
Acta Polytechnica Hungarica Vol. 15, No. 6, 2018

 – 155 –

Potential of Low Cost Motion Sensors

Compared to Programming Environments

Juraj Mihaľov, Emília Pietriková, Anton Baláž, Branislav

Madoš, Norbert Ádám

Department of Computers and Informatics, Faculty of Electrical Engineering and

Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia

Email: {juraj.mihalov, emilia.pietrikova, anton.balaz, branislav.mados,

norbert.adam}@tuke.sk

Abstract: The article investigates systems, which represent a modern and popular

approach to Virtual Reality and controlling systems. We would like to focus on low-cost

motion sensors used in applications which are oriented on object tracking and gesture

recognition. There are various types of sensors. Some of them measure the infrared light

reflected from the opposing surface, previously emitted by the device in to gather

information about any movement in the observed environment. Another way how to

recognize not only a moving object present in the environment, but also its gestures and

further characteristics of the movement is to use the Kinect. Therefore, we included Kinect

also in our research. There is also a sensoric device called Leap Motion, which is specially

developed to analyze gestures of human hands and track their motion with very high

accuracy. We will provide pros and cons of every mentioned type of sensors or sensoric

devices. Our aim is to summarize specific characteristics of mentioned devices to evaluate

their ability to be beneficial in the recently very intensively expanding IoT sector.

Considering new trends, we decided to focus on low cost sensors in to make our research

more relevant also for small businesses and start-ups whose initiative leads to further

development of sensoric soloutions and involving them in IoT. We decided to include also

Myo Armband. It uses eight electromyography sensors, combined with a gyroscope and an

accelerometer to sense electrical activity produced by the muscles of the forearm. Of the

multiple programming environments available, we decided to compare and evaluate three

programming engines most frequently used for programming applications processing

sensoric data. For gaming purposes, the Unreal and Unity 3D engines are the most

frequent. For robotics, medicine or for industrial purposes usually LabVIEW is the best

choice. In this, we compare the aforementioned three programming environments using

different algorithms, utilizing the three motion controllers, and we discuss their

(dis)advantages and programming perspectives.

Keywords: Leap Motion; LabVIEW; Myo Armband; Unity 3D; Unreal Engine

J. Mihaľov et al. Potential of Low Cost Motion Sensors Compared to Programming Environments

1 Introduction

As a motion controller, Kinect provides an intuitive way of controlling a

computer, eliminating the need of a keyboard, a mouse or other input devices. It

can track up to six people simultaneously and adjust its microphone field, so it can

recognize the talking person. This low-cost device has changed the meaning of

computer control. However, from our point of view, the main disadvantage of

Kinect is its field of view. This can be partly solved by using a Leap Motion

device, which – similarly to Kinect – employs reflected infrared light. Though it is

not able to track the entire body, only the hands, it can recognize gestures and

moves at a high-level, including real-time reactions. A combination of Kinect with

Leap Motion could upgrade the sensed area and allow high-precision hand

tracking, close to the sensor [1]. Since a direct view of the sensors (using the

infrared spectrum) is required, they mainly recognize gestures. That is why current

research focuses on the ability to track the user, to allow him/her to turn back or

sideways to the sensors and have gesture recognition still sufficiently accurate. In

addition to infrared light measurement, another possibility is to use

electromyographic sensors, gyroscopes or accelerometers affixed directly to the

human body [2]. An example of such a peripheral device, utilizing the

aforementioned technologies, is the Myo Armband. From our point of view,

combining low-cost sensors, such as Myo Armband, Kinect and Leap Motion, can

result in tracking users to a distance of up to 4 meters and reliably recognize

gestures even in case of poor visibility. Moreover, such a combination may lead to

integration with CAVE systems (Cave Automatic Virtual Environment),

representing a fully immersive virtual reality system [3]. To exploit their full

potential, one has to evaluate the accuracy of the sensors in the available

programming environments (including sensor control features). CAVE consists of

several subsystems, in fact separate agents, working in parallel with a huge

amount of data [4]. Currently, the market offers several possibilities. To select the

optimal movement recognition technology and user’s gestures is as important as to

choose corresponding development environment. It is important to consider also

its reliability, availability of plugins and updates. Our first two choices were the

Unreal and Unity engines, both mostly used in computer games and entertainment

applications. These softwares are ideal for households and for private purposes;

however, they are not sufficient for industrial purposes. Therefore, our third

choice was LabVIEW, a programming environment preferred in the industry and

robotics [5]. In this paper, we evaluate these three programming engines using

small applications created to control three motion sensors, focusing on their

effectiveness as well as their user-friendliness [6].

