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Abstract: The proliferation of smartphones has led to an increase in the cellular 
infrastructure, due to efforts by mobile operators to meet the rising demand. Given that the 
planning of cellular networks is carried out according to demand during peak hours, a large 
number of base stations must be deployed to maintain a constant number of base stations 
even when traffic intensity is reduced. This strategy has brought about increased energy 
levels in cellular networks, affecting the networks' operating expenses and contributing to 
the problem of carbon emissions in the atmosphere. This work shows an algorithm that 
deactivates base stations for cellular networks and reassigns mobile users. We use the 
interruption probability to analyze the effect of base-station-deactivation on mobile users. 
We perform two approaches: one using a homogeneous network and the other a 
heterogeneous network. The homogeneous network is a macro-cell deployment, whereas the 
heterogeneous network comprises macro-cells and femto-cells. A genetic algorithm is used 
to find the set of base stations to deactivate and continue offering the demand services.  
As the carrier-to-interference ratio increases, the results show that few base stations need 
deactivating in a heterogeneous network with high traffic demand. 
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1 Introduction 
Currently, there are mobile applications for almost any activity performed on 
smartphones, from carrying out banking operations to measuring kilometers 
traveled during a walk. The applications work automatically, anywhere, and at any 
time. As a result, smartphones have gained popularity among the world's 
population, as shown by the fact that, in 2018, 66% of the said population had a 
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mobile device. Following this trend, it is estimated that by the year 2023, the 
percentage will increase to 71% [1]. These devices provide voice and text 
messaging services and focus on online services such as data storage and social 
networks, as well as music and video transmissions, all of which generate more data 
traffic. 

Network operators' strategy to meet the demand for data is to increase the number 
of base stations in a network [2]. This proposal is known as network densification 
[3]. It implies that many base stations (BSs) are deployed to handle high traffic 
status. However, the same number of active BSs is maintained even when traffic 
intensity is reduced. BSs use between 60% and 80% of the total energy utilized in 
a cellular network [4], and are responsible for 70% of the network's carbon dioxide 
emissions, making BSs the most energy-consuming devices in a network [5].  
On a global scale, the information and communications technology industry 
contribute 2% to the world's CO2 emissions [6]. 

In essence, there is one important reason why the development of green cellular 
networks has been proposed to address the imbalance between energy performance 
and energy consumption: the need for environmentally friendly cellular networks 
[7]. Researchers in the communications industry have focused on improving energy 
efficiency because BSs are the primary consumers of energy in a cellular network. 
Some solutions to reduce energy consumption involve BS hardware modifications 
or intelligent management of the elements of a network based on variations in traffic 
load [7]. Other solutions, reported in [7], propose reducing power amplifier 
operation periods, deploying heterogeneous networks, or switching BSs on/off. 

The number of active BSs can be optimized by shutting down underused BSs and 
loading all users from the off BSs to the active BSs through a reassignment process 
[8]. To deactivate BSs within a network, it is necessary to find the minimum set of 
active BSs needed to continue offering the services in demand. This problem is not 
a trivial problem, given that various factors influence which BS should be active, 
such as radius coverage of the BS, available channels, and interference. On the other 
hand, the significant number of BSs in a network increases the possible 
combinations of active BSs, i.e., possible solutions to the problem. Therefore, 
minimizing active BSs in a cellular network is considered an NP-Hard [9] type 
problem since the time spent looking for a feasible solution is substantial. It should 
be mentioned that the optimal solution to this problem has not been found because 
there are potentially many, and the solution depends on multiple factors. 

User reassignment adds complexity to the problem. A decision must be made about 
which subset of BSs to disable and which mobile users to associate with each active 
BS. These are yet more factors to consider when modeling the system. 

The protocol for the assignment of mobile users should not be confused with that 
of their reassignment. The former has already been widely studied and reflected in 
standards mentioned in [4] [10] [11], whose improvements are focused on energy 
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efficiency and load balancing. Whereas the latter, the user-reassignment, arises due 
to the BS being shut down. 

The present work proposes an algorithm for BS deactivation and mobile user 
reassignment. The algorithm uses an optimization model designed to minimize the 
number of active BSs by using the fundamental processes of an artificial 
intelligence technique called a Genetic Algorithm (GA) [12]. The use of GAs has 
proven to be appropriate in the context of this research topic, as shown in [2] and 
[6]. Reassigning users is an extensive process as all BSs search for the best service 
conditions for their users. For this reason, we apply a steady-state population model 
[12] of the GA to reduce the number of times the processes of crossover, mutation, 
and selection are carried out. 

