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Abstract: In the industry, the continuous operation of machines is required, making it difficult 

to stop and carry out preventive maintenance to check the status of the wear elements. 

However, the early detection of a faulty element allows avoiding further damage to the 

machine and the user. Thus, it is very important to have continuous and remote monitoring 

of the machine’s status and the wear of its elements without stopping the process; to this aim, 

vibration analysis is one of the most effective techniques. In this paper, a vibration-based 

fault detection system with IoT capabilities applied to a vibrating conveyor is presented.  

The system processes the acceleration force measured in 6 points of the machine using two-

axis wireless accelerometers and obtains the position-time date time to derive three machine 

parameters: stroke, direction and frequency; comparing these values to their nominal 

reference the system provides a visual interface to inform the operator both, in situ and 

remotely, the status of the machine. The system performance is validated through a physical 

conveyor prototype. 
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1 Introduction 

Fault detection systems have been widely used in different fields to perform early 

detection of faults, avoiding damage to the system and the user. Nowadays, several 

of these detection systems are based on mathematical models of the process to avoid 

the physical redundancy of actuators and sensors. 

In literature, several models and algorithms that adequately represent the behavior 

of different systems can be found. The analyzed models are not only oriented to 
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represent industrial systems but also social behaviors, for instance, authors in [1] 

analyze and identify human activities under uncertain conditions; also, the 

mathematical analysis of how the seasonal time affects tourism is presented in [2]. 

Models have also been used in control tasks. In [3], a fuzzy control based on 

myoelectric signals applied to a prosthetic hand is presented. However, the online 

implementation of these models can be difficult in industrial processes that require 

low-cost and physically robust solutions. 

In the industry, continuous processes demand more machine uptime making it 

difficult to stop the machine and to carry out preventive maintenance to check the 

status of the wear elements. 

On the other hand, early detection of a faulty element yields in a replacement of 

only the failing part avoiding the damage to be spread to other machine parts [4]. 

This means that it is very important to have a continuous, remote if possible, 

monitoring of the machine's status and the wear of its elements without having to 

stop the process. In the case of motor bearings, machine vibration analysis is one of 

the most effective techniques [4], [5], [6]. 

The study case in this paper is a vibratory conveyor. A vibratory conveyor achieves 

the transportation of particles by vibrating at a specified frequency width and 

specific stroke length and angle [7], [8], such that it is also important to have 

continuous monitoring of the vibration frequency as well as the direction of these 

vibrations to detect anomalies in the conveyor's joints. 

Moreover, it is important to process the before mentioned information in real-time 

to indicate to the operator the status of the machine elements to efficiently program 

the machine preventive maintenance avoiding unnecessary stopping times. 

Different vibration analysis techniques and sensing methods have been reported in 

the literature to detect machine anomalies. In [8], damage detection is observed by 

tracking the vibration energy distribution over time. An unobtrusive vibration based 

on optical strobing is presented in [9] whereas a vibration sensing based on optical 

fibers is presented in [10]. In order to filter the vibrating signal noise, a genetic 

algorithm is presented in [11]. 

Different from the above-mentioned proposal, the main contribution of this paper 

is determining the status of the wear elements in a vibrating conveyor by processing 

the acceleration force measured at six different points of the machine using two-

axis wireless accelerometers, without using complex mathematical models, which 

in-situ implementation can be difficult in the fault detection system. 

Using a low-cost ESP32 microcontroller, the acceleration data is integrated with 

respect to time to obtain the velocity of the vibration and then integrated to obtain 

the position over time where three machine parameters are derived: stroke 

displacement, direction and frequency. 
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The machine parameters are then compared to the nominal parameters of the 

machine to obtain a deviation and, by using the technician's expertise, fixed 

thresholds are defined to translate such deviations into green, yellow or red status 

for each parameter to continuously inform the operator of the status of the machine. 