Acta Polytechnica Hungarica Vol. 15, No. 6, 2018

 – 157 –

2 Motion Sensors

As already stated, current research is aimed at creating a sensor network,

consisting of several various sensors employing infrared light. Notable examples

of infrared depth sensors include Kinect, DUO3D, Intel Realsense, Leap Motion

and, in case of outdoor environment analysis, Fotonic [7]. Of these, we selected

Kinect and Leap Motion, being low-cost devices and, as stated in [8] and [9], their

data may be combined in a complementary way. From Kinect data, we generate

3D images of the target, while Leap Motion data allow accurate tracking of hands

and fingers. Authors of [10] discuss a combination of Kinect and Leap Motion,

testing their accuracy and reliability in ASL (American Sign Language) gesture

recognition. From user view, we focus on research on sensors that are radiating

infrared light spectrum. It is important to examine the reliability and accuracy of

current motion sensors in order to increase their quality. There are projects like

DMF (Deformable Model Fitting), an algorithm for 3D face recognition using

Kinect to classify mimics with maximum probability, or the Microsoft Avatar

Kinect tool, imitating the user, including his/her facial expressions. Motion

sensors like Kinect has a high potential of utilization in virtual reality,

environment analysis, and – using a combination of sensors and state-of-the-art

technology – even in health-care. It is used by therapists to help people with

various physical disabilities who tend to lack enthusiasm for physical exercise.

Games and other physical activities based on Kinect motivate patients to move

more and have fun while doing exercises. Another well-known use is Adora1, an

operation assistant controlled by voice and hand gestures, enabling surgeons to

access patient data. The Virtualrehab project uses Kinect or Leap Motion to track

and capture movements of patients and allows them to play games. Patients can do

physical exercises by playing games using Leap Motion – to train hands – or

Kinect – to train their entire body. Such games focus on balance, coordination and

posture of the patient and they use customized rehabilitation programs to treat

physical health problems. Kinteract software, utilizing motion-based games in the

rehabilitation process, is described in [11]. The added value resides in providing a

motion sensor server that supports a growing array of motion sensors and merges

their data into a single protocol. Authors interconnect Kinect, Leap Motion and

Orbotix Sphero devices2. In this combination of sensors, Orbotix Sphero is a

hand-held durable” robotic ball”, with a diameter less than 12cm and weight of

200g, communicating with devices compatible with iOS, Android and Windows.

Sphero is a low-cost device to be controlled by other devices; however, it can also

be used as a controller due to the powerful integrated IMU (Inertial Measurement

Unit). Sphero can be used as a motion sensor thanks to its gyroscope and

1 Adora homepage, http://adora-med.com/.
2 Sphero homepage, http://www.sphero.com/.

http://adora-med.com/
http://www.sphero.com/

J. Mihaľov et al. Potential of Low Cost Motion Sensors Compared to Programming Environments

accelerometer sensors. It is programmable within Lightning Lab, which allows

programming Sphero with a compatible device.

2.1 Infrared Motion Sensors

Infrared technology is utilized within the Leap Motion sensor to track one or both

hands in a fast and accurate fashion. It usually monitors space from the top of a

desk, in a range of 25 mm and 600 mm. As a great advantage, it may be attached

to virtual reality headsets, most often Oculus Rift or HTC Vive. The device

recognizes simple gestures, hand movements and their location at 200 Hz. In order

to get the relative location of the tracking point, Leap Motion utilizes frames,

subsequently placing this point into the Cartesian coordinate system. It contains

three infrared LEDs and two infrared cameras. When sensing the environment, it

immediately sends coordinate data via USB and calculates the framed scene [12].

Since Leap Motion was released with an SDK (Software Development Kit), it is

possible to merge it with the fields of view of other motion controllers, such as the

Kinect – in case of the latter, it is up to 150×120°.