The GA for deactivating BSs and reassigning mobile users is responsible for 
evaluating the network at a given moment. It finds the minimum set of active BSs 
needed and performs the user reassignment process to maintain a low interruption 
probability (PI) value. To achieve this, in the optimization model, we explicitly 
consider the PI to analyze how BS deactivation affects users’ service. The energy 
saved in this type of algorithm will depend on the number of deactivated BSs.  
If many BSs are deactivated, the energy saved can be substantial [7]. 

This paper is organized as follows: Section 2 presents the related work. Section 3 
describes the system and optimization models. Section 4 explains the base station 
deactivation and mobile user reassignment algorithm. Section 5 discusses our 
experiments and their results. Finally, we present the conclusion, and address 
implications for further research. 

2 Related Work 
In the existing literature, several papers seek to reduce energy consumption in 
cellular networks by minimizing the number of active BSs. For example, in [9], an 
optimization framework is proposed that chooses a minimum set of BSs. It allocates 
mobile users accordingly (reassignment process) while meeting their target Signal-
to-Interference-plus-Noise Ratio (SINR) constraints. It involves two approaches: 
the proactive approach and the reactive approach. The former begins with a low 
traffic load. As traffic increases, BSs are turned on. The latter starts with a high 
traffic load, and BSs are turned off as traffic decreases. The problem is transformed 
to one of full linear programming for small and medium networks and is solved 
with a branch and bound algorithm. For larger networks, a heuristic solution is 
proposed: each time the algorithm tries to eliminate a BS, it constructs a new 
Voronoi tessellation, calculates the SINR for each BS and mobile user pair, and also 
calculates the interruption probability. Unlike [9], our algorithm can be adapted to 
any network size. It considers a PI threshold in the model. 
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In [2], BSs shut down in a specific order, not necessarily beginning with the lower 
load BSs, and a smaller number of BSs are allowed to remain active. The authors 
propose an approach to minimize the number of active BSs. The reassignment 
process assigns a mobile user to a BS with the highest spectral efficiency without 
violating the bandwidth constraints; otherwise, the mobile user is blocked. It is a 
centralized cell zooming approach based on work in [13], in which a GA finds an 
ordering which results in more BSs being switched off. Even though cell zooming 
techniques focus on the energy consumption of the whole network, they may cause 
inter-cell interference and gaps in coverage [13]. In contrast, our algorithm does not 
deactivate BSs because they have smaller loads. Instead, it leaves active those BSs 
that can receive more users from their neighboring BSs, i.e., those located in areas 
with more users. 

Similarly, work in [14] applies a binary Social Spider algorithm to solve the 
problem of BS deactivation by minimizing the number of active BSs. To shut down 
the BSs, the algorithm penalizes the fitness function according to the cell traffic 
load of the available neighboring BSs. If the neighboring BSs can serve the traffic 
load initially handled by deactivated BSs, the penalty value is lower; if not, it is 
higher. They do not include PI constraint in the original optimization problem. Our 
algorithm also applies a penalty function, but, unlike the work in [14], we increase 
the fitness value of a candidate solution if it cannot achieve the PI threshold. We 
guarantee that the BS set selected by the GA serves 99% of mobile users. 

Work in [4] couples its approach to BS deactivation with user association.  
It proposes a fitness function that minimizes the trade-off between energy 
consumption and flow-level performance. Two problems arise from this: 1) a user 
association problem for which a policy is defined that guarantees that mobile users 
associate with the BS in an energy-efficient manner, taking into account the load 
balance; 2) a BS switching on/off problem that is solved employing a greedy 
algorithm. On the other hand, our algorithm evaluates the network-wide impact of 
BS deactivation on mobile users using the PI. 

An algorithm that switches BSs off and on in a heterogeneous network (cellular 
network and wireless local area network) has been proposed [10]. Its cost function 
minimizes energy consumption and maximizes network revenue. To make it 
tractable, the authors divide the problem into two sub-problems (user association 
and BS switching on/off). On the one hand, the user association algorithm connects 
users to BSs or access points (APs) depending on their energy efficiency and 
revenue. For the BS deactivation problem, work in [10] proposes two greedy 
algorithms: the first one is based on the cost function (it turns off the BS that yields 
the maximum cost gain), and the second one is based on the density of access points 
within the coverage of each BS (it turns off the BS with the most significant number 
of mobile users associated with APs). However, this approach does not evaluate the 
impact of the switching on/off strategy on mobile users or Quality of Service (QoS) 
degradation. Moreover, greedy algorithms have a very high computational cost 
[15]. 



