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Abstract: Several types of numerical simulations have been used over the years in the 
Physical Sciences, to advance the real-life problems understanding. Among the statistical 
tools used for this are, for example: Monte Carlo simulations, such mechanisms have been 
used in various areas, however, today another tool is used, Machine Learning, which is a 
branch of Artificial Intelligence (AI). This article reviews sets of work that encompass 
various areas of the Physical Sciences, to mention some such as particle physics, quantum 
mechanics, condensed matter, among many others that have used some Machine Learning 
mechanisms to solve part of the problems raised in their research. In turn, a Machine 
Learning methods classification was carried out and it was identified which are the most 
used in Physical Sciences, something that is currently done in very few studies, as it 
requires extensive review work. The analysis carried out also allowed us to glimpse which 
areas of the Physical Sciences use Machine Learning the most and identify in which types 
of journals it is published more on the subject. The results obtained, show that there is 
currently a good number of works that interrelate Machine Learning and the Physical 
Sciences, and that this interrelation is increasing. 
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1 Introduction 

Machine Learning (ML) is a methodology aims to implement capable 
computational algorithms of emulating human intelligence by incorporating ideas 
of probability and statistics, control theory, information theory, neuroscience, 
among other. This has allowed successful applications in various fields, such as 
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artificial vision, robotics, entertainment, biology, medicine, among others, so 
physical science could not be the exception. ML is basically integrated by 3 major 
learning paradigms [1]: 

• Supervised learning: It creates a model that relates the output variables 
with those of the input. This function is used later to make predictions. 
This paradigm is generally used for regression and classification 
problems. 

• Unsupervised learning: It has the objective of obtaining groups, such 
that in each of them there are homogeneous instances, while the groups 
are heterogeneous among themselves. In this learning there is no 
information from the past, it is the model itself in charge of making its 
own divisions. The tasks that cover this type of learning are grouping, 
dimensional reduction, association. 

• Reinforcement learning: The algorithm learns, not with the previous 
information that has been provided, but with its interaction with the 
world that surrounds it, therefore, feedback is produced that modifies and 
refines its behavior. 

Figure 1 shows the 3 paradigms of comprehend ML and some of the most 
common methods used in each category. 

In addition to these three categories, in the present work the methods described 
below are also considered: 

•  Ensemble methods: These use the idea of combining several predictive 
models (supervised ML) to obtain higher quality predictions than each 
one of the models could provide individually. The most popular ensemble 
algorithms are Random Forest, XGBoost. 

•  Neural Networks and Deep Learning: Neural Networks are a subset of 
techniques that are inspired by the operation of connectionist systems, 
they are therefore within ML, the objective of Neural Networks is to 
capture non-linear patterns in data by adding layers of parameters to the 
model. Now the term Deep Learning comes from a Neural Network with 
many hidden layers and encapsulates a wide variety of architectures, for 
best performance Deep Learning techniques require a lot of data and a lot 
of calculations. 

ML methods are designed to exploit large data sets in order to reduce complexity 
and find new functions in the data. Various Machine Learning algorithms have 
been used in the Physical Sciences, there are studies in the condensed matter 
physics area, such as Carrasquilla and Melko [2] that use a neural network with 
condensed matter model labels of low temperature and high temperature phase. 
The training set was given by an equilibrium configuration of the model obtained 
from Monte Carlo simulations. 
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Figure 1 

General ML scheme and some methods of each category 

Another work used artificial neural networks to recognize different phases of 
matter and locate associated phase transitions, it is the work of Van Nieuwenburg, 
E. [3]. 

A review conducted in the area of particle physics by a research group [4] 
indicates that to date, the Large Hadron Collider (LHC) experiments have 
produced around 2,000 journal articles, providing a large library of examples for 
using ML with these kinds of complex data sets. In that work, for example, some 
highlights are discussed, including the role of ML in the discovery of the Higgs 
boson. 

