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Abstract: The aim of the study was to evaluate balance during the landing phase in a 

control group and patients after anterior cruciate ligament reconstruction (ACLR). ACL 

tear is a frequent injury, particularly in athletes. It often requires proper rehabilitation, 

during which time the patients should be re-evaluated. We performed a jump-down 

assessment using a motion capture and force platform system. The tests comprised a series 

of time-space and dynamic parameters measurements using a motion capture system and a 

force plate. We tested 28 men (22 controls and 6 patients who had undergone ACLR). The 

tests are conducted under jump-down conditions (0.1-, 0.2-, and 0.3-m step heights). We 

compared horizontal components of force during the landing phase. The division of 

registered three-dimensional (3D) motion was demonstrated, and the fluctuations of the 

estimated center of gravity (eCOG) during this motion were analyzed. Compared with the 

controls, patients showed statistically significant differences in fluctuations in the eCOG 

repositioning and horizontal components of force ratios (t-test, p<0.05). We propose a 

comparative assessment of balance attainment during the landing phase of a jump. We 

indicate the possibility of efficient detection of ACL injuries. In summary, horizontal 

ground reaction forces and eCOG positioning can be used to evaluate the performance of 

the human biomechanical system during the jump-down phase. 
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1 Introduction 

Injuries of the anterior cruciate ligament (ACL) are common in athletes, but they 

also occur in other individuals, where permanent uneven loading of lower limbs is 

observed [1-4]. Mechanical failure of the ACL necessitates ligament 

reconstruction surgery (ACLR), often leading to lengthy rehabilitation that ensures 

stabilization of the knee joint and proper force distribution. Monitoring 

rehabilitation progress is obligatory for assessing its effectiveness. Motion 

analysis measurements and techniques are helpful in this regard. 

There have been numerous motion analysis studies, but they are mainly concerned 

with gait [5-13]. Some studies considered motion analysis after ACLR [14-16]. In 

cases of lower limb dysfunction, such as those requiring ACLR, motion 

assessment is possible not only for gait conditions but also during running or 

jump-down [17-31]. Jump-down is a natural activity for humans (e.g., getting 

down a staircase), and the amount of loading differs between walking and running. 

Jump-down has another interesting aspect as well: the landing phase. Among the 

studies that considered jump-down, some of the important ones addressed only the 

landing strategy. The landing phase is where the subject attains balance, so the 

landing mechanisms should be carefully observed [32-36]. The motion capture 

system, force plates, and electromyography (EMG) are useful for assessing 

balance. It is possible to assess balance by measuring the ground reaction force, 

segments of the body’s repositioning, the angles between segments, and muscle 

activity [37-40]. 

We suggest that there is a need to broaden studies concerning the identification of 

load that occurs during the landing phase of jump-down. The research scope 

includes analysis of 3D data derived from dynamometric platforms and the motion 

capture system. Unlike the existing studies, we focused here on the horizontal 

components of the ground reaction force and the estimated body’s mass center of 

gravity (eCOG) repositioning during the landing phase. The aim of the study was 

to evaluate balance during the landing phase in a control group and patients after 

anterior cruciate ligament reconstruction (ACLR). Our hypothesis was: Is the 

balance characteristics during the landing phase different in the normal controls 

and patients who underwent ACLR? 
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2 Methods 

A total of 28 men aged 2026 years were studied. In all, 22 of them did not show 

any abnormality and were not diagnosed with any knee joint dysfunction. They 

constituted the control group. The other six men, who had undergone ACLR of the 

left limb, comprised the patient group. These six patients had gone through a 3-

month supervised rehabilitation course and then carried out a rehabilitation 

program on their own. The ACLR rehabilitation program was performed 

according to the protocol developed by Czamara et al. [41]. The patients agreed to 

participate in the study during the 8th month after their surgery. The control group 

was matched for age, body height, and body mass. Data characterizing the groups 

(mean ± SD) were as follows: controls: age 25.1 ±4.3 years, height 1.78 ± 0.19 m, 

weight 78.5 ± 9.7 kg; patients: age 26.2 ± 2.3 years, height 1.72 ± 0.91 m, weight 

74.3 ± 5.6 kg. All subjects were treated according to the tenets of the Declaration 

of Helsinki. 