Acta Polytechnica Hungarica Vol. 19, No. 10, 2022 

‒ 33 ‒ 

Work in [6] proposes to resize an LTE green network, determining the minimum 
number of active BSs needed given a specific traffic load, with restrictions on QoS. 
The number of active BSs represents energy reduction. A random number 
representing the number of active BSs is generated and, based on already proposed 
disconnection patterns, the active BSs are selected. A GA is applied to solve the 
problem. The user association or reassignment process is considered in the 
optimization model. Their approach introduces user outage per BS in the 
optimization model instead of presenting it at the network system level. 

The work presented in [11] uses a BS on/off algorithm to reduce energy 
consumption in a cellular network. It establishes that BSs be deactivated one at a 
time since this minimally affects the load of the other BSs. Each time a BS is turned 
off, the load increment in neighboring BSs is evaluated. To do this, the algorithm 
considers the type of region (urban, metropolitan, etc.), the location of the BS, and 
its coverage. It proposes a sequential algorithm called Switching-on/off based 
Energy Saving (SWES). It is based on sharing information (feedback) between BSs 
and mobile users, such as system load and signal strength. When a BS is switched 
off, users are reassigned to the new BS with the second-best signal strength. 
However, the feedback may generate a large amount of data to send along with the 
information required by each user. Additionally, it does not quantify how mobile 
users are affected by the switching-off process (user outage). 

The studies mentioned above addresses the reassignment process either jointly with 
or separately from the BS deactivation algorithm. We propose a joint algorithm for 
base station deactivation and mobile user reassignment, but, as opposed to the works 
discussed above, we use the PI metric in the optimization model to quantify how 
the BS switching-off process affects the mobile users in a network system. Then, in 
the GA processes, we add a penalty function to increase the fitness value of a 
candidate solution if it cannot achieve the PI threshold imposed in the optimization 
model. We guarantee that the BS set selected by the GA serves 99% of mobile users. 
Also, unlike the previous works, we analyze the performance of our proposed 
approach in heterogeneous and homogeneous networks at different traffic loads 
(number of mobile users). Another difference is that our work exploits the spectrum 
sharing approach to reuse frequencies in BSs. This efficiently exploits the channels 
available in a given BS since a set of mobile users can transmit over the same 
channel simultaneously [16]. 

3 System Model 
Fig. 1 shows a cellular system network composed of several BSs and mobile users 
deployed over a two-dimensional area. Each base station (BSj) and mobile user 
(UTi) have random Cartesian coordinates that follow a uniform distribution.  
To differentiate the coordinates of these two components, a BSj uses the notation 
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(xj, yj); on the other hand, a UTi uses (ui, vi). The total BSs and mobile users in a 
network at a given moment are indicated by J and I, respectively. 

 

Figure 1 

System scenario 

Mobile users (UTs) assigned to a BS are delimited within their coverage radio D 
(see Fig. 1). The BS can be one of two types: macro-BS and femto-BS.  
The coverage radius of a femto-BS will always be less than the coverage radius of 
a macro-BS. When a BS is switched off (see BS1 and BS4 in Fig. 1) and some UTs 
linked to it cannot be reassigned to a new BS, the UTs are considered without 
service. 

The Euclidean distance between a BSj and a UTi is denoted as di,j and is calculated 
by applying Equation 1: 

𝑑,ሺ𝑘𝑚ሻ ൌ  ට൫𝑢 െ  𝑥൯
ଶ
െ  ൫𝑣  െ  𝑦൯

ଶ
     (1) 

Each BSj provides service to several UTi simultaneously; to know this relationship, 
the User-Base Station Relationship (RBU) matrix was created, as shown in Fig. 2, 
where the rows represent the BSj and the columns represent the UTi. If RBUj,i = 1, 
the BSj serves the user UTi; otherwise, there is no relationship between BSj and UTi. 
In this way, a switched-off BS is made evident, as in the case of BS4 (row 4), since 
there are only zeros in its elements. 