Moreover, the placement and removal of the sensors can be carried out without 

stopping the machine’s process and with no mechanical or electric connections 

involved and the selected microcontroller can transmit data using Wi-Fi, enabling 

remote monitoring and allowing IoT tasks. 

The rest of the paper is organized as follows: the vibratory conveyor physics is 

presented in Section 2; the proposed measurement scheme is presented in Section 

3; validation of the measurement scheme is reported in Section 4; lastly, the 

conclusions are presented in Section 5. 

2 Vibrating Conveyor 

Bulk solids and particles can be transported by using belts, hoists, trams, etc.; they 

can be propelled to move by augers, drag paddles, and rotary vanes. Sliding these 

solids over channels or slats and transporting them pneumatically are some of the 

options [12]. 

Induced transport is another alternative achieved through a vibrating action that 

moves the load [4], even when micromachines are considered [13]. The result is a 

transport movement that is induced rather than forced, yielding in a smooth 

movement. 

This type of transportation can be carried out by applying a suitable stroke in a 

specific direction at the frequency required by the material such that the applied 

vibration inherently reduces friction between parts or particles of the moved 

material. 

The principle of operation is based on finding the natural frequency at which the 

springs come into resonance, avoiding the use of counterweights and controlling the 

resonance to avoid damaging the machine. 

Once the machine springs are vibrating at their natural frequency, a motor only 

needs to apply the necessary energy to maintain the amplitude of this vibration. 

With this method, different displacement patterns can be obtained, as shown in 

Figure 1, where the linear displacement achieves the most efficient transport is 

widely used. In the industry, continuous processes demand more machine uptime 

making it difficult to stop the machine and to carry out preventive maintenance to 

check the status of the wear elements. 



R. Martínez-Parrales et al. Vibration-based Fault Detection System with IoT Capabilities for a Conveyor Machine 

‒ 10 ‒ 

 

Figure 1 

Vibration conveyor movement patterns 

Throughout a cycle of linear displacement, shown in Figure 2, the particle separates 

from the conveyor at point A and begins a free projectile trajectory returning to the 

conveyor at point C. From point D the particle is pushed in the desired direction. 

 

Figure 2 

Evolution of the particle throughout a complete cycle of displacement 

Depending on the displacement angle, a gentler or more abrupt transport is achieved 

on the material, obtaining the point with the highest transport speed at 45 degrees, 

as shown in Figure 3. 

 

Figure 3 

Relationship between the angle and the velocity of the particles. 

To obtain a specific displacement angle, it is necessary to define the length of the 

displacement and the frequency of the vibration based on the characteristics of the 

material to be transported. 

The combination of the length of the displacement and the square of the frequency 

allows estimating the magnitude of the vibration force, expressed in Gs, necessary 

to carry out this displacement. Note that different combinations of frequencies and 

displacement result in a similar G-force. 
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A short displacement at a high frequency achieves an intense transport at the 

material surface level with low penetration, which means that only the top layer is 

transported. On the other hand, a much lower frequency with a greater displacement 

achieves greater penetration but little movement on the surface. Therefore, each 

vibration conveyor machine is designed to achieve a specific frequency and 

displacement. 

Knowing these design parameters is feasible to create a motion model of the 

machine applicable at each point where the resonant springs are located. 

In this context, if the vibration, displacement and frequency of the machine are 

measured at these points, it can be estimated if the machine is operating within the 

correct expected values or if there is some kind of anomaly or fault. 

3 Materials and Methods 

The vibration-based fault detection system designed in this work allows 

determining the operating status of the conveyor by calculating the effective stroke 

of the machine, as well as its vibration frequency, besides, the ESP32 

microcontroller used in its implementation allows including IoT capabilities. 

The general scheme of the fault detection system is presented in Figure 4. 

 

Figure 4 

General scheme of the fault detection system 
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3.1 Vibration Measurement Stage 

Different vibration sensors with different accuracies and ranges of measurable G-

forces are available in the market. In this work, the Analog Devices ADIS16000 a 

receiving hub that can manage a wireless sensor network and six ADIS16229 

functioning as measurement nodes are selected based on their communication 

properties, sensibility range and measurement precision. 