Challenges such as the 2014 Higgs Machine Learning Challenge and the Tracking 
Machine Learning challenge (TrackML) have even been carried out running on 
the Kaggle platform from March to June 2018 [5], which was a challenge for the 
ATLAS and CMS experiments, particularly for track reconstruction algorithms. 

According to Zdeborová [6] every researcher in the Physical Sciences is clear that 
there are many numerical simulation types. Depending on the system and the 
interest question, knowledge and experience are required to find the correct 
numerical simulation and perform it carefully enough to be able to truly advance a 
given problem understanding. Under her consideration, the same goes for ML tool 
applications. 

There are then various ML methods have been useful in the Physical Sciences, 
there are currently some review works such as Larkoski's [7] and Carleo [8] that 
show some ML methods applied to various areas, however, they do not perform a 
specific systematic review of a good number of methods used in various areas of 
the Physical Sciences. Therefore, the objective of this systematic review was to 
investigate the ML methods used in Physical Sciences, to detect the most used, in 
addition to identifying the Physical Sciences areas that the most take advantage of 
them, additionally to distinguish in what type of journals the most they are 
published. 
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The structure of this article continues with Section 2, where it explains the 
methodology used for the literature review. Section 3 shows the data analysis and 
research results. Finally, the last section addresses the conclusions and 
perspectives of the work. 

2 Methods 

2.1 Overview 

For the representative review, the most relevant investigations were identified 
through a systematic search in various electronic resources, such as, ACM digital 
library, Annual Reviews, EBSCOHOST, IEEE Xplore digital library, Nature, 
ScienceDirect, Scopus, Wiley, Google Scholar, Web of Science and InSpire. 
These are 11 of the most used platforms for searching for information. The search 
ran through July 2021. The combined search terms included "Machine Learning", 
"Physical Sciences", "physics" and "review". The search was carried out with 
limited English language. Two of the reviewers performed the search 
independently, following the methodology of Snyder [9], titles, abstracts, as well 
as keywords were reviewed. The data collected from both searches was placed in 
a single directory. 

In order to be included in this review, papers had to meet the following inclusion 
criteria: (1) be defined as research mentioning Machine Learning methods, (2) 
focus primarily on areas of Physical Sciences, (3) were included other previous 
review studies covering the intersection between ML and Physical Sciences, and 
(4) published in the period January 2005 and July 2021. 

Referred scientific articles to any other area type not related to Physical Sciences, 
studies carried out entirely under a mathematical approach, as well as works that 
were complete books and those that were published in fields of knowledge other 
than physical and computational sciences they were excluded. 

2.2 Data Extraction 

The present article was carried out by two reviewers, the 11 electronic databases 
described above were used and 41 and 29 potentially relevant articles were found 
by each reviewer, giving a total of 70 articles in this phase. According to Snyder 
[9] the actual selection of the sample can be done in several ways, depending on 
the nature and scope of the specific review, in this case, the approach used was to 
perform the review in stages, firstly, the duplicate elements were deleted, leaving 
a total of 65 works, subsequently a preliminary analysis was carried out, based on 
the title, abstract and keywords, which reduced the number to 60, and finally the 
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exclusion criteria were applied, to select the documents that could be eligible for 
this study, a total of 55 articles remained in this selection (see Figure 2). Once we 
had selected elements, we proceeded with the collection of the articles in full text 
for detailed analysis. 

For each article included the following variables were identified: (1) Machine 
Learning methods mentioned in the work, (2) areas of physics addressed, (3) if the 
work is a review or not, (4) the journal where it was published. 

The classification was carried out by two of the reviewers, and although in general 
there was a great agreement in the information collected, there were some studies 
where the vision of a third reviewer was necessary to clarify some discrepancies 
and reach a consensus. 

The search and selection process for relevant works is summarized in Figure 2. 

 
Figure 2 

Search and selection strategy process flow chart 
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3 Results 

3.1 Overview 

Seventy records were identified through the electronic search carried out (see 
Figure 2). After removing duplicate items and applying the exclusion criteria, a 
total of fifty five articles were selected for further review. Once all the documents 
had been collected, it was necessary to identify the four variables described in the 
previous section for each work. 