2.2 Sensor Combinations in Gaming Controllers

Kinect is a well-known motion controller created as a combination of several

sensors in a single device. Microsoft unexpectedly stopped producing Kinect 2018

25th October and sold Apple's patent3. Apple has already integrated it into the

iPhone X. The modified Kinect in this smartphone is placed in the upper ramp and

uses it on FaceID. FaceID emits 30,000 infrared beams and monitors their return

time to measure depth and recognize the user4. Kinect was produced in two

versions: Kinect 360 and Kinect v2. Authors of [13] directed their attention to

these sensors, confirming that Kinect v2 is more accurate and has better

parameters in comparison with the first-generation sensor (see Table 1). Authors

of [14] described an experiment leading to the conclusion that the main technical

advantage of v2 over v1 was that it provided better resolution. This was achieved

through distance measurement performed for each pixel of the captured depth

maps, allowing more accurate detection of small objects and better color images

[15]. In general, Kinect is a combination of an infrared depth camera, a color

camera and a microphone array of four microphones. Thanks to the microphone

array, Kinect can recognize the talking person even if there are more users in front

of it and it can be controlled by voice as well. Kinect can sense up to six users

together and it is able to recognize 26 joints per person.

3 Microsoft kills Kinect, Stop manufacturing it, http://www.theverge.com/.
4 Kinect is officially dead. Really. Offcially. It’s dead, http://www.polygon.com/.

http://www.sphero.com/
http://www.sphero.com/

Acta Polytechnica Hungarica Vol. 15, No. 6, 2018

 – 159 –

Table 1

Comparison of Kinect sensors

 Kinect 360 Kinect v2

RGB camera (pixels)/(Hz) 1280×1024/15 1920×1080/15 or 30

Depth camera (pixels) 640×480 512×424

Min. depth (m) 0.8 0.5

Max. depth (m) 4 4

Tilt motor Yes No

Horizontal Field of View (°) 57 70

Vertical Field of View 43 60

Defined skeleton joints 20 26

Full tracked skeletons 2 6

USB version 2.0 3.0

Originally, Kinect was produced as part of the Xbox game console; however,

following a massive demand from users, Microsoft developed Kinect for

Windows [16]. Similarly, other controllers like Playstation Move or Nintendo Wii

were produced, mostly to control games and other devices. Readers interested in

virtual reality are advised to check the very innovative sensor combinations

available in the Oculus Rift and Oculus Touch devices. Authors of [17] published

an interactive virtual museum, combining Oculus Rift and Kinect, allowing hand

gestures. In case of Oculus Touch, the user must hold a pair of controllers and

push their buttons. In [18], Kinect and Nintendo Wii were compared, focusing on

their possibilities for home use, as a rehabilitation tool. Participants tested the

devices for ten weeks during their rehabilitation process and finally inclined to use

Kinect for their future rehabilitation.

2.3 Wearable Motion Sensors

Sensors using infrared light to monitor the users ‘moves and gestures need direct

visibility [19]. On the other hand, Myo Armband monitors forearm muscles with

the help of eight electromyographs: the user puts this device on his/her dominant

arm, similarly to a bracelet, right below the elbow. The muscle sensor cooperates

with a nine-axis inertial measure unit, a three-axis accelerometer and a gyroscopic

sensor. Then, on the skin surface, the device measures the EMG signal known as

MUAP (Motor Unit Action Potential), created by multiple small muscle strings.

Myo Armband monitors the skin surface at a frequency of 200 Hz [20], while the

IMU works at 50 Hz. Myo Armband does not provide RAW EMG data since it

only offers the user classified output. Data are processed by algorithms within

Myo Armband. The classified output of Myo Armband shows which gesture

corresponds to the sensed signal. Currently, the set of available gestures includes

wave in/out, spread fingers, fist and hand in relaxed position. RAW data are

available through the Myo Data Capture application. To its advantage, Myo

J. Mihaľov et al. Potential of Low Cost Motion Sensors Compared to Programming Environments

Armband is compatible with almost every platform, including MS Windows, iOS

or Android from version 4.3. However, it can connect only to low energy

Bluetooth 4.1, using a unique USB dongle. Currently, the official release does not