The ADIS16229 is a wireless vibration sensor node that combines dual-axis 

acceleration detection with advanced time-domain and frequency-domain signal 

processing, including the Fast Fourier Transform (FFT) and programmable alarms. 

After processing the data from each of the six sensors, a microcontroller must 

interpret the values to display them numerically to the operator; additionally, the 

system presents a graphical interface, in the form of a led tower light, which uses 

the colors: green to indicate a correct operation, yellow for a state that requires 

attention and red for a fault state. 

Furthermore, the selected microcontroller includes a Wi-Fi protocol that allows it 

to be used as a remote node capable of IoT tasks, such as remote monitoring of the 

system. 

3.1.1. Considerations 

The sensors must be self-powered by batteries providing the system with at least 

24-hours of autonomy. Data communication must be wireless. The sensors must be 

placed and removed from the machine without requiring any additional elements, 

connectors or bolts, and this process must be possible under operating conditions. 

The sensor nodes are configured to take constant vibration readings in the 10 Gs 

range. Since the vibration is measured using an acceleration sensor, conceptually it 

is possible to integrate such acceleration to obtain the stroke speed and integrate the 

obtained result to get the stroke. 

The theory used to carry out the aforementioned conversions is simple and well 

known, however, its implementation would only be possible in a noise-free 

environment, in which the sensor is capable of delivering an accurate acceleration 

measurement in the direction of the stroke. Because this is not feasible in an 

industrial operating system, a formulation that considers the characteristics of the 

sensor and the machine to perform a corrected double integration is required. 

First, the sensors are configured such that each value used for the calculation is an 

average of 10 readings, this is achieved by activating the averaged FFT mode of the 

ADIS16229, this reduces the Gaussian noise and provides values with an improved 

signal-to-noise ratio. 
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The average values are stored in 2 vectors, one corresponding to the X-axis sensor 

and one corresponding to the Y-axis. These values are scaled according to the 

configured G range in the ADIS16229. 

3.1.2. Frequency and Stroke Estimation Algorithm 

Using an ESP32 microcontroller, the data is requested through the SPI port to the 

ADIS16000 and the proposed 7-step algorithm, presented in Figure 5, is performed 

in the microcontroller. 

Step 1.
Measured 
values to 
mm/s2 

conversion

Step 2.
Acceleration 
integration

Step 3.
Peak

detection

Step 4.
Offset error
correction

Step 5.
Speed offset

removal

Step 7.
Stroke

calculation

Step 6.
Frequency
calculation

 

Figure 5 

Developed 7-step algorithm to calculate frequency and stroke 

Step 1. Convert values to mm/s2. Values in millimeters per second squared are 

obtained by converting the measured value according to Eq. (1). 

𝑎𝑋[𝑖]  =  𝑎𝑋[𝑖](0.3052)(9.80665), 𝑉𝑖 =  0, . . . , 255  (1) 

where 9.80665 represents the value of 1 mG in mm/s2 and 0.3052 is the weight in 

mGs of the less significant bit (LSB) in the sensor scale of 10 Gs. 

Step 2. Integrate the acceleration. A first integration step is performed on the X-

axis data using the trapezoidal integration method, as shown in Figure 6, to obtain 

the velocity on the X-axis according to Eq. (2). 

 ∫ 𝑓(𝑥)𝜕
𝑏

𝑎
𝑥 ≈

𝑏−𝑎

2𝑁
∑ (𝑓(𝑥𝑛) + 𝑓(𝑥𝑛+1))𝑁

𝑛=1  (2) 

 

Figure 6 

Graphic representation of the trapezoidal integration method 
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If the velocity is plotted at this point, the response shown in Figure 7 is obtained. 

