
Acta Polytechnica Hungarica Vol. 11, No. 1, 2014

 – 193 –

Alpha-Numeric Notation for one Data Structure
in Software Engineering

Sead Mašović

Computer Science Department, Faculty of Science and Mathematics,
University of Niš, P.O. Box 224, Višegradska 33, 18000 Niš, Serbia
sead.masovic@pmf.edu.rs

Muzafer Saračević

Computer Science Department, Faculty of Science and Mathematics,
University of Niš, P.O. Box 224, Višegradska 33, 18000 Niš, Serbia
muzafers@uninp.edu.rs

Predrag Stanimirović

Computer Science Department, Faculty of Science and Mathematics,
University of Niš, P.O. Box 224, Višegradska 33, 18000 Niš, Serbia
pecko@pmf.ni.ac.rs

Abstract: This paper presents one way to store balanced parentheses notations in
shortened form in order to lower memory usage. Balanced parentheses strings are one of
the most important of the many discrete structures. We propose new method in software
engineering for storing strings of balanced parentheses in shortened form as Alpha-
numeric (AN) notation. In addition, our algorithm allows a simple reconstruction of the
original strings. Another advantage of the presented method is reflected in savings of
working memory when it comes to deal with combinatorial problems. The proposed method
is implemented in Java environment.

Keywords: Balanced Parentheses, Catalan number, Binary tree, Software engineering,
Java programming.

1 Introduction and Preliminaries

Data structure and software engineering are an integral part of computer science.
A binary tree is a tree of data in which each node has at most two descendant
nodes, usually distinguished as "left" and "right". Many powerful algorithms in
computer sciences and software engineering are tree based algorithms.

S. Mašović et al. Alpha-Numeric Notation for one Data Structure in Software Engineering

 – 194 –

The most renown representation of trees is the balanced parentheses [4,8,10,11].
The tree is represented by a string P of balanced parentheses of length 2n. A node
is represented by a pair of matching parentheses "()" and all sub-trees rooted at
the node are encoded in an order between the matching parentheses [2,13].

Suppose you would like to form valid sequences of n pairs of parentheses, where a
string of parentheses is valid if it contains an equal number of open and closed
parentheses and each open parenthesis has a matching closed parenthesis. For
example, "(()())" is valid, but "())()(" is not. A string of parentheses is
valid if there is an equal number of open and closed parentheses. The most simple
method for presentation of balanced parentheses is to use Bit-string, which uses
bit 1 to represent "(" and to use bit 0 to represent ")" in order to represent a
well formed Balanced Parentheses (BP shortly).

For example, the Bit-string of the BP expression ()((()))(()) is given by
101110001100.

The number of different well formed parentheses strings represented by Bit-
strings b2n b2n-1 ... b1 is given by the Catalan number [3, 6].

1 (2)!

1 (1)!

2

!n

n n
C

n n nn

 
    




 (1)

For example, for n=3, we have

3

(2 3)! 6!
5

(3 1)! 3! 4! 3!
C


  

  

and there are five sequences of six balanced parentheses (three pairs of
parentheses) as presented in Figure 1.

Figure 1

Different valid combinations of balanced parentheses for C3

The BP representation is obtained by traversing the tree in depth-first order
writing an open parenthesis when a node in first encountered and a closing
parenthesis when the same node is encountered again while going up after
traversing its sub-tree. The first representation of trees was proposed in 1989 by
Jacobson [5]. The Jacobson representation is called Level Order Unary Degree
Sequence (LOUDS), which lists the nodes in a level-order traversal. An alternative
tree representation based of strings of open and closing parentheses is proposed
ten years after results that gave Jacobson et al. [9,10].

In [1] Benot introduced Depth First Unary Degree Sequence (DFUDS)
representation of an n-node tree. DFUDS combines the LOUDS and BP

Acta Polytechnica Hungarica Vol. 11, No. 1, 2014

 – 195 –

representations. Three different ways for representing a tree (LOUDS, DFUDS
and BP), are presented on Figure 2.