Before the examination, each person was informed about the course of the study 

and was requested to consent to participation. The tests comprise a series of 

timespace and dynamic parameters measurements. The individual tests consisted 

of a jump-down from three step heights (0.1, 0.2, and 0.3 m). After jump-down 

from 0.1 m, another 0.1 m was added to the platform until the height of 0.3 m was 

obtained. There was a 30-second break between the jumps. The baseline position 

for each participant was free standing on both legs on the step. On the examiner’s 

command, the participant jumped down. Each subject was instructed that he 

should land on his toes and metatarsus on both limbs (one limb per platform). The 

tests were preceded by a short warm-up involving trotting (3-4 minutes), five to 

seven jumps, and (after a 20-s interval) four to five squats. After a short break, 

each subject performed trial jumps from different heights. The jumps were 

followed by a 2-min rest break. 

A dynamometric platform and a motion capture system were used for the tests. 

Body center repositioning was registered using a module of the BTS Smart (BTS 

Bioengineering, Milan, Italy). BTS Smart-D3 is a module that performs the 

functions of multi-channel 3D navigation. It operates on the basis of an image 

composition from six infrared cameras that capture movement of markers placed 

on the body. For this study, we used one marker placed on the skin near the sacral 

bone to estimate the location of the COG. The ground reaction forces during a 

jump were measured by two dynamometric platforms (one for each leg) onto 

which the subject jumped. The output signal from each platform included the 

resultant force vector, component vectors, magnitude, and force direction. The 

measuring system is shown in Figure 1. The test also involved measuring ground 

reaction forces and the eCOG repositioning while free standing before each jump. 
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Figure 1 

Data acquisition setup 

The force during jump-down was measured from the first contact of the feet with 

the platform. Ground reaction force was measured in three directions. The motion 

was divided into two phases. Examples of force outputs divided into phases are 

shown in Figure 2 for one control group and one patient. 

 

Figure 2 

Force signals for one healthy control (left) and one patient (right) 

The first phase covered the period from the initial contact of the foot with the 

surface (the time at which the vertical value of the ground reaction force, Fy, is 

minimum) to the time when Fy is maximum. This phase was not considered in our 

analysis because the meaningful phase of the jump-down is the landing phase 

(phase 2). The landing phase begins at the time the vertical components of force 

reach their maximum. It covers the period when the values of force do not vary by 

more than 20% of the maximum value. This occurs approximately 3 s after the 

jump on the platform. Note that the vertical force is not a part of this study. (We 

earlier reported a separate study on vertical ground reaction forces [42]). Here, the 

horizontal vectors were examined because they are responsible for balance. They 

are calculated as follows: 
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where  F is the average force component, subscripts x and z 

correspond to the horizontal components of force, p is the number of observations, 

Fy is the maximum force, and n is the number of samples. 

Force is not the only value that is important during the landing phase. Body 

repositioning is crucial as well. The eCOG position can be used to describe 

balance during landing. The traction is registered by cameras in the motion 

capture system. The eCOG position is registered in 3D space in the time domain. 

The 3D motion is divided into two orthogonal planes: horizontal and vertical. This 

concept is shown in Figure 3. 

 

Figure 3 

Concept of motion: a) 3D motion traction (XYZ), b) Projection for plane XZ c Projection for the XZ 

plane with a regressive trajectory 

We divided the trajectory function into  for (1) projection horizontal 

components  and (2) representation of the vertical component in the 

common time domain . 

The registered trajectory in 3D space is a function of time t and the marker 

position x,y,z in axes: 
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        (1) 

where  finds coefficients of a first-degree polynomial that best fits the input data 

 in an orthogonal least-squares sense. The projected trend is given 

by  (2), which returns the predicted value of the polynomial, given its 

coefficients, to values in x. 

Next, we found the distance  from a point (  to a line 

 for each value in the time domain. 

The parametric equation of a straight line is given as: 

        (3) 

where m, n, c are real constants satisfying m, n ≠ 0 

Results are presented on the two-axes chart . 

The eCOG fluctuations in the controls and patients were analyzed. Two 

approaches for measuring those fluctuations are proposed:  

a) Determining the average eCOG fluctuation,  

       (4) 

where dt is the distance between the eCOG to the regressed projected trajectory 

registered in time t, where n is the number of samples.   

b)  Determining the sum of the eCOG fluctuation from the regressive 

trajectory. 