The following sections detail and explain the results obtained from the 
identification and classification of data according to the four variables, in 
particular Section 3.2 mentions the ML methods used or mentioned in each of the 
analyzed works, Section 3.3 mentions the areas of Physical Sciences that are 
covered in the articles, Section 3.4 describes the preceding review works and 
finally Section 3.5 illustrates in which type of journals they are most published, 
and a graph of the articles published as a function of time. 

3.2 ML Methods 

The articles analysis shows a great variety of ML methods, covering the 3 
categories, both supervised, unsupervised and reinforcement learning, also 
including ensemble methods and deep learning. Table 1 shows each of the 
methods in detail, the total number of works where they were located and the main 
academic references where they are mentioned. It is important to note that in some 
studies more than one method is mentioned, even studies that included more than 
10 methods were found, generally the review ones. 

According to the results, it can be seen that the most used method is Neural 
Networks, which appears in 26 of the 55 references, which represents 47.27% of 
the total articles, in the second instance there are Convolutional Neural Networks 
that are mentioned in 21 articles, in third place we have both Vector Support 
Machines and Deep Neural Networks in 11 articles each, in fourth place are the 
Decision Trees that are mentioned in 10 articles and in fifth place are Generative 
Adversarial Networks mentioned in 8 works. 

Among the less mentioned methods are Principal Component Analysis mentioned 
in 7 articles, followed by Random Forest mentioned in 6, and at the same level K-
Nearest Neighbor and Recursive Neural Network with 5 mentions each, followed 
by three methods that have 4 mentions each, which are Gaussian Process 
Regression, K-Means, and Long Short-Term Memory. 

Finally, it can be seen in Table 1 that there are several methods that are only 
named in one, two or three works, some of them are modifications or adaptations 
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to the main methods such as Physics-Guided Recurrent Neural Networks that 
combines RNN and models based in Physics to take advantage of their 
complementary strengths and improve physical process modeling [10]. Others of 
them are a new proposal such as Lift & Learn [11] which is a physics-based 
method to learn low-dimensional models for large-scale dynamical systems. 

Table 1 
Various ML methods found in analyzed works 

Acronym Meaning Totals Main Academic References 
BDT Boosted decision trees 3 [8] [12] [13] 
BM Boltzmann machine 2 [6] [8] 

CNN 
Convolutional neural 
network 21 

[2] [4] [5] [6] [7] [8] [10] [14] [15] 
[16] [17] [18] [19] [20] [21] [22] 
[23] [24] [25] [26] [27]  

DBN Deep belief network 1 [23] 

DCN 
Deep convolutional 
network 2 [8] [15] 

DF Decision forests 1 [6] 

DNN Deep neural network 11 
[5] [7] [8] [12] [13] [19] [20] [23] 
[24] [28] [29] 

DQL Deep Q-learning 2 [16] [23] 
DQN Deep Q‐networks 1 [23] 
DRN Deep residual network 1 [23] 

DT Decision trees 10 
[16] [19] [20] [26] [30] [31] [32] 
[33] [34] [35]  

EML 
Ensemble Machine 
Learning 2 [32] [36] 

GAN 
Generative adversarial 
networks 8 [7] [8] [12] [15] [20] [23] [26] [29]  

GBDT 
Gradient-boosted 
decision trees 2 [35] [37] 

GBRT 
Gradient boosting 
regression trees 2 [8] [19] 

GDL Geometric deep learning 1 [5] 

GPR 
Gaussian process 
regression 4 [8] [25] [26] [38] 

GRNN 
Generalized regression 
neural network 1 [39] 

GRU Gated recurrent unit 1 [40] 
K-means K-means/medians 4 [16] [31] [41] [42] 
KNN K-nearest neighbour 5 [19] [20] [31] [33] [34]  
LiR Linear regression 1 [43] 