provide support for Linux, though Myo community developers released

PyoConnect to access Myo Armband devices. In [21], it was experimentally

combined with Kinect. The authors claim that the connection was established

without any issues. Myoware, similarly to Myo Armband, is a wearable sensor

measuring EMG muscle signals [22]. This sensor has neither an accelerometer nor

a gyroscope. However, it provides both standard and RAW EMG output. The lack

of a case or cover makes it an attractive sensor; it provides various connection

options, such as the Cable Shield for more cables, the Proto Shield for a prototype

board, the Power Shield for batteries and the Mighty Master Shield. The Master

Shield contains LEDs indicating the intensity of muscle workout. A great

advantage of Myoware is that it can be easily combined with other sensors. Thus,

it is possible to create special “costumes” reacting to muscle activity or it is

possible to create a unique prosthesis. Moreover, Myoware is an Arduino-

compatible sensor, providing many opportunities, e.g. to sense any muscle of the

human body. On the other hand, Myoware needs a permanent connection via

cable. The aim of the current research is to accomplish an accurate combination of

low-cost sensors, requiring wireless as well as case-covered sensors. Therefore,

we used Myo Armband to experimentally evaluate the programming engines

described in this study.

2.4 Comparison of Selected Motion Sensors

In [23], the authors tested these three sensors in 250 applications and they

analysed 15 common gestures. The main disadvantage of Myo Armband,

compared to Leap Motion is that while Myo Armband enables a limited set of

gestures, resulting in a more consistent use of gestures across applications. Leap

Motion enables a wider range of gestures and hence it provides greater variability

of gestures. Gestures involving fingers and hand movements are less commonly

used in Microsoft Kinect application due to its current hand-tracking limitations.

The experiment was not focused on testing security matters (e.g. intrusion

detection) of the respective sensors [24]. We tested these sensors in our

experiment [25] to evaluate the recognition effectiveness of gestures: pointing,

waving, hand rotation, fist gesture and fist rotation. The results of the experiment

are available in Figure 1, displayed by gestures and sensors. Figure 1 also shows

the percentage of recognition accuracy for all sensors. The following sections

discuss achieved results, recorded also in Figure 1. The graph includes percentage

results on efficiency with five gestures performed by three sensors. In pointing

measurements we tried to aim with the cursor in the application at the desired

place and monitored whether by our hand movement the cursor reached the

intended destination. We start with Leap Motion. We went through different

applications whether it was a desktop cursor controller or a game in which we

Acta Polytechnica Hungarica Vol. 15, No. 6, 2018

 – 161 –

tried to select the desired button in the game menu. We aimed with our index

finger directly above the Leap Motion sensor. The results were very pleasurable,

the cursor almost each time stopped at the place we expected. With Myo Armband

we had to move all our hand to point somewhere and often it was just too slow.

Although the cursor hit the mark on 90% precision with Leap Motion, 79% with

Myo Armband and 80% with Micorosoft Kinect. Similar results were achieved

with Kinect and Myo Armband. One must use the whole arm to move the cursor,

but it is meant to be so as Kinect scans the whole body recognizing the body

joints. Nevertheless, aiming was uncouth and needed much effort same as with

Armband. Accurately sensor in this category was without the doubt the Leap

Motion with its 90% accuracy. Waving was different for each of the three devices.

For Leap Motion we performed a motion with a hand very similar to petting an

object. Leap Motion took the challenge very well, our hand gesture actions were

followed by the expected reactions. Since Myo Armband scans the muscles, it

does not recognize the movement of the gestures, rather their starting and ending

position. These two gestures may seem dull, but they work very well for their

purpose. For Kinect, we took the whole arm waving into account once watching

the bone recognition viewing the body joints, then different crates punching

activities with our arms. The results were ample, with no big deviations. We liked

the performance of Kinect in waving category the most. Kinect and Leap Motion

achived 95% success and Myo Armband only 90%. We took hand rotation

movement as turning one’s arm around the arm’s own axis. For Leap Motion, It

showed just a negligible error. With Myo Armband, the hand rotation movement

was pretty nice. It noticed even the smallest changes of rotation and reacted

accordingly. So Leap Motion and Myo Armband achieve 98% and 97% success.

