
Acta Polytechnica Hungarica Vol. 17, No. 10, 2020 

 – 13 – 

Accurate Low-Frequency Approximation for 

Wires within a Two-Layered Earth 

Blagoja Markovski, Leonid Grcev, Vesna Arnautovski-Toseva, 

Andrijana Kuhar 

Ss. Cyril and Methodius University in Skopje, Faculty of Electrical Engineering 

and Information Technologies, Rugjer Boshkovik 18, 1000 Skopje, Macedonia, 

bmarkovski@feit.ukim.edu.mk, lgrcev@feit.ukim.edu.mk, 

atvesna@feit.ukim.edu.mk, kuhar@feit.ukim.edu.mk 

Abstract: Rigorous electromagnetic models and approximations are traditionally based on 

the Sommerfeld’s resolution for Hertz vector potentials. However, another resolution, 

based on transverse Hertz vector potentials, also exists. This paper shows that a low 

frequency approximation, based on this resolution, for wires embedded in a two-layered 

earth, is more accurate than the existing alternative. The accuracy of proposed 

approximation is validated for a range of different wire geometries, frequencies and earth 

characteristics. 

Keywords: Electromagnetic model; Grounding; Green’s functions; Modeling 

1 Introduction 

Analysis of wires embedded in earth, for frequency ranges from DC to tens of 

MHz, is of interest in a number of engineering analyses, such as those related to 

grounding in power systems [1], EMC [2], lightning protection [3] and subsurface 

communications [4]. The electromagnetic model based on the mixed potential 

integral equation (MPIE) [5] and the method of moments [6], is generally the 

preferred choice for such analyses. 

When the corresponding Green’s functions are based of mathematically exact 

solution for the electric field in planar-layered media, electromagnetic modeling 

involves evaluation of Sommerfeld-type integrals by complex numerical 

procedures. Alternatively, simpler models for analysis with reasonable loss of 

accuracy can be obtained by approximating the mathematically exact equations. 

Amongst existing variants, the low-frequency (LF) or often cited image 

approximations in analytical form, are mostly preferred in practice, due to their 

simplicity, ease in development and implementation. 
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It is important to note that existing image approximations are based on the 

Sommerfeld’s resolution for Hertz vector potentials from horizontal electric dipole 

[7], also known as traditional choice of potentials. This resolution is widely 

accepted in electromagnetic modeling of grounding systems, antenna theory and 

other EMC related studies. However, other resolutions also exist [8], for example 

the transverse resolution or so-called alternative choice of potentials. Both 

resolutions are basis for development of different formulations of potentials in 

MPIE [9]. Recent analysis for wires embedded in uniform earth have shown that 

LF approximation derived from the transverse resolution for potentials is 

substantially more accurate than other image approximations based on 

Sommerfeld’s resolution [10]. 

In this paper, we propose new LF approximation of the Green’s functions for 

MPIE modeling of wires within a single layer in two-layered earth. This 

approximation is derived from a rigorous full-wave solution based on the 

alternative choice of potentials for planar-layered media [11], implemented in 

formulation A of potentials in MPIE. The proposed approximation is compared 

with the existing image approximation for a two-layered earth, which is based on 

the traditional formulation of potentials, for a range of different wire geometries, 

frequencies and earth characteristics. The accuracy of the proposed and the 

existing approximations are evaluated by comparison with results obtained by the 

commercial electromagnetic simulation software FEKO. This software 

incorporates an exact Sommerfeld integral formulation for analysis of wires in a 

layered media [12]. 

2 Formulation of Electric Field by MPIE 

In MPIE, the scattered electric field vector ( )sE r  from a straight thin wire with 

longitudinal current ( )I r , can be expressed in terms of magnetic vector and 

electric scalar potentials, ( )A r  and ( )r  respectively: 
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where 
,m iAG  and 

,m i
G  are dyadic magnetic vector and electric scalar potential 

Green’s functions for source in layer m and observation point in layer i. The 

position of electric dipole with strength ( )I r d  , on the axis  of a  ˆ ˆ ˆ, ,x y z   -

directed straight wire is denoted by r  , and position of the observation point for 

 ˆ ˆ ˆ, ,x y z - directed electric field vector is denoted by r . 