LL Lift & learn 1 [11] 
LoR Logistic regression 1 [19] 
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LSTM Long short‐term memory 4 [5] [10] [23] [40] 
MCTS Monte carlo tree search 1 [5] 
MEM Matrix element method 1 [12] 
MLP Multi-layered perceptron 1 [44] 

MPR 
Multivariate polynomial 
regression 2 [33] [45]  

NB Naive Bayes 2 [19] [20] 

NN Neural network 26 

[3] [4] [6] [7] [8] [13] [14] [16] [20] 
[22] [26] [31] [32] [33] [34] [42] 
[43] [44] [46] [47] [48] [49] [50] 
[51] [52] [53]  

PCA 
Principal component 
analysis 7 [3] [8] [29] [34] [42] [47] [54] 

PDML 
Physics-driven Machine 
Learning 1 [55] 

PGRNN 
Physics-guided recurrent 
neural networks 1 [10] 

PNN 
Parsimonious neural 
networks 1 [56] 

RBFN 
Radial basis function 
network 1 [28] 

ReF Regression forests 1 [57] 
RF Random forest  6 [19] [26] [40] [41] [43] [53] 
RM Regression models 1 [16] 
RNN Recursive neural network 5 [7] [10] [15] [23] [40] 

SVM Support vector machine 11 
[6] [8] [16] [18] [19] [23] [31] [32] 
[34] [37] [43]  

SVR Support vector regression 2 [40] [54]  
VAE Variational autoencoder 2 [7] [29] 
XGB XGBoost 1 [28] 

3.3 Areas of Physics Addressed 

In order to group the articles, the following classification was proposed, consisting 
of 2 categories that cover several areas of Physics. The first was Basic Physics and 
the second was Applied Physics. Figure 3 shows the classification made in this 
study and the percentage of works found by areas of Physics. It is important to 
note that all publications make use of ML as an extremely powerful tool to reach a 
conclusion or result in one or more areas of the Physical Scienes. 

In Figure 3 it can be seen that the areas of knowledge concentrated in the 
publications are in first place Particle Physics (16%), followed by Materials 
Science (15%), in third place Quantum Mechanics (12%), later Condensed Matter 
(9%), Physical-Chemistry (6%), Atmospheric Physics (6%), Astrophysics (4%), 
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later, Mathematical Physics, Mechanics, Fluids, Statistical Physics, new Physics, 
Geophysics, Energy Systems with 3%, and finally with 1% each of the remaining 
areas. 

 

Figure 3 
Areas of Physics that use Machine Learning 

It is convenient to mention that it was possible to establish a methodology to 
identify the intersections of the Physical Sciences with Machine Learning, through 
which the publications in this regard were identified and based on this it becomes 
clear that Machine Learning is becoming an important tool in the Physical 
Sciences. This crossing is very novel, it can be explained by the ML strengthening 
and the use of GPUs. On the other one hand, due to the need for new tools to solve 
highly complex problems in the Physical Sciences, which alone cannot it is 
possible to solve them with traditional tools. 

Something very interesting for the Physical Sciences is that, by qualitatively 
analyzing the works [30] [50] [51], a new strategy is observed to identify new 
Physics methods (such as new experiments in Quantum Mechanics or Physics 
beyond the model standard) using Artificial Intelligence. This is something 
completely new, Physics has never been built by AI. We can suggest the term AI 
Physics. 

3.4 Review Articles 

Most of the analyzed works are original articles, in which the result of an 
investigation is reflected with clarity and objectivity. On the other hand, 8 review 
works were located, some of them do not explicitly say “review”, however, they 
encompass a large number of works and show an overview of various aspects of 
ML methods applied in some fields of the Physical Sciences. These broadly 
contextualize the issue. Around 14.54% (n = 8) of the analyzed papers are review 
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articles, the methods mentioned in such papers are summarized in Table 2. As can 
be seen in the study by Carleo et. al [8], includes more than 10 methods, among 
them the most used as NN, GAN, CNN and SVM. It can also be seen that neural 
networks is the method most mentioned in the review papers. 