It is also possible to know which UTs are not associated with any BS, as in the case 
of UT10, since all the cells that represent it have values of zero. A BS can only 
allocate a specific number of C channels and service a certain number of UTs. MTU 
is the maximum number of UTs that a BS can serve. Macro-cells can serve more 
mobile users than femto-cells. 

The binary vector Solutions for BS control (SBS) represents a GA's candidate 
solution (individual). Its length is equal to the value of J. The BSj is switched-on if 
the SBSj element has a value of 1 and turned off otherwise. 
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Figure 2 
RBU matrix 

Fig. 3 shows an individual and the scenario it refers to; it proposes that BS2, BS3, 
BS4 remain switched on. On the other hand, the vector CU of a length equal to I 
contains the channel identifier that each UTi has been assigned to by the BS that 
serves it. The elements in CU can take a value from 1 to C. It is essential to mention 
that index k refers to an individual or SBS vector specific to the GA population. 
Index j refers to one particular BS and index i is a particular UT of the network. 

 

Figure 3 
An individual and its proposed scenario 

The carrier-to-interference ratio (CIR or C/I), expressed in dB, is the ratio between 
the average received modulated signal power (i.e., PRi,j) and the sum of co-channel 
interference power received from other transmitters (ITotal) [17]. CIR value can also 
be used as a deciding factor in the channel allocation to UTs [18]. The CIR 
perceived in BSj is calculated based on the following expression: 

𝐶𝐼𝑅ሺ𝑑𝐵ሻ ൌ  𝑃𝑅,  െ  𝐼்௧      (2) 

Where, PRi,j is the received power from UTi to BSj. ITotal is the total interference 
caused by UTs using the same channel as UTi (interference co-channel due to 
spectrum sharing). 

From Equation 2, the total interference ITotal can be determined as follows: 

𝐼்௧ሺ𝑑𝐵ሻ ൌ  ∑ 𝑃𝑅, ∈ఝ       (3) 
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where PRm,j is the received power from UTm to BSj. m refers to the index of 
interfering transmitters that have been allocated to the same channel as UTi. φ is the 
set of UTm using the same channel. 

The received power PRi,j in dB from UTi to BSj is determined as follows: 

𝑃𝑅,ሺ𝑑𝐵ሻ ൌ  𝑃𝑇  െ  𝑃𝐿,      (4) 

where PTi is the transmission power of the UTi (uplink). PLi,j is the path loss 
expressed in dB. It represents the power reduction (attenuation) of the signal as it 
propagates through space between UTi and BSj. The path loss can be calculated 
using Hata’s model for the urban area [19], which is specified as follows: 

𝑃𝐿, ሺ𝑑𝐵ሻ ൌ  𝐴   𝐵 𝑙𝑜𝑔ଵ൫𝑑,൯      (5) 

where: 

𝐴 ൌ  69.55   26.16 𝑙𝑜𝑔ଵሺ𝑓ሻ െ  13.82 𝑙𝑜𝑔ଵ൫ℎ൯ െ  𝑎ሺℎሻ   (6) 

𝐵 ൌ  44.9 െ  6.55 𝑙𝑜𝑔ଵ൫ℎ൯      (7) 

fc is the carrier frequency, hj is the BS antenna height, and hi is the UT antenna 
height. We set A=50 and B=40, as did [20]. 

From Equation 3, the received power PRm,j from UTm to BSj is: 

𝑃𝑅,ሺ𝑑𝐵ሻ ൌ  𝑃𝑇  െ  𝑃𝐿,      (8) 

where PTm is the transmission power of the UTm (uplink). PLm,j is the path loss 
between UTm and BSj given by: 

𝑃𝐿, ሺ𝑑𝐵ሻ ൌ  𝐴   𝐵 𝑙𝑜𝑔ଵ൫𝑑,൯     (9) 

Fig. 4 depicts the CIR metric in BS1. When BS2 is switched off, its UTs are 
reassigned to neighbor BS1. Then, each UT in BS2 computes the received power in 
the channel that BS1 allocates. This is shown in UT6. Its interfering signals are those 
from UT2 and UT3, due to the fact that they are using the same channel as UT6. 