Green’s functions for potentials 
,m iAG  and 

,m i
G  in MPIE are not unique. Among 

several possibilities, the Green’s functions for the traditional formulation and 

formulation A of potentials, and their LF approximations for source and 

observation points within same layer are of particular interest for the analysis in 

this paper. 

The traditional formulation is based on the Sommerfeld’s resolution [7] that 

postulates that for source and observation points within same layer, x- directed 

horizontal electric dipole (HED) has x- and z- component of magnetic vector 

potential, as illustrated on Fig. 1a). Formulation A is based on the transverse 

resolution [8], where y-component accompanies the primary x-component, as 

illustrated on Fig. 1b). The z- components of magnetic vector potentials in both 

formulations are identical for source and observation points in same layer, and the 

scalar potential Green’s function for formulation A is identical with the scalar 

potential Green’s function for vertical electric dipole (VED) from the traditional 

formulation. 

 

Figure 1 

Components of magnetic vector potentials associated to HED and VED for source and observation 

points within same layer in two-layered earth for: (a) traditional formulation and (b) formulation A 

Green’s functions for traditional formulation of potentials can be obtained from 

[13], while exact mathematical solution for spatial domain Green’s functions for 

formulation A and related parameters for general planar-layered media are 

provided in Annex A. These Green’s functions are basis for development of the 

corresponding LF approximations for a two-layered earth. 
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3 LF Approximations for Source and Observation 

Points within Same Layer in Two-layered Earth 

3.1 Traditional Formulation of Potentials in MPIE 

Dyadic Green’s function for magnetic vector potential is expressed as: 

 ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆxx zx zy zz
A A A A AG x x y y G x zG y zG z zG          (5) 

Details of development of LF approximations for traditional formulation of 

potentials can be found in [14]-[15], and here they are rewritten for completeness: 
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Details for , 1m mR  , ,,m m

d l pg g  and ,

m

l pg are provided in Appendices A and B. 
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3.2 Formulation A of Potentials in MPIE 

Dyadic Green’s function for magnetic vector potential is expressed as: 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆxx yy yx xz yz zz
A A A A A A AK x xK y yK x y y x K z xK z yK z zG              (10) 

The key steps in development of LF approximation of Green’s functions for 

formulation A are provided in Appendix B. Components of magnetic vector 

potential, for source and evaluation points in same layer with index m, are 

expressed as: 
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Note that ( ) ( ) 0xz yz
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xx
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before the cs term, while ( )

zz
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respectively. In above equations, terms cs and sn are for  cos 2  and  sin 2 . 
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4 Comparison of Accuracy of the LF Approximations 

Accuracy of the proposed and existing LF approximations is compared for a set of 

numerical tests. We consider four cases, illustrated on Figs. 2-5: 

- Energized 10-m long horizontal wire 

- Passive 5-m long horizontal wire that parallels the energized wire 

- Passive 5-m long horizontal wire that is perpendicular to the energized wire 

- Passive 1.5-m long vertical wire near the horizontal energized wire 

All wires in Figs. 2-5 are with 7 mm radius and are buried at a depth of 0.5 m in 

two-layer earth, with thickness d =2.5 m of the earth’s upper layer. Characteristics 

of the two-layered earth are expressed in terms of the reflection factor K [16]: 

   2 1 2 1K        (13) 

where the resistivity of the top earth layer is fixed to either ρ1 = 100 Ωm or 

ρ1 = 1000 Ωm, and the resistivity of the bottom layer is varied accordingly to  

K = -0.9, 0.0 or +0.9. Relative permittivities and permeabillities are set to 

εr1 = εr2 = 10 and r1 = r2 = 1, respectively. In the case of the passive vertical wire 

in Fig. 5, its upper point is at a depth of 0.5 m. The wires are energized by a 

harmonic voltage generator with an RMS value of 1 V connected serially at the 

midpoint of the 10 m horizontal wire. 