        (5) 

where dt is the distance between the eCOG to the regressed projected trajectory 

registered in time t, where n is the number of samples. 

Statistical analysis was conducted using SPSS (IBM SPSS Statistics for Windows, 

Version 22.0. Armonk, NY: IBM Corp, Released 2013). We conducted t-test for 

assessing if there are significant differences for patients and control group in 

horizontal components force ratio in landing phase and also in free standing 

(Table 1). We used two-way ANOVA with Bonferroni correction to test if there 

are differences in fluctuation of eCOG in patients and control group as well as if 

there is interaction between step high and measured parameters (Table 2). 
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3 Results 

Table 1 shows the horizontal components force ratios during the landing phase of 

the jump and free-standing values (mean ± SD). In case of the control group, the 

model horizontal components force ratio during jump-down should be similar to 

those observed in the free-standing condition [37]. The average force ratio 

increases with the step height increase. The force ratios in free-standing phase for 

the control group and patients are not significantly different, as well as there is no 

statistically significant difference between right and left leg for the control group, 

and there are for patients (t-test, p > 0.05). There are statistically significant 

differences between patients and the control group for right leg and for the left leg 

in case of 0.2 and 0.3 m step height (t-test, p < 0.05). 

Table 1 

Horizontal components ratio of ground reaction forces 

  
Landing phase Free-standing phase 

Group 

Step 

height 

(m) 

 RL LL   p-value  RL LL   p-value 

Controls 

 0.1 1.10±0.69 1.17±0.87 ,056 1.0±0.10 1.0±0.10 ,000 

 0.2 1.07±0.50 1.05±0.49 ,058 
  

 0.3 1.14±0.49 1.05±0.45 ,067 

Patients 

 0.1 0.39±2.23 0.023±2.43 ,000 0.99±0.20 0.99±0.20 ,000 

 0.2 0.74±1.50 1.05±1.49 ,000 

  

 0.3 1.70±1.61 1.30±1.59 ,000 

p – value for comparison of the control group and 

patients for both legs regard to step high 

                    RR LL 

0.1 ,001 ,0551 

                   0.2 ,001 ,076 

                   0.3 ,003 ,012 

LL = left limb, RL = right limb 

Fluctuations from eCOG trend motion were analyzed in the same way for both the 

control group and those who had undergone ACLR. An example of the results of 

differences between the control group and patients is shown in Figure 4, 

represented by the measurements for one healthy control and one ACLR patient 

for the 0.1-m step. 
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Figure 4 

Example of eCOG fluctuation for a healthy control and an ACLR patient. The jump was from 0.1 m. 

We propose two measures for evaluating balance: the sum and an average of the 

fluctuation of the eCOG from the regressed motion trajectory during the patients’ 

jumps (equations 1, 2, 3). The results are shown in Figures 5 and 6. 

 

Figure 5 

Sum of fluctuation of distance of the eCOG from a regressed motion trajectory in the horizontal plane 

Both results show that the measured fluctuations are substantially greater for the 

patients than for the controls. The step height had an effect on the patients’ results. 

The sum increased with greater step height for patients although the arithmetic 

mean decreases. The step height had no effect on the healthy controls. Healthy 

people land more stably than patients, which we proved in the final statistics. The 

sum of the fluctuation increased with step height for the ACLR patients. Using 

ANOVA test we checked if there is interaction between step height and 

fluctuations of eCOG (average and sum of fluctuation). There are statistical 

significant differences for patients for the step height 0.2 and 0.3 m. 
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Figure 6 

Average sum of the distance of the eCOG from a regressed motion trajectory in the horizontal plane 

Table 2 

Statistics for ANOVA test for eCOG fluctuation measures 

Sum of 

fluctuations 

of distance of 

the eCOG  

(I) step high (J) step high p- value 

0.1 0.2 ,054 

0.3 

0.2 0.1 ,017 

0.3 

0.3 0.1 ,017 

0.2 

  

Average of 

the 

fluctuation of 

the eCOG 

(I) step high (J) step high p- value 

0.1 0.2 ,066 

0.3 

0.2 0.1 ,012 

0.3 

0.3 0.1 ,012 

0.2 
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4 Discussion 

This study evaluated the jump-down phase by analyzing horizontal components of 

the ground reaction force and eCOG repositioning during the landing phase. 