 

Figure 4 

CIR metric in BS1 
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The following optimization model accounts for the problem of optimizing the 
resources of a BS that is turned on according to the reassignment success of UTs. 
In order to obtain the minimum number of active BSs needed in a cellular network, 
the objective function is defined in Equation 10: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝐵𝑆



ୀଵ

 (10) 

As shown in Equation 10, the solution is an SBS vector that determines the lowest 
number of BSs to keep turned on. On the other hand, for a solution to be considered 
feasible, it must comply with the following restrictions: 

𝑅𝐵𝑈, ൌ 1



ୀଵ

 (11) 

𝑂𝑛 ൌ  1                  (12) 

𝑑,  𝐷                   (13) 

𝑅𝐵𝑈,   𝑀𝑇𝑈

ூ

ୀଵ

 (14) 

𝐶𝐼𝑅  𝛼                  (15) 

𝑃𝐼   𝛽                  (16) 

Restriction (11) limits a UTi to a single BSj. Restriction (12) establishes that only 
active BSs may provide service to the reassigned UT; this is represented by the 
equation Onj = 1 if restriction (11) > 0 and SBSj = 1, otherwise Onj = 0. The distance 
between a BSj and a UTi to which service is provided is limited in restriction (13), 
where it cannot be greater than the coverage radius threshold D of the BSj. In (14), 
a BS is required not to exceed the maximum number of mobile users that it can 
service. The value of CIRj represents interference perceived by a BSj ,and it must be 
greater or equal to a threshold as set in (15). Lastly, the percentage of mobile users 
without service when the BSs are turned off in the kth SBS vector must be lower 
than the threshold complying with (16). This percentage is the value of PI. 

4 Algorithm for Base Station Deactivation and 
Mobile User Reassignment 

The procedure to find the minimum set of active BSs to maintain service for at least 
99% of UTs is described below. In STEP 1, the initial scenario is built: BSs have a 
fixed location, whereas the UTs within the coverage area are randomly deployed. 
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Each mobile user UTi is assigned to a BSj if it meets the following conditions: (1) 
the total number of UTs served by the BSj is less than MTU and (2) the distance di,j 
is less than or equal to D. The least used channel of the BSj is assigned to each UTi 
and the identifier of that channel is stored in vector CU in position i. According to 
the spectrum sharing technique, two or more UTs can share the same channel [16]. 

In STEP 2, binary values are randomly set for each element of the SBS vectors 
(individuals) that make up the population. NS identifies the size of the population. 

In STEP 3, the kth SBS vector kth individual is evaluated. Ak represents its fitness. 
The following actions are carried out in this step: 

1. Identify turned-off BSj i.e. the elements of the SBS vector where SBSj = 0 

2. Based on the initial scenario, reassign to an active BS the UTs associated 
with the BS that is turned off in the kth SBS vector, thereby complying with 
the conditions shown in Equations (11-15) 

3. Calculate PIk by applying Equation (17). PIk is the percentage of UTs in 
the network that are out of service, i.e., those UTs that could not be 
reassigned to any of the active BSs in the kth SBS vector. A UTi is 
considered without service if all the cells in column i in the RBU matrix 
have a value equal to 0 

𝑃𝐼 ൌ ቌ𝐼 െ𝑅𝐵𝑈,

ூ

ୀଵ



ୀଵ

ቍ ∗ 100 𝐼൘  
 

(17) 

4. Evaluate the sum in Equation (10) to obtain the value of Ak, counting the 
elements of the kth SBS vector, where SBSj = 1 

Input: Population size, crossover probability, mutation probability, and number 
of iterations. Total number of UTs, the maximum number of UTs per macro-cell, 
the transmission power of UTs, interruption probability threshold, number of femto-
cells, width and height of the terrain, coverage radius for macro-cell/femto-cell, 
number of channels per macro-cell/femto-cell, and maximum number of UTs per 
femto-cell.  

Output: The lowest number of BSs turned on and UTs reassignment.  
1: BUILD initial scenario 
2: INITIALIZE population with random individuals 
3: EVALUATE each individual in Equations (10) to (16) 
4: repeat 
5:  SELECT two parents by using tournament selection 
6: RECOMBINE pairs of parents 
7: MUTATE the two-resulting offspring 
8: EVALUATE parents and offspring in Equations (10) to (16) 
9: SELECT the two best individuals out of the two parents and two offspring. 

Call those best individuals, best1 and best2 
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10: REPLACE parents with best1 and best2 respectively 
11: until Number_of_cycles < Total_number_of_cycles 
12: SELECT the fittest individual from the population 

If the PIk value exceeds the threshold established in Equation (16), the kth SBS 
vector will be penalized. That is, its fitness value will increase based on a penalty 
function. The kth feasible vector can have a maximum value of Ak = J (all active 
BSs). Therefore, the infeasible or penalized vectors will be added (J + 1) to their 
fitness value. 