Figure 2

Different representations of tree

To minimize the memory space requirements, we use a bit-string as the basis for
introducing further rules for shortened processes.

2 Transformation from BP to AN Notation

In this section we present the way how we get Alpha-numeric (shortly AN)
notation through shortening process in order to obtain a large reduction of storage
space. The shortening procedure is described in the Algorithm 1.

Algorithm 1. Transformation from BP to AN

INPUT : BP notation
m = BP.lenght

Replacement
for (i = 1; i ≤ m; i++)

(→ 1 AND) → 0
Output1 = BP1 // Binary Equivalent

Elimination
Delete first element (1) and last element (0) in BP1
Output2 = BP2 // Short Binary Eq.

Selection

S. Mašović et al. Alpha-Numeric Notation for one Data Structure in Software Engineering

 – 196 –

e = BP2.element[i];
m1 = BP2.lenght;

if (Case 2 - binary pairs){
First binary pair= e[i] for i={1, 2}
Last binary pair= e[i] for i={m1-1; m1}
RestBP2= BP2 without First and Last binary pair
replace (First AND Last binary pair → Alpha2) // based on Table A3
Output3 = Alpha2 + RestBP2 // Alpha Binary

}
if (Case 3 - bit binary group){

First three bit binary group= e[i] for i={1,2,3}
Last three bit binary group= e[i] for i={m1-2; m1-1; m1}
RestBP3= BP2 without First and Last three bit binary group
replace (First AND Last three bit binary group → Alpha3) // based on Table A4
Output3 = Alpha3 + RestBP3 // Alpha Binary

}
Conversion
if (Case 2 - binary pairs){

RestBP2 → DecimalEq2.
Output4 = Alpha2 + DecimalEq2. // Alpha Decimal

}
if (Case 3 - bit binary group){

RestBP3 → DecimalEq3.
Output4 = Alpha3 + DecimalEq3. // Alpha Decimal

}
OUTPUT : AN notation

Algorithm 1 consists of four phases, called replacement, elimination, selection
and conversation):

Step 1 (replacement): Form a binary equivalent of given BP notation, called b-
string. A bit-string uses bit 1 to represent "(" and use bit 0 to represent ")".

Step 2 (elimination): The First shortened form is obtained by omitting the first
and the last bit from the b-string notation. The correctness of this elimination is
ensured by the rule that every BP representation begins with the open parenthesis
and ends with the closed parenthesis.

Step 3 (selection):

Case 2 - binary pairs*: The Second shortened form is obtained by grouping the
first two and the last two binary digits of the First shortened form. Then the Alpha
notation record is based on table grouping (Table A3 - Appendix). The central part
(if any) is prescribed.

Case 3 - bit binary group*: In this case, Second shortened form is obtained by
grouping the first three and the last three binary digits. Then the Alpha notation

Acta Polytechnica Hungarica Vol. 11, No. 1, 2014

 – 197 –

record is derived using the special table grouping (Table A4 - Appendix). The
central part (if any) is prescribed.

Step 4 (conversation): The final form of the AN notation is obtained by
prescribing alpha entry from the second shortened form in the table and
converting its central part (the rest) into a decimal number.

The final form of the AN notation is obtained by prescribing alpha entry from the
second shortened form in the table and converting its central part (the rest) into a
decimal number. Let us mention that Table A1 (Case 2 - binary pairs) and Table
A2 (Case 3 - bit binary group) are presented in appendix. Also, the shortening
process for the actual value of n is illustrated from the initial balanced parentheses
over the binary equivalent and usage of special tables to get the AN record as
short as possible.

Figure 3 presents the shortening process for one case from the Table A1.