Figs. 2-5 show the computed error for the longitudinal current distribution 

obtained by the new LF approximation and the existing image model based on 

traditional formulation of potentials, with reference to results obtained by 

commercial electromagnetic simulation software FEKO [12]. RMS error for the 

longitudinal current along the conductor [17] is computed as follows: 
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Here, ˆR

nI is the phasor of the current samples along the conductor computed by 

rigorous model, and ˆA

nI  is the phasor of the current samples obtained using 

approximate solutions. N is total number of segments along the conductor. 
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Figure 2 

εRMS error for currents in energized 10-m long horizontal wire 

 
Figure 3 

εRMS error for currents in passive 5-m long horizontal wire that parallels energized wire 
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Figure 4 

εRMS error for currents in passive 5-m long horizontal wire that is perpendicular to energized wire 

 
Figure 5 

εRMS error for currents in passive 1.5-m long vertical wire near horizontal energized wire 
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Conclusions 

This paper provides LF approximations for the electromagnetic modeling of wires 

above or within a two-layered earth, based on the alternative choice of potentials. 

Accuracy of the proposed approximation is validated for source and observation 

points within the earth’s upper layer and for a range of different wire geometries, 

frequencies and soil characteristics. 

The results illustrated in Figs. 2-5, show that both approximations provide good 

and nearly equal accuracy for frequencies up to 10 kHz. However, the proposed 

LF approximation derived from formulation A, is more accurate than existing LF 

approximation derived from the traditional formulation, for frequencies within the 

range 10 kHz – 10 MHz, for nearly all cases. Such improvement of accuracy may 

widen the application of LF approximations in transient analysis where currents 

with significant high frequency contents are involved, such as, those related to 

subsequent lightning strikes or due to manipulations in the electrical power 

systems. The introduced error in transient analysis is not within the scope of this 

paper, but its evaluation will be considered as a continuation of this work in the 

future. 

The paper also provides a mathematically exact solution for the spatial domain 

Green’s functions for formulation A, for source and observation points within the 

same layer of general planar-layered media, cast in a form which is appropriate for 

the development of the proposed LF approximation. 

Appendix A – Exact Green’s Functions for Formulation A in Planar-Layered 

Media 

Exact form of Green’s functions for formulation A of potentials in MPIE, for 

source and observation points within same layer, in terms of transmission line 

parameters and in spectral domain, can be found in [11]. Here, Green’s functions 

are cast in a form that is more appropriate for development of the proposed 

approximation: 
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where 
m

dg  is direct term related to a spherical wave due to electric dipole in an 

unbounded medium with characteristics of the layer m: 
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and I1, I2, I3 and I4 are Sommerfeld-type integrals related to the up- and down-

going waves reflected from interfaces, for example at z0 and z1 illustrated on Fig 1. 
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Coefficients Ah,v, Bh,v, Ch,v and Dh,v, and related parameters are expressed as: 
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       

 
    
 

 (30) 

, , ,( ' ) ( ' ) (2 ( ' ))

, 1 , 1
m z m m z m m z m mjk z z jk z z jk z zTM TM TM

v m m m m mA R e e R e M
       

 
  
 

 (31) 

, , ,( ( ' )) ( ( ' )) ( ( ' ))

, 1 , 1
m z m m m z m m m z m mjk z z jk z z jk z zTM TM TM

v m m m m mB R e e R e M
           

 
  
 

 (32) 

In above equations, geometric quantities z and z’ are positions of observation and 

source points with respect to z- axis with origin at the earth’s surface, Δm is the 

thickness of m-th layer and zm is depth of the interface of the m-th and m+1-th 

layers. 
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Generalized reflection coefficients ,

, 1

TE TM

m mR 

 

for layer m are obtained by iterative 

procedure, starting from the lowermost half-space n (semi infinite earth) for 

evaluation of ,

, 1

TE TM

m mR   and the topmost half-space with index 0 (air) for evaluation 

of 

 

,

, 1

TE TM

m mR  , considering that ,

, 1 0TE TM

n nR  

 

and ,

0, 1 0TE TMR   , respectively. 