For Kinect there were only a few applications using hand rotation, so we focused

at bone recognition with this gesture and watched whether the body joints of the

arm are moving accordingly. With a maximal deviation 10%, they copied our

movements. For this gesture, we decided to recommend Myo Armband. Fist

gesture for fist recognition we decided not only to scan the process of making and

ceasing the fist gesture but also holding the gesture and performing arm motion. It

is one of the most used gestures within each of the three devices. Leap Motion

offers very accurate finger detection. It sensed the closed fist or in other words the

absence of the fingers very well, although sometimes it showed one or more

fingers spread apart. For Myo Armband, motion recognition was not such a big

problem, since the band tracks the muscles. The problem was if one was already

too comfortable with a fist holding they sometimes accidentally released the grip

for a moment. Armband calibration plays a big role here as we all have different

sized arms. Kinect applied fist gesture mainly on holding things, similarly as Leap

Motion, uses the grab gesture. Despite some finger leaks we selected the Leap

Motion as the best device for fist gesture recognition. After a long software

procedure and after 50 measurements for three devices, we finally step into the

result evaluation. Changing the results into percentage values we made the final

graphs as we state them in Figure 1. The results are pretty straightforward, Leap

J. Mihaľov et al. Potential of Low Cost Motion Sensors Compared to Programming Environments

Motion showed the best results. When waving is concerned the results were

similar, we selected Kinect for a subjective reasons. Although Leap Motion had

slightly better measured results in hand rotation, we selected Armband as the best

due to its comfortability. In fist recognition both passive and active, Leap Motion

provided the best results. As we can see each device is satisfactory in different

matters. When taking the cursor controlling in front of the computer, the Leap

Motion is the clear answer. But when controlling the cursor from distance, like it

may be at some presentations, one should rather choose, Armband or Kinect. As

waving has different purposes and different ways of performance through each

device, we cannot tell which one is the best. When hand rotating the best choice is

Myo Armband as it is very reliable and at the same time, one can just have their

arm hanged next to their body. If we want to make fist recognition, again we

watch the distance from the computer. Leap Motion seems as the best but only in

close distances.

Figure 1

Summary of sensor efficiency

3 Unity3D Engine

In this study, we created simple programs interacting with three sensors: Kinect,

Leap Motion, and Myo Armband. In general, we either created software using the

official SDKs released with the respective sensors by their manufacturers (usually

published with newer firmware versions) or we used game engines. Manufacturers

and third-party developers produce drivers and plug-ins enabling creation of

programs within popular game engines. Their benefits as well as their limitations

Acta Polytechnica Hungarica Vol. 15, No. 6, 2018

 – 163 –

are described in the following chapter. As far as game engines are concerned,

there are three key factors to be considered by programmers5. The first one is

usability – i.e. mainly its user friendliness. The second is functionality, defining

the exact capabilities of the particular engine. The last key factor is price. In this

case, we should take into account what platform the final solution utilizes.

Unity3D Engine6 and Unreal Engine7 are game-based programming environments

currently dominating the market, which includes other engines like Frostbite,

CryEngine or Source. In the following chapters, we evaluate these two engines

using simple algorithms, all operating with three motion controllers: Kinect, Leap

Motion, and Myo Armband. Authors [26] developed via Unity in cooperation with

Kinect and Arduino The Robot Engine. Computer tracks and simulate user’s

gestures via Kinect sensor, recognizes users voice commands and accordingly to

the command performs a required action. A survey performed by TNW Deals8

showed that almost half of game developers focus primarily on Unity3D. Contrary

to C++, which is preferred by most of other engines, this engine works in C#,

providing better scripting features, e.g. to create a game world, as well as

advanced programming aspects [27]. Moreover, it provides UnityScript – its own

scripting language similar to JavaScript – intended mainly for inexperienced

programmers.

Unity3D is multiplatform; it supports 2D and 3D scenes, including virtual and

augmented reality. The most popular games developed in this engine are

Assassin’s Creed, Deus Ex, Lara Croft etc. It offers thousands of free game assets.