Figure 3

Conversion process of BP notation to AN notation

3 Reverse Transformation from AN to BP Notation

Reverse transformation from AN to BP notation. Based on Algorithm 1 we have
possibility to define the reverse transformation of AN notation to the original form
of BP notation. The reverse transformation consists of four phases. In the case of
the reverse process phase of elimination becomes phase of addition. Description
of reverse transformation from AN to BN is given below.
Figure 4 illustrates the reverse construction for the groups of two bits, how to get
the original form of BP notation. The same process is taken when it comes for
grouping of the initial three bits with ending three bits. The only difference occurs
in the selection phase. The conversion in this phase is based on the usage of Table

S. Mašović et al. Alpha-Numeric Notation for one Data Structure in Software Engineering

 – 198 –

A3 or Table A4 given in Appendix. More precisely, Table A3 is used for the
reverse transformation of the group of two bits, while he reverse transformation of
the group of three is based on the usage of Table A4.

Figure 4

Process of reverse
construction

Step 1 (Conversation): Decimal number 3 is converted
to binary equivalent. This binary equivalent represents the
central part of generated BP notation.

Step 2 (Selection): Alpha notation D transforms into
corresponding two pairs of binary digits on the basis of
rules from the Table A3. The first pair is placed in the
beginning and the second at the end of the actual record.

Step 3 (Addition): Add bit 1 at the beginning of string
obtained in Step 2 and add the bit 0 at the end of this
string.

Step 4 (Replacement): Replace the bit 1 by the open
parenthesis "(" and the bit 0 by the closing parenthesis
")" and so we get the original form of BP notation.

4 Some Application of the Presented Method

From the aspect of storage, it is very important to make good choices which
relates to the application of the most appropriate data structure. A binary tree is an
important type of structure which occurs very often in computer science.

BP notation is appropriate representation of binary trees. Balanced parenthesis can
be applied in representation of Catalan numbers, which is the basis of many
combinatorial problems. Another important application of BP notation is in the
process of recording and storing polygon triangulation. This procedure is crucial
in computer geometry and graphics in 3D view of images. Increasing the number
of polygon vertices drastically increases the number of possible convex polygon
triangulations. In order to reduce the memory space requirements, in our paper
[12] we propose a shortened form (similar to AN notation) for the storage of
generated triangulations. This shortened form presents a unique key for each
graph or any combination of triangulations for convex polygons. Another way for
representing the polygon triangulation is usage of the Reverse Polish notation,
This approach is presented in the paper [7]. Compared to the record that provides
Reverse Polish notation, presented AN notation gives much shorter record for the
same triangulation. For example, to record one triangulation of hexagon takes
eight bits in Reverse Polish notation, while AN notation takes one character and
one integer or three bits.

Acta Polytechnica Hungarica Vol. 11, No. 1, 2014

 – 199 –

In general case, presented AN method can serve as a model for shortening process
in all other problems which are based on Catalan numbers [6]. For example, some
of these problems are Correctly parenthesized expression, Binary records from
Lukasiewicz’s algorithm, Ballot problem, Problem of the lattice path and etc. The
AN method should be used to save memory space in the storage of records.

5 Implementation Details and Experimental Results

Presented method is implemented in Java NET Beans environment. The
advantages of Java over the other programming languages are numerous. First of
all, programming in the Java programming language is one of the highest degree
of programming. These written programs are easily portable from one platform to
another.

Our application follows all the steps in obtaining Alpha-numeric notation which is
given in Algorithm 1. In an Appendix we gave part of Java source code, which is
responsible for calling the rules of Alpha notation for groups of binary pairs or bit
binary group in order to get the shortened form. Figure 5 present part of the
application that implements Algorithm 1 with additional options for presenting
and storing results.

Figure 5

Java application

Figure 6 presents result of the application for both case (binary pairs and bit
binary group).