 

Figure 7 

Velocity obtained by direct trapezoidal integration 

Note that the resulted integral shown in Figure 7 contains a sinusoidal signal 

mounted on a ramp. Considering the nature of the movement of the machine, the 

velocity is expected to have a sinusoidal shape with similar peak values. This 

implies that the ramp observed in Figure 7 is derived from an integrated offset error 

associated with the imprecision in the acceleration data. In order to eliminate this 

ramp, steps 3 and 4 are applied to the signal obtained in Step 2. 

Step 3. Peak detection. During a sensor scan window, the first and last peak values 

contained in the resulting vector of Step 2 are identified and the slope mv is obtained 

by dividing the difference in the speed values Av by the difference in the time values 

At, i.e., mv = Av/At. Graphically this implies the representation shown in Figure 8. 

 

Figure 8 

Peak detection of the acceleration integral signal 

Step 4. Correction of the offset error. The value of the slope mv is a linear function 

proportional to time on the velocity graph mv(t) + b, where the constant part b is 

still unknown. However, by deriving mv(t) + b with respect to time, the value mv 

represents the offset error in the acceleration data. Then, mv is subtracted from the 

acceleration vector obtained in Eq. 1 as shown in Eq. (3). 

𝑎𝑋[𝑖] = 𝑎𝑋[𝑖] − 𝑚𝑣 , ∀𝑖 = 0, … ,255     (3) 

After this offset correction, step 2 is repeated, obtaining in this case the speed vector 

without the ramp offset. 
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Step 5. Remove continuous speed offset. Once the corrected speed is obtained, the 

constant component b from the equation mv(t) + b is eliminated. In order to achieve 

this, the maximum and minimum values in the velocity vector are obtained and the 

value of b is derived from the average of these 2 values as shown in Eq. (4). 

𝑏 =
𝑚𝑎𝑥{𝑣𝑋}+𝑚𝑖𝑛{𝑣𝑋}

2
 (4) 

Then, the velocity vector offset is corrected by subtracting the value of b, as shown 

in Eq. (5). 

𝑣𝑋[𝑖]  =  𝑣𝑋[𝑖] —  𝑏, 𝑉𝑖 =  0, . . . , 255 (5) 

Step 6. Frequency calculation. Taking advantage of the peak detection performed 

at Step 3, the At is divided between the number of peaks np found in the velocity 

vector minus one, to obtain the period and the machine frequency f as shown in Eq. 

(6). 

𝑓 = 𝑇−1

𝑇 = ∆𝑡/(𝑛𝑝 − 1)
 (6) 

Step 7. Stroke calculation. Starting from the corrected velocity vector, steps 2 to 5 

are now applied in order to integrate and correct the speed data to obtain a position 

vector associated with the machine stroke. 

The X-axis stroke is calculated as the difference between the maximum and 

minimum values in the position vector as shown in Eq. (7). 

𝑠𝑡𝑟𝑜𝑘𝑒𝑋 = 𝑚𝑎𝑥{𝑑𝑋} − 𝑚𝑖𝑛{𝑑𝑋}  (7) 

The ADIS16229 is a two-axis sensor allowing to perform the above-mentioned 

steps for the data obtained, in the same time window, for the Y-axis and calculate 

the corresponding stroke by Eq. (8). 

𝑠𝑡𝑟𝑜𝑘𝑒𝑌 = 𝑚𝑎𝑥{𝑑𝑌} − 𝑚𝑖𝑛{𝑑𝑌} (8) 

The total stroke, s, is finally obtained as the square root of the sum of the squares 

of the strokes in the X and Y axes as denoted in Eq. (9). 

𝑠 = √𝑠𝑡𝑜𝑘𝑒𝑋2 + 𝑠𝑡𝑜𝑘𝑒𝑌2 (9) 

The process to obtain the frequency and stroke is performed for each of the six 

ADIS16229 sensors paired to the corresponding ADIS16000 sensor hub and 

repeated continuously. The latest results of the six sensors are stored in the 

microcontroller and are readily available to be requested via a serial protocol. 

