discussed among the team members, and are the results of

the mutual agreement on importance of each preference within the specific

hierarchical group level. The level of precision is influenced by the level of

experiences and knowledge of the team. That is the reason why we selected

multifunctional team with different experiences in IT projects management,

software developments (both from internal and external software services

providers) and users of the software systems.

The 𝑟 function was calculated according to (16). Please note that the value of 𝑟 is

given together with the description of the type of the logical function (i.e. for 𝑟0

we used C-+ function because we wanted to achieve significant level of good

estimates for each group criteria at the first hiearchical level), and number of the

grouping elements for which it was calculated (i=4 means that we have 4 elements

in the group).

𝑟0 = −0.235 (C -+, i=4); 𝑟1 = 𝑟2 = 1 (A);

𝑟3 = −0.148 (C -+, i=2);

𝑟11 = 𝑟13 = 𝑟14 = 𝑟15 = 0.573 (C--, i=3); 𝑟21 = 𝑟22 = 1 (A);

𝑟31 = −0.208 (C -+, i=3); 𝑟32 = −0.235 (C -+, i=4). (16)

Please note that the conjunction function was used to stress the need to have good

results on all estimations at the same group level.

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 99 –

Since code suppliers normally worked on projects and maintenance activities, we

collected data concerning both types of activities. Projects were done in

accordance with the predefined project methodology (in this case it was PMI) [37,

38]; all other functional, performance, and bug fixing related changes were

considered as maintenance activities and conducted through regular change

management procedures. In order to reduce paper work and become more agile,

the company only ran as a project those code changes requiring over 15 man-days

of work or over 3K Euro in development investment.

Programming activity could be related to non-value adding activities, such as bug

fixes (𝑏𝑖) performed on existing code and new code development (𝑛𝑖). Regardless

of the type of activity programming cost (C) always exists (17).

𝐶 = ∑ 𝑓𝑛(𝑛𝑖
𝑘
𝑖=1) + ∑ 𝑓𝑏(𝑏𝑖)𝑙

𝑖=1 ,

where 𝑘 ≥ 1, 𝑙 ≥ 1, (17)

The consequences of increased costs due to lower code quality were considered by

one or by more sides (directly or indirectly), depending on the contract type

between the parties involved. In a time and material type of contract, the sponsor

would usually pay for both (ri and ni). On the contrary, with fixed term contracts

the sponsor, by definition, pays only what was calculated as the amount of work

for ni.. A maintenance contract normally covers production issues and new

functionalities development. In this case, the sponsor would not be fully aware of

the real quality of the deployed code before running deep in the production

environment.

Result: By applying 3SI methodology we found that the preserved quality of

results and the quality of built mutual relationships among insource and outsource

teams on software development activities were correlated (i.e. where the

Likability estimate was higher other estimates tended to be higher as well). The

figures below (Figure 2 and Figure 3) show the results of team estimates and

calculations for the first reporting period (the first month’s estimates/the first

iteration).

The results show that in this use case overall estimates based on the complexity of

the programming activities have not shown any significant difference. All

companies gave results that are lower, by up to 5%, as the complexity level grows.

The results show that the lowest estimated difference from the best to the worst

supplier in the same complexity class was around 35% (Figure 2 and Figure 3, the

difference between provider B and provider D). This significant difference

stresses the need for further analysis to discover the root cause of these estimates.

V. Markovic et al. A Contribution to Software Development Quality Management

 – 100 –

Figure 2

Maintenance activities estimates comparison results per class, per supplier

Figure 3

Projects activities estimates comparison results per class, per supplier

In the next step, we identified the major reasons for the differences in the services

provided by different suppliers. We started from the most important difference

contributor and continued with other major ones (we did not include all reasons in

order to avoid gold plating: i.e. to find those 20% of reasons that contribute to

80% of the difference) [26]. The main driver responsible for lowering future costs

based on past service performance in dynamic business environments is to have

quick (on time) reactions. “What makes measurements so potent is its capacity to

instigate informed action – to provide the opportunity for people to engage in the

right behaviour at the right time” [39]. After a predefined cycle period of one

month, another 3SI cycle was initiated (monthly cycles). For the purpose of this

experiment, we repeated these cycles for the period of six months (six iterations).