Result screen of the execution of

applications for i=2 and n=4
Result screen of the execution of applications

for i=3 and n=8

Figure 6

Java panel for both case (binary pairs and bit binary group)

S. Mašović et al. Alpha-Numeric Notation for one Data Structure in Software Engineering

 – 200 –

Based on the Algorithm 1 we can set ratio (R) of input (BP notation) and output
(AN notation) with the equations:

BP
R

AN
 (2)

Where is BP = 2n and AN = 2()1n i  while n is index of Catalan number (Cn)

and i is the number of pairs who can take the value from the set {2,3}.

Based on equation (2) in Table 1 are presented ratio of BP and AN notations from
two aspects: ratio in the number of characters and ratio in the size of the output
file in which the results are stored.

Table 1

Experimental results for testing application

Number of characters File size (KB) n
BP AN R BP AN R

5 6 1 6.00 0.5 0.3 1.67
6 8 2 4.00 1 0.6 1.67
7 10 2 5.00 2 1 2.00
8 12 3 4.00 3 1.4 2.14
9 14 3 4.67 7 3 2.33

10 16 4 4.00 26 9 2.89
11 18 5 3.60 95 31 3.06
12 20 6 3.33 386 122 3.16
13 22 7 3.14 1378 446 3.08
14 24 8 3.00 4792 987 4.85

PC performance for testing results: CPU – Intel (R) Core (TM) 2 Duo, T7700,
2.40 GHz, L2 Cache 4 MB (On-Die, ATC, Full-Speed), RAM Memory - 2 Gb,
Graphic card - NVIDIA GeForce 8600M GS.

Graph 1 presents ratio of shortening process in the number of characters applying
AN notation compared to BP notation. Testing was done for n={5,6,…,14}.

Graph 1

Shortening process in the characters

Acta Polytechnica Hungarica Vol. 11, No. 1, 2014

 – 201 –

Based on the testing results the advantage of using AN notation is when it come to
the larger value for n, which can be seen in the graph 1. From another point of
view if we look at the size of the output file, we can see that with increasing value
of n is dramatically increasing shortening ratio of the output file for the AN
notation (for example, n=14, for BP notation output file is 4792 kb while for AN
notation is 987kb, which is almoust five times less). For all testing results
specified in Table 1 for n={5,..,14} we get average shortening of 2,69 time less.

Conclusion

We develop an algorithm that can convert Balanced Parentheses notation in a new
shortened Alpha-Numeric notation. With this work we present a way how to
reduce BP notation using the appropriate rules in order to lower memory usage in
storing. Advantages of presented method is reflected in savings of working
memory in the process of testing implementations and thus achieve much better
results in terms of speed of execution. Another advantage is that the stored values
can be converted through reverse construction to get initial BP notation. We
provide an evaluation of the algorithm on a Java implementation.

AN notation may find their application mainly in the problem of triangulation of a
convex polygon . It is important to note that the application of this method of
recording results may find usage in some combinatorial problems which are based
on Catalan numbers.

References

[1] Benoit, D., Demaine, E. D., Munro, J. I., Raman, R., Raman, V., Rao S.
S. Representing Trees of Higher Degree, Algorithmica, 2005, Vol. 43, No.
4, pp. 275-292.

[2] Evans D. J., Abdollahzadeh, F. Ecient Construction of Balanced Binary
Trees, The Computer Journal, 1983, Vol. 26, No. 3, pp. 193-195.

[3] Geary, R. F., Rahman, N., Raman, R., Raman, V., A Simple Optimal
Representation for Balanced Parentheses, Theoretical Computer Science,
2006, Vol. 368, No.3, pp. 231-246.

[4] Gog, S., Fischer, J. Advantages of Shared Data Structures for Sequences of
Balanced Parentheses, DCC'10 Proceed. Data Compression Conf. 2010,
pp. 406-415.

[5] Jacobson, G. Space-efficient static trees and graphs, In Proceedings of the
30th Annual Symposium on Foundations of Computer Science, Research
Triangle Park, North Carolina, IEEE, 1989, pp. 549–554.