The proposed algorithm is programmed into the ESP32 microcontroller 

to validate this proposal over a wide range of operating conditions using a 

 testbench system. Once the algorithm is validated it can be programmed into the 

selected Allen Bradley PLC to be installed in the industrial plant. 
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4 Validation Testbench 

The vibrating conveyor machine, to which the proposed fault detection system is 

applied, has a nominal stroke of 25.4 mm with a nominal vibration frequency of 10 

Hz. Within this context, a test bench system capable to operate at different strokes 

and frequencies around the nominal conveyor parameters is necessary to validate 

the proposed algorithm. 

4.1 Design Requirements 

It is desired that the test system has a variable stroke in a range of 20 to 30 mm so 

that the 25.4 mm nominal conveyor stroke is within this range being possible to 

emulate larger and shorter strokes. Note that the stroke should have a trajectory as 

linear as possible to resemble the actual movement of the conveyor. 

On the other hand, the vibration frequency that the test system can generate must 

be in a range of 5 to 20 Hz to emulate the 10 Hz nominal frequency of the conveyor, 

having a test range from half to twice this nominal frequency. 

4.2 Testbench System 

Based on the mentioned requirements, the test bench system consists of a 1.2 m 

long A36 steel arm attached, at one end, to a pair of bearing blocks while the other 

end is attached to a connecting rod designed to achieve a 30 mm stroke. 

This connecting rod is attached to a crankshaft and the latter is held by two bearing 

blocks with a 500 V-belt pulley attached to its opposite end. 

Aligned to the 500 pulley a 4-pole, 60 Hz, three-phase, 3 HP motor with a 1.7500 

V-belt pulley on its shaft is placed. Then, a type B model B30 belt is used to transmit 

the mechanical torque from the 1.7500 pulley in the motor to the pulley in the 

crankshaft. In this case, the motor speed is controlled by a Power Flex 523 variable 

frequency drive to obtain the desired vibration frequency. 

Note that the 1.2 m arm has a leverage movement such that a range of 0 to 30 mm 

can be obtained along the arm length. Moreover, the pulleys configuration is 

designed to obtain a vibration frequency of 10 Hz when the motor voltage has a 

frequency of 60 Hz. Figure 9 shows a photograph of the test bench system used to 

validate the proposed algorithm. 
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Figure 9 

Testbench system 

4.2 Prototype 

The ADIS16000, which works as the receiver hub, is connected to the SPI port to 

the ESP32 microcontroller in which the proposed algorithm is implemented.  

The microcontroller is Wi-Fi connected to a computer to send the data obtained with 

the proposed method. This data is post-processed in the computer to obtain the mean 

and variance of each sensor. 

Figure 11 shows the complete box containing the microcontroller and the 

ADIS16000 receiver node with the wireless communication antenna. 

 

Figure 11 

ADIS16000 and microcontroller box 

Considering that the conveyor machine and the testbench arm are made of carbon 

steel, the sensor fixing is done using magnets. In this case, seven N50 grade 

neodymium blocks of 25x10x5 mm are inserted in the base of each sensor node box 

to achieve the necessary magnetic force to withstand the vibration. 

5 Fault Detection Stage 

Based on the experience of conveyor maintenance technicians, the operating state 

of the machine is considered within 3 possible regions: a green safe state, a yellow 

warning state and a red fault state. In this context, three-color led tower lights, 
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shown in Figure 9, one for each sensor, are installed near the vibration conveyor 

machine to continuously indicate to the operator about the stroke and frequency 

status of the machine. 

 

Figure 9 

Three-color led tower light 

Table 1 shows the colors associated with the stroke and the frequency status 

according to the stroke deviation and the frequency deviation, respectively. 