Figure 4 presents the result for six iterations in graphic form.

The cycle periods of 3SI need to be based on the specifics of the business context

and content of the software service. We proposed planning time after these

periodical assessments to talk to each service provider about the estimates in order

to trigger further improvements. In some cases it may work well to have frequent

measurements analysis (i.e. on a weekly or monthly basis), but in some cases it

0,00

0,20

0,40

0,60

0,80

1,00

1,20

Low Medium High

Complexity

A

B

C

D

0,00

0,20

0,40

0,60

0,80

1,00

1,20

Low Medium High

Complexity

A

B

C

D

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 101 –

would be advisable to wait for a whole quarter to pass to have a meaningful

assessment of performance. In our experiment, after each cycle’s data collection

and comparison, we scheduled separate interviews with each of the suppliers,

during which we presented the findings and asked for feedback. The main result

we noticed was significant improvement in the services of all providers over time

(Figure 4); however, we also noticed/proved that one provider (provider D, Figure

4) had to be replaced (this decision was also based on the measurements, which

helped in conducting fair/objective service closure).

Figure 4

3SI method implementation results for the use case over the given period of time

The cycle of assessments in 3SI could also vary due to the maturity of the business

partnership. We suggest starting partnership performance assessments where the

learning curve offsets calculation at the beginning (i.e. tolerate up to 10% lower

marks due to a learning curve’s offsets in the first reporting data sample), and then

to continue without offsets into regular comparative analysis and continuous

cycles’ improvements.

Conclusion

The pressure to give better, cheaper, and faster results in software development is

getting stronger as business becomes more and more competitive. A small

difference in performance can mean a significant bottom line difference for the

company. The fight for knowledge resources does not recognize boundaries.

Emerging digital technologies will bring even more stress to the local/domestic

office building.

Nowadays, companies rely on some mixture of insourcing and outsourcing for

software development activities. In order to manage the risks of using only one

outsourcer many companies use two or more outsourcers for the same systems

domain. This is mandatory if that domain supports the core company business.

D

B0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

I II III I
II

IIIQ1

Q2

V. Markovic et al. A Contribution to Software Development Quality Management

 – 102 –

The software services given by code suppliers are devoted to software

development projects and/or to maintenance activities on existing software. All

these activities represent costs for the company and for the supplier. The goal is to

achieve a win-win situation and evenly share the risks regardless of the activity

type. This goal, even with detailed contracts in place, is very hard to achieve in

practice.

In this paper, we have shown that by using the 3SI methodology it is possible to

create estimates for preferences satisfaction for each supplier and to compare them

regularly to find a reason why in some areas one supplier may be better than

another and vice-versa. The utilization of that knowledge in a regular, systematic

way could support the continuous improvement of all services at the same rank.

This case study experiment has been conducted within the live production

environment over period of six months, involving a number of people with limited

abilities (i.e. with average knowledge and available time that can be taken from

regular operational activities). We did our best to optimize utilization of their

time, capacity, and availability to simulate a real operational situation. We

concentrated our activities on running 3SI in repeating cycles and providing value

in improving overall quality of the software services in this specific environment

as a main priority.

The fact that comparisons are conducted in periodical cycles could be used to

enforce closer communication between parties that could lead to increased quality

of the overall services. In some cases, it might lead to calls for contractual

expectations that were not seen before or sometimes to even end the partnership.

But, this is not the primary goal; this would be an extreme consequence of the new

knowledge acquired. The primary goal is to influence and change (if necessary)

the parts of the development process that caused an increased number of defects

and lower quality of the code.

Since making software is a creative, rather than purely technical, activity with

strong human and team interaction, an example from the case study has shown the

importance of soft skills and demonstrated certain correlations between Likability

criteria and other more quantitative metrics. However, we have also learned that

Likability estimates can also be improved with the right actions taken.