[6] Koshy, T. Catalan Numbers with Applications, Oxford University Press,
New York, 2009.

S. Mašović et al. Alpha-Numeric Notation for one Data Structure in Software Engineering

 – 202 –

[7] Krtolica, P.V., Stanimirovic, P.S., Stanojević, R. Reverse Polish notation
method in constructing the algorithms for polygon triangulation, Filomat,
2001, Vol. 15, pp.25–33.

[8] Lu, H., Yeh, C. Balanced Parentheses Strike Back, ACM Transactions on
Algorithms (TALG), 2008, Vol. 4, No.3, pp. 1-13.

[9] Munro, I., Raman, V. Succinct Representation of Balanced Parentheses and
Static Trees, SIAM Journal on Computing, 2001, Vol. 31, No.3, pp. 762-
776

[10] Munro, I., Raman, V., Succinct representation of Balanced Parentheses,
static trees and planar graphs, Proceedings of the 38th Annual Symposium
on Foundations of Computer Science, IEEE, Miami Beach, Florida, 1997,
pp. 118–126.

[11] Ruskey, F., Williams, A. Generating balanced parentheses and binary trees
by prefix shifts, In CATS ’08: Fourteenth Computing: The Australasian
Theory Symposium, Vol. 77 of CRPIT, Wollongong, Australia, 2008.

[12] Saračević, M., Stanimirović, P., Mašović, S., et al., Implementation of
some algorithms in computer graphics in Java, ТТЕМ - Technics
Technologies Education Management, 2013, Vol. 8, No.1, pp. 293-300.

[13] Tsay, J. Designing a systolic algorithm for generatng well-formed
parenthesis strings, Parallel Process. Lett. 2004, Vol. 14, pp.83-97.

Appendix

Table A1
The process of converting from BP to AN for case of binary pair, n={1,2,...4}

Acta Polytechnica Hungarica Vol. 11, No. 1, 2014

 – 203 –

Table A2
The process of converting from BP to AN for case of bit binary group, n={6,7,8,9}

Table A3
 Codebook for binary pair grouping

Table A4
Codebook for bit binary grouping

S. Mašović et al. Alpha-Numeric Notation for one Data Structure in Software Engineering

 – 204 –

Java source code:

Part of the Java source code which convert the expression into binary equivalent in the case
where we have shortening process with two binary pairs. The main class AN_Notation
contain the method notation() which realize Algorithm 1 through four phase:

Step 1 (Replace): Converts BP notation into binary equivalent.

BP1 = BP.replace("(","1");
BP1 = BP.replace(")","0");
binaryEq = BP1;

Step 2 (Elimination): Process of elimination of the first and the last bit (1-0)
BP2 = binaryEq.substring(1,LabelBP.length()-1);

Step 3 (Selection): Selection of the first and the last two binary pairs of record and we write
Alpha notation record based on the table grouping (Table A3)

int aLenght = BP2.length();
String aFirst = BP2.substring(0,2);
String aLast = BP2.substring(aLenght-2,aLenght);
String str0="00";
String str1="01";
String str2="10";
String str3="11";
// codebook – table A3 (FROM A TO M)
if (aFirst.equals(str1) && aLast.equals(str0)) Alfa="A";
if (aFirst.equals(str2) && aLast.equals(str0)) Alfa="B";
if (aFirst.equals(str1) && aLast.equals(str2)) Alfa="C";
...
if (aFirst.equals(str3) && aLast.equals(str0)) Alfa="M";

Step 4 (Conversion): Converts the central part (the rest) into Decimal number.

CentralBin = BP2.substring(2,BP2.length()-2);
long numSk = Long.parseLong(CentralBin);
long remSk;
while(numSk > 0){
remSk = numSk % 10;
numSk = numSk / 10;}
int CentDec= Integer.parseInt(CentralBin,2);
CentralDec = Integer.toString(CentDec);