Several other studies have considered jump-down [23, 24, 38, 42-47]. Among 

them, some are important from the point of view of balance. 

Paterno et al. [43] presented a casecontrol study of female athletes at a mean of 

27 months following their ACLR versus healthy female subjects. All of the 

participants executed a task that comprised a drop vertical jump onto two force 

plates (one per leg). The vertical ground reaction force, which was measured 

during landing and takeoff, was used to calculate the landing phase loading rates. 

The authors concluded that female athletes who have undergone ACLR and return 

to their sport may continue to demonstrate biomechanical limb asymmetry 2 years 

or more after reconstruction. It can be identified during landing. 

Similarly, using force plates, Ortiz et al. [44] demonstrated the landing mechanics 

in noninjured women and women with ACLR. They performed five trials of a 

single-leg 40-cm drop jump and two trials of a 20-cm updown hop task. 

Multivariate analyses of variance were used to compare hip and knee joint 

kinematics, knee joint moments, ground-reaction forces, and EMG findings 

between the dominant leg in noninjured women and the reconstructed leg in 

women who had undergone ACLR. The results of their study showed that women 

with ACLR have neuromuscular strategies that allow them to land from a jump 

similar to healthy women, but they exhibit joint moments that could predispose 

them to future injury if they participate in sports that require jumping and landing. 

Decker et al. [45] purposed their study to determine whether fully rehabilitated 

ACLR recreational athletes utilize adopted lower-extremity joint kinematics and 

kinetics during high-demand functional tasks. Subjects were compared during a 

60-cm vertical drop landing. The hamstring ACLR recreational athletes used an 

adapted landing strategy that employed less of the hip extensor muscles and more 

of the ankle plantar flexor muscles. Harvesting the medial hamstring muscles for 

ACL reconstruction may contribute to the utilization of this protective landing 

strategy. 

Gribble and Hertel et al. [46] designed their study to examine the role of foot type, 

height, leg length, and range of motion (ROM) on excursion distances while 

performing the Star Excursion Balance Test (SEBT). The SEBT measures 

dynamic postural control. Participants performed three trials of the SEBT in each 

of eight directions while balancing on the right and left legs, respectively. The 

SEBT found no statistically significant relations between foot type or ROM and 

the excursion distances. Significant correlations were revealed between height and 

excursion distance and leg length and excursion distance, with leg length having 

the stronger correlation. Using raw excursion measures, men were found to have 

substantially greater excursion distances than females. However, after normalizing 
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excursion distances to leg length, there were no substantial differences related to 

sex. Thus, when using the SEBT for experimental or clinical purposes, 

participants’ excursion distances should be normalized to leg length to allow a 

more accurate comparison of performance among participants. 

Use of force plates is popular for addressing biomechanics, and a number of 

studies have used this measurement method for balance analysis [4750]. Torry et 

al. [51] described an interesting approach to drop landing analysis. They used 

biplane fluoroscopy to measure 3D rotations and translations of healthy knees 

during stiff drop landings to determine the relations between 3D rotations and 

anterior and lateral tibial translations. Attainment of balance can be analyzed not 

only via ground reaction force or EMG measurements, but by observing eCOG 

repositioning, as shown by Colby et al. [52]. In addition to ground reaction force, 

they focused on developing a functional test to measure dynamic stability that 

could differentiate between the injured and uninjured lower limbs, They tested two 

populationsindividuals with ACL deficiency and those who had undergone 

ACLRto establish the reliability of the test. 

With regard to the current state of the art, our study provides new information on 

horizontal components of ground reaction force and eCOG relocation. Balance 

during the landing phase is different for healthy people and patients after ACLR. 

Our patients had greater eCOG fluctuations. The ground reaction horizontal 

components of the force ratio were greater for the patients than for the controls. 

Conclusions 

The horizontal ground reaction forces and eCOG positioning are appropriate 

parameters for evaluating the performance of the human biomechanical system 

during jump-down. They can be used to recognize an ACL injury as well as to 

evaluate progress during rehabilitation after ACLR. 
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