Each SBS vector corresponds to an RBU matrix that shows the reassignment of UTs 
to the active BS, the UTs without service (if they exist), and the deactivated BSs. 

In STEP 4, the GA performs a cycle which is the process of selecting parents, 
crossing them, mutating offspring, and replacing parents. 

In STEP 5, two parents are selected employing the tournament technique [12]. Two 
individuals are randomly picked, and the winner of these two individuals is selected 
as a parent (the individual with the lowest value of Ak). The process is then repeated 
(to generate a total of two parents). 

Then, in STEP 6, a random number is generated within [0, 1], which is compared 
to the Crossover Probability (PC). If this random number is less than or equal to 
PC, two new individuals (offspring) are generated with a combination of the bits or 
elements of the parents. Specifically, we apply two-point crossover [12], where c1 
and c2 are integers ranging from 1 to J. 

In STEP 7, some bits of the offspring are mutated. A mutation is the inverse value 
of the bit. To decide which bits are to be mutated, a random number within the range 
of [0, 1] is generated for each element of the offspring. If this value is less than the 
mutation probability (PrM), the bit changes. 

Once the offspring have been mutated, the algorithm proceeds in STEP 8 to evaluate 
these individuals and the parents. It also applies the four actions mentioned in STEP 
3. 

In STEP 9, the Ak values of the two parents and two offspring are compared. If those 
individuals are feasible solutions, the two individuals with the best fitness value are 
best1 and best2 [21]. Otherwise, if infeasible individuals are compared, the two 
individuals with the worst fitness value (the highest) are chosen to survive. Those 
two individuals are also called best1 and best2. The replacement strategy applied 
when comparing infeasible individuals is another contribution from the present 
work. 

In STEP 10, best1 and best2 are inserted into the population, replacing the parents. 

There are different stop conditions for a GA with a steady-state population model. 
For example, if the optimal solution is known in the problem, the algorithm can be 
forced to perform the necessary cycles to find that solution or one very close to it. 
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In the case of a GA with a steady-state population model, a stop condition may be 
to carry out the necessary cycles so that all individuals in the population are replaced 
at least once by their offspring. Given that the optimal solution to the proposed 
problem is unknown and changing all the individuals could require too many cycles, 
the stop condition in the present work is a certain number of cycles, as mentioned 
in STEP 11. 

STEP 12 is the result of STEPS 1 through 11. It determines the lowest number of 
required active BSs and reassigns those UTs whose BSs have been deactivated. 

5 Results 
Table 1 shows the values of the simulation parameters that were maintained in all 
the experiments carried out in this research. The aim was to simulate an LTE 
network. For this reason, parameters such as the transmission power of UTs were 
defined based on the work in [22]. 

The DeJong configuration presented in [23] was initially used regarding the GA 
parameters. It is a standard for many GAs, and this parameter combination has been 
found to work better for optimizing a function than many other parameter 
combinations. 

However, to reduce the probability that the initial population is composed only of 
infeasible solutions, we increased the population size from 50 to 100 individuals. 
We also increased the number of cycles from 1000 to 2000, because we had 
observed decreases in fitness after cycle 1000. Finally, the GA parameters used for 
this specific problem are shown in Table 2. 

A sensitivity analysis was carried out to observe the impact of the CIR variations 
on the PI values. In other words, we tried to figure out the trade-off between CIR 
and PI to achieve a service percentage of 99%. 

Table 1 

Simulation parameters 

Parameter Value 

Transmission Power of UT -40 dB 
Area 25000000 m2 
Coverage radius D for macro/femto 1500 m/750 m 
Number of channels per BS 10 channels 
Interruption probability threshold 1% 
Maximum number of users per macro-cell 150 UTs 
Maximum number of users per femto-cell 75 UTs 
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Table 2 

Parameters used in GA 

Parameter Value 

Population size 100 
Crossover probability 0.6 
Mutation probability 0.001 
Number of cycles 2000 

Table 3 describes the characteristics of the experiments performed for sensitivity 
analysis. Regarding the type of network, two cases were considered: (i) a 
homogeneous network (only macro-cells) and (ii) a heterogeneous network (macro-
cells and femto-cells). Two traffic statuses were established, a low one where there 
were only 500 UTs, and a high one where 1000 UTs were located within the cellular 
network. In each of the 12 experiments, the algorithm was run 50 times. As reported 
in [7], heterogeneous networks were used for the femto-cells to support the macro-
cells in high-traffic status. The femto-cells were then deactivated at a low-traffic 
level. 