Further research and implementation: We recommend trying other methodologies

(e.g. Squale model) within the same environment and compare the results and the

feedbacks from the end-users. In this case, it is absolutely necessary to assess the

ratio between costs and achieved benefits in order to reach the primary goal of this

paper which is a sufficient gain for obtaining a reasonable price and all this under

real constraints primarily related to skills and available time of involved experts.

The utilization of this method in industry can be supported by the creation of a

parameterized software solution, which we see as a next practical step. We also

envision the need for further research on data analytics based on generated

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 103 –

knowledge base that will support automations in the continual quality

improvements (i.e. design of different 3SI templates for different industrials’

needs).

Further research in soft skills and communications improvements specifically

during procurement/selection and suppliers’ quality management processes on the

complex software projects realizations is also desirable.

References

[1] Boehm B.: Value-based Software Engineering - Reinventing, ACM

SIGSOFT Software Engineering Notes, 2003, Vol. 28, No. 2

[2] Gonzalez R., Gasco J., and Liopis J.: Information System Outsourcing: A

Literature Analysis, Information & Management, 2006, Vol. 43, No. 7,

821-834

[3] Peppard J. and Ward J.: The Strategic Management of Information System:

Building a Digital Strategy, 4
th

 Ed., Wiley, 2016

[4] Chun M. and Mooney J.: “CIO Roles and Responsibilities: Twenty-Five

Years of Evolution and Change,” Information & Management, 2009, Vol.

46, No. 6, 323-334

[5] Addo-Tenkorang R. and Helo P.: Enterprise Resource Planning (ERP): A

Review Literature Report, Proceedings of the World Congress on

Engineering and Computer Science 2011 Vol II WCECS 2011, San

Francisco, USA October 19-21, 2011

[6] Chin-Sheng C. and Wen-Yau L. M.: A Cloud Computing Platform for ERP

Applications, Information & Management, 2015, Vol. 27, No. 7, 127-136

[7] Markovic V., and Maksimovic R.: A Contribution to Continuous Software

Services Improvement Based on Six Step Service Improvement Method,

IJESEKE, 2012, Vol. 22, No. 4, 1-21

[8] Kan S. E.: Metrics and Models in Software Quality Engineering, 2
nd

 ed.,

Addison-Wesley, 2003

[9] Betz C.: Architecture & Patterns for IT, Elsevier Inc., 2011

[10] Jones C.: Critical Problems in Software Measurement, Burlington, Mass:

Software Productivity Research, 1992

[11] Kuvaja P., Similä J., Krzanik L., Bicego A., Saukkonen S. and Koch G.:

Software Process Assessment & Improvement - The Bootstrap Approach,

Oxford: Blackwell Publishers, 1994

[12] Pulford K., Kuntzmann-Combelles A. and Shirlaw S.: A Quantitative

Approach to Software Management, The AMI Handbook, Wokingham,

England: Addison-Wesley, 1996

http://www.sciencedirect.com/science/journal/03787206/43/7
http://www.sciencedirect.com/science/journal/03787206/43/7
http://www.sciencedirect.com/science/journal/03787206/43/7

V. Markovic et al. A Contribution to Software Development Quality Management

 – 104 –

[13] Karjalainen J., Mäkäräinen M., Komi-Sirviö S., and Seppänen V.: Practical

process improvement for embedded real-time software, Quality

Engineering, 1996, Vol. 8, No. 4, 565-573

[14] Boehm B. W., Abts C., Brown A. W., Chulani S., Clark B. K., Horowitz E.,

Madachy R., Reifer D., and Steece B.: Software Costs Estimation with

COCOMO II, NJ: Prentice Hall, 2000

[15] Basili V., Daskalntonakis M., and Yacobellis R.: Technology Transfer at

Motorola, IEEE Software, 1994, 70-76

[16] Basili V. and F. McGarry.: The Experience Factory: How to Build and Run

One, Tutorial TF01, 20
th

 International Conference on Software Engineering

(ICSE'98), Kyoto, 1998

[17] Deming E.: Out of the Crisis: Quality, Productivity and Competitive

Position, Cambridge University Press, Cambridge, 1982 & 1986

[18] Shewhart W. A., and Deming E. W.: Statistical Method from the Viewpoint

of Quality Control, Dover Publications, 1986

[19] Hackman J. R., and Wageman R.: Total Quality Management: Empirical,

Conceptual, and Practical Issues, Administrative Science Quarterly, 1995,

Vol. 40, No. 2, 309-342

[20] Dean J. W., and Bowen D. E.: Management Theory and Total Quality:

Improving Research and Practice through Theory Development, Academy

of Management Review, 1994, Vol. 19, No 3, 392-418

[21] Choppin J.: Total Quality Management, What isn't It?, Managing Service

Quality, 1995, Vol. 5, No., 147-49

[22] Bergel A., Denier S., Ducasse S., Laval J., Bellinguard F., Vaillergues P.,

Balmas F., and Mordal-Manet K.,: Squale - software quality enhancement,

In Proceedings of the 13
th

 European Conference on Software Maintenance

and Reengineering (CSMR 2009), European Projects Track, 2009

[23] Juran J.:Total Quality Management, McGraw-Hill, 2001

[24] Boyd R.: Understanding ITIL Key Process Relationships, Computer

Economics, 2007, 1-3

[25] Chrissis M. B., Konrad M., and Shrum S.: CMMI, Guidelines for Process

Integration and Process Improvement, Addison-Wesley, 2004

[26] Dion R.: Process Improvement and the Corporate Balance Sheet, IEEE

Software, 1993, 28-35

[29] Patton J, Economy P.,: User Story Mapping, O’Reilly Media, 2014

[27] Ciriello R., Richter A., Schwabe G.,: When prototyping meets storytelling:

practices and malpractices in innovating software firms, ICSE-SEIP '17

Proceedings of the 39
th

 International Conference on Software Engineering:

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 105 –

Software Engineering in Practice Track, Buenos Aires, Argentina - May

20-28, 2017

[28] Blomkvist J. K., Persson J., and Aberg J.,: Communication through

Boundary Objects in Distributed Agile Teams, Proceedings of the 33
rd

Annual ACM Conference on Human Factors in Computing Systems -

Chicago 2015, pp. 1875-1884, 2015

[30] Wysocki R. K.: Effective Project Management, 4
th

 ed., Wiley, 2006

[31] Imai M.: Gemba Kaizen: A Commonsense, Low-Cost Approach to

Management, McGraw-Hill, 1997

[32] Zsidisin G. A., Jun M., and Adams L. L.: Relationship between Information

Technology and Service Quality in the Dual - The Direction Supply Chain:

A Case Study Approach, International Journal of Service Industry

Management, 2000, Vol. 11, No. 4, 312-328

[33] Salle M.: IT Service Management and IT Governance: Review,

Comparative Analysis and Their Impact on Utility Computing, Hewlett-

Packard Company, 2004

[34] Dujmovic J. J., and Nagashima H.: LSP method and its use for evaluation

of Java IDEs, International Journal of Approximate Reasoning, 2006, Vol.

41, No 1, 3-22

[35] Dujmovic J. J., and Bai H.: Evaluation and Comparison of Search Engines

using the LSP Method, ComSIS, 2006, Vol. 3, No. 2, 31-56

[36] Dujmović, J. J.: Continuous Preference Logic for System Evaluation,

proceedings of Eurofuse 2005, edited by B. De Baets, J. Fodor, and D.

Radojević, pp. 56-80, ISBN 86-7172-022-5, Institute “MihajloPupin”,

Belgrade, 2005

[37] Culver-Lozo K.: Software Process Iteration on Large Projects: Challenges,

Strategies and Experiences, Software Process - Improvement and Practice,

1995, No. 1, 35-45

[38] PMI: Project Management Body of Knowledge (PMBOK Guide), 5
th

 ed.,

PMI, 2013

[39] Spitzer D. R.:Transforming Performance Measurement, AMACOM, 2007