On the other hand, the free version of Unity3D does not provide Unity Profiler,

which is in general intended for game optimizing. The price of the Unity Pro is $

1500 for lifetime support or $ 75 for a month. Authors of [28] explained how they

developed a game called Callory Battle AR. They developed two types of the

game: one created without a 3D game engine and the second one with a free game

engine from the Unity3D suite. They described their challenges with augmented

reality issues as well. Authors of [29] used Unity3D to collect large amounts of

customer data concerning their participation in games and they used clustering and

visualization techniques. They described a prediction model based on the

technology acceptance model to improve the sales performance of innovative

products. Another use of Unity3D is described in [30], where the authors

described how they developed a robotic platform to evaluate cooperative bilateral

telerehabilitation approaches. The main goal was to evaluate the stability and

performance of the force reflection strategy in the cooperative bilateral

5 Gamesparks: Game Engine Analysis and Comparison,

 http://www.gamesparks.com/blog/game-engine-analysis-and-comparison/.
6 Unity 3D homepage, https://Unity3D.com/.
7 Unreal Engine homepage, https://www.unrealengine.com/.
8 TNW Deals: This engine is dominating the gaming industry right now,

http://thenextweb.com/gaming/2016/03/24/engine-dominating-gaming-industry-

right-now.

http://www.gamesparks.com/blog/game-engine-analysis-and-comparison/
http://thenextweb.com/gaming/2016/03/24/engine-dominating-gaming-industry-right-now
http://thenextweb.com/gaming/2016/03/24/engine-dominating-gaming-industry-right-now

J. Mihaľov et al. Potential of Low Cost Motion Sensors Compared to Programming Environments

configuration and three robotic teleoperation techniques. In the following sections

we describe the experience gained during the integration of three motion sensors

with Unity3D. Step by step, we downloaded all drivers released by the sensor

manufacturers and performed the correct installation of the employed sensors.

3.1 Cube Movement and Color Change using Myo Armband

Before creating a project for Myo Armband in Unity3D, it is important to import

the package containing the SDK, available for download at the official website.

Since every project using the engine requires the addition of a separate plug-in,

this step is necessary as well. Then, an abstract camera – sensing moves from Myo

Armband – and the Sun – representing natural light in the environment – appear

on the screen. Our scenario involves a simple push of the right mouse button,

resulting in the addition of a cube. Although writing a C# script is necessary (e.g.

in Visual Studio), Unity3D compiles it by default and discovers the utilized

objects.

In our case, we use an input script to move the cube by means of a motion

controller, the Myo Armband – support for this is built into the system. The script

has a simple behavior: following a fist gesture, the Myo Armband vibrates. The

cube (visible on the screen) represents the end of a simple “hand” following the

movements. Following a wave in/out gesture, the color of the cube changes from

green to blue. The default color can be set by a double tap, as shown in Figure 2.

The library of Myo Armband includes gestures like fist, wave in/out, spread

fingers, or relax.

Figure 2

Myo Armband program in Unity3D

3.2 Cube Movement and Color Change through Kinect

Since the Kinect plug-in is not compatible with the newest version of Unity3D,

our first issue was to find and install a compatible version of the engine. After

connecting Kinect to a USB port, creating a new project in C# is simple. Again,

the addition of the SDK is required, as well as importing the package and input

plug-ins. An existing script can be edited in Visual Studio, containing two public

Acta Polytechnica Hungarica Vol. 15, No. 6, 2018

 – 165 –

void functions: start and update. The start function works only with a starting

script – it can be used for setting parameters and values of variables. The update

function is called every 10 milliseconds, as fast as Kinect senses the scene. After

dealing with hand scanning and movement, we apply the data to the cube object

again. In Figure 3 is shown application which copy users right hand movement.

Box change color when user moves his hand to the left to red color, to the right to

green color and when user hold his hand still, box is white.

Figure 3

Kinect program in Unity 3D

3.3 Cube Movement and Color Change through Leap Motion

Similarly, to Myo Armband and Kinect, the official Leap Motion SDK contains a

Unity3D plug-in, which we downloaded and imported into the compatible version

of the engine and the project directory. However, here the engine encountered a

problem since gestures have been removed from the library. Again, the script

included two public void functions: start and update. The first one worked only

with a starting script, which means it can be used for a controller which, however,

Leap Motion does not contain. Therefore, we added a Controller class to call

particular functions and switching the controller on/off. The update function

operates every 10 milliseconds, as fast as Leap Motion senses a scene and turns it

into a frame. Then, the script for hand scanning and movement is put into the cube

object and set within graphic environment. The resulting script sets the cube color

to green, if user moves his/her hand to the left. Movement to the right changes the

cube color to red. It is important to create materials having different parameters,

e.g. color or a material (see Figure 4).