Table 3 

Parameters used in experiments for analyzing PI 

Experiment I Type of network Number of 
macrocells 

Number of 
femtocells 

CIR threshold 
(dB) 

1 500 Homogeneous 10 - 3 
2 1000 Homogeneous 10 - 3 
3 500 Homogeneous 10 - 7 
4 1000 Homogeneous 10 - 7 
5 500 Homogeneous 10 - 14 
6 1000 Homogeneous 10 - 14 
7 500 Heterogeneous 5 5 3 
8 1000 Heterogeneous 5 5 3 
9 500 Heterogeneous 5 5 7 
10 1000 Heterogeneous 5 5 7 
11 500 Heterogeneous 5 5 14 
12 1000 Heterogeneous 5 5 14 

Table 4 shows the average fitness value for each experiment, the standard deviation, 
the lowest number of active BSs found in the best performance (best fitness 
obtained), and the highest number of activated BSs (worst fitness obtained).  
In addition, for experiments with heterogeneous networks, the fourth column (best 
found) specifies the number of activated macro-BSs (indicated by the letter M) and 
the number of activated femto-BSs (indicated by the letter F). 

The data in Table 4 demonstrate that when the system network presents a low traffic 
status (experiments 1, 3, 5, 7, 9, and 11), the algorithm decides to turn off more BSs. 
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On average, these experiments kept around 6 BSs turned on. On the other hand, 
when the system network has high traffic (the remaining six experiments), the 
algorithm turns off fewer BSs. The latter experiments left about seven turned-on. 

When the average number of active BSs is contrasted with the CIR threshold, it is 
clear that the higher the CIR threshold (14 dB) and traffic, the more BSs are turned 
on to maintain only 1% (PI threshold) or less of UTs without service. 

Table 4 

Fitness or number of activated BSs per experiment 

Experiment Average 
fitness 

Standard 
deviation 

The best found The worst found 

1 6.72 0.54 6 8 
2 8.02 0.14 8 9 
3 7.04 0.57 6 8 
4 8.08 0.27 8 9 
5 7.28 0.61 6 8 
6 8.3 0.51 8 10 
7 6.8 0.61 4 M + 2 F = 6 8 
8 9.46 0.50 5 M + 4 F = 9 10 
9 6.78 0.71 4 M + 1 F = 5 8 
10 9.44 0.50 5 M + 4 F = 9 10 
11 7.1 0.50 4 M + 2 F = 6 9 
12 9.6 0.49 5 M + 4 F = 9 10 

In each of the 12 experiments, when determining if a BS would remain active, the 
algorithm considers the BS's location concerning UTs. When a BS is centered in or 
close to an area with many UTs, and no other BS covering the majority of the UTs, 
the algorithm will likely keep the BS active. For example, the cellular network 
system in Experiment 1, shown in Fig. 5. The uppercase letters represent the macro-
BSs, and the ones inside a red square represent the deactivated macro-BSs. It can 
be seen that J macro-BS is one of the farthest from the rest of the BSs, which makes 
it the only one that can cover certain UTs in its area. We observe that some BSs 
remain active in all the experiments, such as the J macro-BS. In contrast, macro-
BSs A and D are chosen interchangeably in some experiments to cover the same 
area. 

The above observations affirm that the algorithm prefers a BS with higher 
capacities. However, it cannot be ignored that the BSs are also chosen for the 
suitability of their locations. There have been cases where a femto-BS, situated in 
an important area to serve certain UTs, remained turned on even when traffic was 
low. Take, for example, the case of BS J. In experiments with heterogeneous 
networks, it became a femto-BS and was activated. The same happened in 
experiments 7 and 11. 
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Figure 5 

Cellular network system from experiment 1 after executing the algorithm 

A completely different situation is seen when comparing the two types of networks 
in experiments with high traffic situations. Here the difference in fitness is very 
marked. For example, in Experiment 2, the average number of activated BSs was 
8.02, whereas, in Experiment 8, the average was 9.46. We can infer that, in high 
traffic situations, the algorithm has to leave more BSs turned on when dealing with 
heterogeneous networks and fewer with homogeneous networks. This is due to the 
macro-BSs covering a larger area and a more significant number of UTs than the 
femto-BSs. For this reason, when the cellular network system is composed of femto-
BSs and has high traffic, the algorithm is forced to keep more BSs active. 