Other required parameters are expressed as: 

1 , 1,

, 1

1 , 1,

m m z m m zTE

m m

m m z m m z

k k
R

k k

 

 

 



 





, 

1 , 1,

, 1

1 , 1,

m m z m m zTM

m m

m m z m m z

k k
R

k k

 



 

 

 

 

m m mj    , 
m m mk j   , 

2 2

,m z mk k k   (33) 

Appendix B – Development of LF Approximation of Green’s Functions for 

Formulation A 

The LF approximations of Green’s functions for formulation A of potentials in 

MPIE, for a two-layered earth are developed following the procedures provided in 

[14] [15]. Here, some key steps in development are briefly provided for 

completeness. 

For two-layered earth, generalized reflection coefficients are reduced to: 

1,2, , , 1

1 1,0 1,2[1 ]zjk dTE TM TE TM TE TMM R R e
    (34) 

,

0, 1 0TE TMR   ;  
, ,

1,0 1,0

TE TM TE TMR R ;   1,2, , , ,

2,1 2,1 1,0 1
zjk dTE TM TE TM TE TM TE TMR R R e M


  ;

 
,

2,3 0TE TMR  ;  
, ,

1,2 1,2

TE TM TE TMR R ;   1,2, , , ,

0,1 0,1 1,2 1
zjk dTE TM TE TM TE TM TE TMR R R e M


   (35) 

where d is thickness of topmost earth layer. The first key simplification is to 

obtain LF approximation of the reflection coefficients , 1

TE

m mR  and , 1

TM

m mR  .  

For frequencies approaching 0 Hz the following approximation is valid: 

k0,z ≈ k1,z ≈ k2,z since
2 0nk  for n = 0, 1, 2. 

Then reflection coefficients become constants and can be extracted from the 

Sommerfeld integrals. Considering that in practical cases 1 = 2 = 0, the LF 

approximations of TE and TM related reflection coefficients can be expressed as: 

 , 1 0TE

m m LF
R   ;  , 1 , 1

TM

m m m mLF
R R   while  1

1TE

LF
M   (36) 

The second key simplification is to expand 1( )

TM

LFM  in following series [18]: 

   1, 1,2 21

1,0 1,2 1,0 1,21
0

[1 ]z z
pjk d jk dpTM

LF
p

M R R e R R e


 



    (37) 
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Additionally, in development of LF approximations for layers 0 and 2, wave 

numbers of different layers can appear in equations. In such case it is impossible 

to obtain simple closed-form approximation of Green’s function. To circumvent 

this problem, third key simplification is introduced, by which, k0,z, k1,z and k2,z are 

substituted with unique wave number km,z related to the observation layer. 

In the final step of development, following identities are used to obtain closed-

form solutions of the Green’s functions: 

, , ,

, 0

, ,0

( )
m z l p m l pjk h jk r

m

l p

m z l p

e e
g J k k dk

jk r

 

      (38) 

, , , , ,

, 2 2

, ,0

2( )
ˆ ( )

m z l p m l p m l p m l pjk h jk h jk r jk r

m

l p

m z l pm

e e e e
g J k k dk

jk rjk

   

  


   

  (39) 

2 2

, , , 1, 2,3,4.l p l pr h l    , 1, 2 ( ),ph dp z z   2, 2 ( ),ph dp z z    

3, 2 ( ),ph dp z z    4, 2 ( ).ph dp z z    (40) 

where subscript l is related to the vertical distance hl,p between the observation 

point and source image with index p, from the infinite series of images. 

Note that when 1 = 2, εr1 = εr2 and 1 = 2 =0, image approximations can be 

further reduced to ones valid for uniform earth, proposed in [10]. 
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