Table 1 

Contains the result of comparing in pairs with the final result 

 Green Yellow Red 

sdev < 1 mm 1-2 mm > 2 mm 

fdev < 0.25 Hz 0.25-0.5 Hz > 0.5 Hz 

This information can be simultaneously sent to a remote location thanks to the IoT 

capabilities of the ESP32 microcontroller. 

The stroke deviation sdev is obtained as the absolute difference between the 

calculated stroke and the machine nominal stroke snom according to Eq. (10). 

𝑠𝑑𝑒𝑣 = |𝑠 − 𝑠𝑛𝑜𝑚| (10) 

The frequency deviation fdev is obtained according to Eq. (11) where fnom 

is the nominal frequency of the machine. 

𝑓𝑑𝑒𝑣 = |𝑓 − 𝑓𝑛𝑜𝑚|                  (11) 

If both parameters are in the safe state, the green light is ON. If a warning 

or fault state is presented, the yellow or red lights, respectively, start to blink. 

The led light blinks at 1 Hz to indicate the non-safe state of the stroke, while blinking 

at 3 Hz indicates a non-safe state of the frequency. 

If both parameters have a similar non-safe status, the light blinks at 1 Hz 

for 2 seconds, after, the light blinks at 3 Hz for 2 seconds and the cycle is 

repeated. Thus, the operator is visually informed every 4 seconds about the 

machine status at each sensor location. 

Moreover, the led tower contains a buzzer that can be wired together with 

the red light to have an audible alarm in the case where the stroke or the 

frequency presents a faulty status. 
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6 Results and Discussion 

6.1 Frequency and Stroke Calculation Validation 

Using the testbench system presented in Figure 9, several experiments were 

performed using different strokes at different frequencies to validate the proposed 

algorithm. 

In order to set the desired stroke, the dial indicator shown in Figure 12 is used to 

find, with high precision, the point along the arm where the sensor should be placed. 

This is considering the location of the MEMS accelerometer in the sensor board. 

 

Figure 12 

Dial gauge calibration for 25.4 mm stroke. 

On the other hand, the PowerFlex variable speed drive is used to obtain the desired 

frequency, which is measured with a digital stroboscope tachometer. 

After testing the strokes in the range of 20 to 30 mm, the results indicated that the 

algorithm has the highest error in determining the stroke when it is at its maximum 

value. 

Figure 13 shows the estimated strokes obtained with the proposed method for each 

of the 6 sensors during 10 consecutive scans using a 30 mm stroke and a vibration 

frequency of 10 Hz. 

As can be seen in Figure 13, the S2 sensor estimates have the biggest errors, varying 

from 28.9 to 29.2 mm. On the other hand, the S1 sensor showed the best estimates, 

between 29.6 and 29.9 mm. 
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Figure 13 

Stroke estimations on the 6 sensors 

In order to reduce the errors in the stroke estimates, improving the estimation 

accuracy, a moving average filter of 10 samples is applied. Considering over one 

thousand strokes estimated at 30 mm and using the average filter, the mean value, 

µ, and the standard deviation, σ, of each sensor are obtained and presented in Table 

2. 

Table 2 

Sensor mean values and standard deviations for a 30 mm stroke 

 S1 S2 S3 S4 S5 S6 

 (mm) 29.730 29.006 29.343 29.628 29.290 29.563 

 (mm) 0.051 0.055 0.049 0.052 0.053 0.048 

To determine if the sensor errors are constant or proportional, the same experiment 

is repeated for a 20 mm stroke. Comparing the sensor mean values 

for a 30 mm stroke with those obtained at 20 mm, it was observed a proportional 

relation such that the correction factors presented in Table 3 were obtained in 

order to correct the sensor gain that affects the strokes estimates. 

Table 3 

Correction factor for each sensor 

S1 S2 S3 S4 S5 S6 

1.0091 1.0343 1.0224 1.0125 1.0242 1.0148 

These correction factors cf are simply considered in the stroke estimates as 

denoted in Eq. (12). 