Table 2 
Review works and ML methods included in each of them 

Study ML methods mentioned 
Larkoski et. al. [7] NN, CNN, RNN,DNN,GAN, VAE 
Carleo et. al. [8] PCA, BM, GAN, NN, DNN, DCN, BDT, CNN, GPR, SVM, GBRT 
Guest et. al. [15] DCN, CNN, RNN, GAN 
Radovic et. al. [4] NN, CNN 
Dunjko and Briegel [16] NN, SVM, RM, K-means, DT, CNN, DQL 
Zhang et. al. [32] NN, SVM, DT, EML 
Ng et. al. [43] LiR, RF, SVM, NN 
Cheng and Yu [23] DNN, RNN, SVM, CNN, DQL, DQN, GAN, DRN, DBN, LSTM 

3.5 Journals Where the Investigations were Published 

The vast majority of the analyzed articles were published in Physical Science 
journals (see Figure 4), with 69% of the total, including: Physics Reports, Reviews 
of Modern Physics, Annual Review of Nuclear and Particle Science, Journal of 
Physics: Conference Series, Contemporary Physics, among many others. On the 
other hand, it can be observed in Figure 4 that only 20% of the investigations are 
in journals in the field of Computer Science, among them are: Applications of 
Artificial Intelligence, Procedia Computer Science, Computers & Fluids and some 
in as IEEE 14th International Conference on e-Science. However, 11% of the 
papers were published in journals considered interdisciplinary, such as: Nature 
communications, Scientific Reports, Nature. 

 
Figure 4 

Journal types where it is mostly published 
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The publications are well referenced in databases that record articles of high 
academic quality; It is worth noting that several of the articles belong to the 
journals with the greatest impact in the Physical Sciences such as "Nature" [2-4] 
[6] [13] [20] [30] [35] [51]). Approximately 96% of these publications are cited in 
the “Journal Citation Reports 2020” [58]. 

3.5.1 Scientific Publications of ML and Physics as a Function of Time 

Figure 5 shows the research articles analyzed in this work, as a function of time, 
covering the period January-2005 and July-2021. It highlights the significant and 
accelerated increase of publications in the last 5 years, which corresponds to 85% 
of the publications. 

 
Figure 5 

Number of publications in Physics using ML 

Conclusions 

In general, the results show that there is a good amount of work that connects 
Machine Learning and the Physical Sciences. It can be seen that there is a wide 
variety of ML methods that are used both for supervised and unsupervised 
learning, as well as for reinforcement. Those mentioned to a greater extent are 
Neural Networks, Convolutional Neural Networks, Vector Support Machines, 
Deep Neural Networks, Decision Trees and Generative Adversarial Networks. 
Some works that carry out new proposals were also found, such as Physics-
Guided Recurrent Neural Networks that combines RNN and Physics-based 



I. I. Méndez-Gurrola et al. A Review and Perspective on the Main Machine Learning Methods  
 Applied to Physical Sciences  

 – 216 – 

models and another such as Lift & Learn, which is a Physics-based method to 
learn low-dimensional models for large-scale dynamic systems. 

On the other hand, according to the results, it can also be seen that there is an area 
of great variety of the Physical Sciences that use ML methods, among the most 
Particle Physics, Quantum Mechanics, Condensed Matter, which are considered 
within basic Physics. However, jobs were found within applied Physics, 
particularly in the areas of Materials Physics, Physico-Chemistry, among others. 

Part of the research was to find other articles that were for review, few were 
found, in fact, just a total 8, which denotes that there is little research that 
considers the various areas of the Physical Sciences, most of the works are 
original articles, that are results of particular investigations. 

Another contribution of this work was to differentiate the types of journals where 
the investigations were published, which helped us realize that most of them are 
from Physical Sciences and not, as could be expected, in the Computational area. 

The work carried out shows that the interaction between Machine Learning and 
the Physical Sciences has shown growth in recent years, and this growth can be 
expected to continue in the coming years, especially in the areas of the Physical 
Sciences, where it has not yet been greatly applied, in order for interesting results 
to be generated. 
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