Figure 4

Leap Motion test in Unity 3D

J. Mihaľov et al. Potential of Low Cost Motion Sensors Compared to Programming Environments

3.4 Unity3D Engine Conclusion

We made three simple applications for motion sensors in Unity3D Engine and

after that we can conclude Unity3D Engine is usable C# based programming

environment for this purpose. We found huge support and libraries on the internet

for Leap Motion and Myo Armband. Kinect has limited support of this

environment and it was hardwork to find supported plugins. Work with C# and

UnityScript is for programmer very intuitive and we can recommend this

environment to work mainly with Myo Armband thanks to greater support and

actual plugins.

4 Unreal Game Engine

As already stated, Unity3D covers almost half of the gaming industry software.

On the other hand, there is a number of popular, high quality games created within

another game engine: Unreal. Such games include Alone in The Dark or Tekken.

A major difference of the two competing engines is programming language:

Unity3D utilizes both C# and UnityScript (similar to JavaScript), while Unreal

utilizes C++ or a graphic programming environment. This visual scripting

environment utilizes components called Blueprints, claimed to be very user-

friendly9. Authors of [31] described their experiment with six different popular

game engines and compared them from many points of view, e.g. supported

platforms, language support, physics engine or forward/backward compatibility of

particular engines. They compared GPU and CPU usage of the games created

using the respective engines. The results revealed that the Unreal engine was one

of the most popular engines among visual programmers. Unreal Engine 4 has

different pricing structure than Unity3D 4. It costs $ 19 per month plus 5%

anytime you have earned some revenue.

4.1 Orb Jump through Myo Armband

When creating a new project for Myo Armband within the Unreal engine, first it is

necessary to import the binaries and the Kinect 4 Unreal plug-in10. Myo Armband

can be used as a controller only if the input mapping is set. After performing these

settings, we attached a character to a PhysicsBallBp blueprint. To receive Myo

events, an interface is necessary. Then, MyoComponent was added to the

Component. Figure 5 depicts our settings saved to DefaultInput. Next,

MyoInterface was added, allowing the performance of poses like fingersSpread,

9 Pluralsight homepage, https://www.pluralsight.com/.
10 Myo Developer blog, http://developerblog.myo.com/.

https://www.pluralsight.com/
http://developerblog.myo.com/

Acta Polytechnica Hungarica Vol. 15, No. 6, 2018

 – 167 –

doubleTap, unknown, rest and waves. Our choice was to use “fist” to make a

jump, as shown in Figure 6. After we played the scene, it was possible to control

the orb’s movements in the virtual world. By performing a fist gesture, it was

possible to make the orb jump, as shown in Figure 7.

Figure 5

Input setting for Myo Armband in Unreal

Figure 6

Blueprint for orb jump through Myo Armband

Figure 7

Orb jump controlled by Myo Armband

J. Mihaľov et al. Potential of Low Cost Motion Sensors Compared to Programming Environments

4.2 Orb Movement through Kinect

Again, the Kinect 4 Unreal plug-in must be imported. We selected a plug-in with

API documentation, which is a primary interface to a component-based system11.

This should be activated through the plug-in menu. Part of the plug-in is

developed within the Introduction environment, where we were able to test

functionality of Kinect in Unreal. Figure 8 depicts an image from IR and RGB

Kinect cameras.

Figure 8

Kinect 4 Unreal Introduction test

Kinect tracking data is exposed via the Blueprint interface. Integration of Kinect

with the Unreal engine requires the same steps as with Myo Armband or Leap

Motion. First, the plug-in has to be downloaded into the root directory. The last

necessary step is the configuration of the controller. In our experiment, we were

able to sense our moving hands, as shown in Figure 9.