In terms of convergence, most experiments with low traffic status showed a 
trajectory similar to that shown in Fig. 6. In this case, since there were relatively 
few UTs, the algorithm found feasible solutions in early cycles. In contrast, most of 
the experiments with high traffic showed a convergence similar to that of Fig. 7.  
In that case, there were more UTs, so it was more challenging for the algorithm to 
find feasible solutions in the initial population. That performance was also due to 
the penalty function and the replacement strategy used when comparing infeasible 
individuals. The two worst individuals carried over to the next cycle because of this 
replacement strategy. Its effect was to increase fitness in early cycles, but as the 
cycles ran their courses, fitness decreased, resulting in a feasible solution.  
The improvement or deterioration in fitness was also a function of traffic. Take the 
experiment in Fig. 7 as an example. It had 1000 UTs. Once a feasible solution was 
obtained, the algorithm made few changes to reach a solution with fewer active BSs. 
In contrast, most of the experiments with 500 UTs, the algorithm made more 
changes to find solutions with inferior fitness (see Fig. 6). 
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In each of the 12 experiments, the solutions provided by the algorithm maintained 
the PI at 1%. Under the conditions specified in each experiment, at least one solution 
was found with a minimum percentage of UTs without service. 

Finally, we evaluated other GA variants to compare performance. The experiment 
consisted of a homogeneous network (20 BSs, 500 UTs, and α = 3 dB).  
The experiments were carried out using GA with the generational model and GA 
with the generational model using elitism. Those GA variants have two-point 
crossover and bit-flipping mutation. Their parameters are the ones shown in Table 
2. Each GA variant executed 30 runs. The results are reported in Table 5. 

Table 5 shows that the GA with the steady-state model outperforms the other GA 
variants. Consequently, the GA with the steady-state model has robustness since it 
has the lowest variation. 

Table 5 

Comparison of GA variants 

GA variant Average 
fitness 

Standard 
deviation 

The best 
found 

GA with the steady-state population model 8.46 0.63 7 
GA with the generational model 8.8 2.07 8 
GA with the generational model using 
elitism 

9.53 0.81 8 

 

Figure 6 

Convergence of the algorithm with low traffic (500 UTs) 
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Figure 7 

Convergence of the algorithm with high traffic (1000 UTs) 

Conclusions 

To take full advantage of dense 5G deployments, while still meeting the required 
QoS, sustainable management techniques are needed, to provide eco-friendly and 
cost-effective mobile architectures. A sustainable design of 5G systems includes 
sleep modes, that is, the capacity to turn off some of the BSs when the traffic load 
is low. Given the said context, we present our base station deactivation and user 
reassignment algorithm. 

Based on the experiments carried out, our conclusions are as follows: 

 One of the significant challenges of a deactivation and user-reassignment 
algorithm is to prevent the complete shutdown of all BSs in a network. For 
this reason, it is important to consider a mechanism that prevents infeasible 
solutions in the algorithm without compromising its performance. 

 A deactivation algorithm based on a steady-state GA can successfully find a 
minimum set of active BSs because it shuts down 10-50% of the BSs present 
in a cellular network system and maintains service for at least 99% of users. 

 In a cellular network, a reassignment process must be carried out to 
deactivate some BSs and maintain service for 99% of its UTs; not carrying 
out this process would leave up to 20% of UTs without service. 

 An essential factor in the decision to deactivate a BS is the PI as the number 
of UTs without service in a cellular network. When considering this factor 
in regards to the optimization model, it is possible to switch off BSs 
according to the success of the UT reassignments and network traffic. When 
there is less traffic in the network, the number of active BSs is smaller. 
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 In all the proposed scenarios, even in those where the CIR threshold was 
equal to 14 dB, our proposed algorithm was able to find a solution where at 
least one BS was deactivated, and 99% of users were serviced. 

 In heterogeneous networks, the algorithm deactivates more femto-BSs than 
macro-BSs when traffic is lower. This scheme supports the existing 
literature, which shows that the use of femto-BSs is more beneficial when 
the heterogeneous network presents high traffic status. 

Going forward in our research, we will apply other metaheuristics to evaluate their 
performance in solving the problem addressed in this paper. We will pose the 
optimization model as a multi-objective problem, i.e., minimize the interruption 
probability and the number of active BSs. We plan to use the Page's Trend Test 
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