𝑠 = 𝑐𝑓√𝑠𝑡𝑟𝑜𝑘𝑒𝑋2 + 𝑠𝑡𝑟𝑜𝑘𝑒𝑌2 (12) 

By using the correction factors, the stroke estimation accuracy is increased and 

combined with the sensor precision associated with the corresponding standard 

deviation, presented in Table 2, the fault detection in the machine stroke becomes 

attainable. 
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In the case of the frequency estimation, the proposed algorithm presents good 

results in the six sensors. Table 4 shows the maximum errors found in the frequency 

estimates at 10 Hz for each of the 6 sensors. 

Table 4 

Maximum errors in frequency estimates (Hz) at  10Hz 

S1 S2 S3 S4 S5 S6 

0.03 0.04 0.03 0.04 0.04 0.05 

As can be seen in Table 4, the proposed algorithm is capable to estimate vibrating 

frequencies within a precision of ±0.05 Hz, making it suitable to detect failures 

associated with the vibration frequency in the conveyor machine. 

6.2 Fault Detection System Validation 

Considering the fault conditions presented in Table 1, different experiments were 

performed to determine if the proposed fault detection algorithm was able to 

adequately detect the conveyor machine strokes under different operating 

conditions. 

336 estimations were performed on each sensor operating with a stroke of 1 inch 

(25.4 mm), the estimations of the sensor with the worst performance were plotted 

in a histogram and compared to a Gaussian fit to quantify the number of outliers in 

the case of assuming a Gaussian distribution. These results are presented in Figure 

14 where it can be observed that 8 estimations of the 336 performed are outside of 

the Gaussian assumption. 

  

Figure 14 

Histogram of estimations from sensor 2 

The Gaussian distribution parameters obtained with Matlab representing the red line 

in Figure 14 have a mean value of 25.4003 and a standard deviation of 0.0536491. 

In this context, the fault detection accuracy (FDA) of the proposed algorithm when 

the stroke deviation is over 2 mm representing the detected faulty red status and 



R. Martínez-Parrales et al. Vibration-based Fault Detection System with IoT Capabilities for a Conveyor Machine 

‒ 22 ‒ 

considering a tolerance of ±0.107 mm, corresponding to 2 times the expected 

standard deviation, is obtained as: 

𝐹𝐷𝐴 =
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝑠
100% =

336−8

336
100% = 97.62% (13) 

The obtained results are compared to the fault recognition accuracy for a belt 

conveyor based on Support Vector Machine and Grey Wolf Optimization presented 

in [14] and shown in Table 5. 

Table 5 

Fault detection accuracy 

Method Accuray 

(%) 

Proposed 7-step algorithm 97.62 

Support Vector Machine and Grey Wolf Optimization 97.22 

Conclusions 

A reliable method to obtain stroke and frequency data derived from the G-force 

measured by a vibration sensor is presented. This method is able to define in a non-

invasive way the operating state of the machine allowing the operators to program 

preventive maintenance with greater efficiency. 

Based on the test system specifically designed and built to test the proposed 

methodology, it was possible to corroborate the precision of the method and the 

reliability that it can offer in its application in the industrial field. 

It was also possible to define a methodology to obtain correction factors for the 

stroke and to be able to calibrate the sensors because due to the nature of their 

construction they present small differences in their sensitivity. 

It is worth mentioning that the acceleration sensors were selected based on their 

availability in the development stage; however, the proposed methodology can be 

easily implemented using any two-axis acceleration sensors with similar 

characteristics. 

The conveyor machine was validated in a 30-mm wide range, such that the 

developed system is useful for similar applications in this range, and can be easily 

modified to be adapted to different ranges. 

The fault detection system was validated under fault conditions in a physical 

testbench obtaining a detection accuracy of 98.01%. 

Finally, the selected ESP32 microcontroller allows not only the implementation of 

the developed 7-step algorithm adequately but including IoT capabilities to the 

system such as remote monitoring and alarm notification. 
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