Figure 9

Kinect in Unreal Engine

11 Opaque homepage, http://www.opaque.media/.

http://www.opaque.media/

Acta Polytechnica Hungarica Vol. 15, No. 6, 2018

 – 169 –

4.3 Object Movement through Leap Motion

Similarly to the other two controllers, binaries and plug-ins – downloadable from

an official web page as part of the official plug-in Leap Motion for Unreal

Engine12-were added. After the first steps, we could see an environment depicted

in Figure 10. Convenience Rigged Characters are automatically included since

version 0.9 has plug-in content. So, in order to use these characters, we changed

our game mode to LeapRiggedCharacter or LeapFloatingHandsCharacter as a

default mode. We modified our pass through character by changing collision

preset to PhysicsActor. The BasicBody_Physics Viewport allows modification

of collision shapes colliding with the world. Here, the

LeapBasicRiggedCharacter was used, being the only one skeletal mesh

available for a non-virtual reality environment. Using this character allowed us to

modify any aspect of rigging. After a few steps, it was possible to test Leap

Motion’s features from many views, e.g. we tried to grab objects, move them from

one place to another, or shake them in space. We made 50 tries and 45 of them

were successful that means a 90% success rate.

Figure 10

Leap Motion in Unreal Engine

4.4 Unreal Game Engine Conclusion

In Unreal Game Engine we prepared three environments for three different motion

sensors. It is not programming as in Unity3D Engine. In Unreal Engine, work with

12 Leap Motion Developer page, https://developer.LeapMotion.com/.

https://developer.leapmotion.com/

J. Mihaľov et al. Potential of Low Cost Motion Sensors Compared to Programming Environments

motion sensors is about setting sensors as controllers and just setting up the

environment. Compared to Unity3D Engine environments that we tested we

completed in 50% of the time thanks to using blueprints. Thanks to blueprints,

actual plugins and better license terms we encourage using Unreal Game Engine

against Unity 3D.

5 Low-Cost Sensors in LabVIEW

To create software for low-cost sensors like Kinect, Myo Armband or Leap

Motion, there is a wide variety of possibilities. In addition to official SDKs or the

already demonstrated game engines like Unity3D and Unreal, many other visual

programming environments are available [32]. One of these is LabVIEW,

produced by National Instruments, aimed at the development of engineering

applications. It works with many hardware targets and programming languages,

utilizing plug-ins or toolkits. In this environment, programmers can count on

support for third-party devices as well as on many open-source toolkits and useful

add-ons. The LabVIEW environment workspace contains two main parts – Front

Panel and Block Diagram. The Block Diagram contains the graphical source code

of the program, while the Front Panel shows graphical output of the running

program. Objects are added using the Functions Pallete that automatically appears

by right-clicking the block diagram workspace. Unlike Unity3D or Unreal,

LabVIEW is not free. This is a great disadvantage in case of low-cost

programming, even though it offers many possibilities. Nevertheless, we will

demonstrate low-cost sensor utilization in LabVIEW as an alternative way of

program development for industrial, or robotics applications, aimed mainly at

small and medium enterprises [33] and for Smart Cities. The trial version and

student license are free; however, the LabVIEW 2016 for Analysing and Signal

Processing version costs more than 3500 €13.

5.1 Myo Armband in LabVIEW

Authors of [34] described recognition of six elementary hand movements in

LabVIEW by sensing RAW EMG data of Myo Armband, while authors of [35]

used them to control wheelchair motion. At the National Instruments forum14 and

student competition, a student created an intuitively controlled prosthetic hand

prototype, identifying and mimicking hand gestures. The cost of this prosthetic

hand, utilizing Myo Armband with LabVIEW, was less than £ 300. National

13 National Instruments homepage, http://www.ni.com/.
14 National Instruments forum, http://forums.ni.com/t5/LabVIEW-Student-

Design/Robotic-Hand-Control-Through-EMG-Classification/ta-p/3538008.

http://www.ni.com/
http://forums.ni.com/t5/LabVIEW-Student-Design/Robotic-Hand-Control-Through-EMG-Classification/ta-p/3538008
http://forums.ni.com/t5/LabVIEW-Student-Design/Robotic-Hand-Control-Through-EMG-Classification/ta-p/3538008

Acta Polytechnica Hungarica Vol. 15, No. 6, 2018

 – 171 –

Instruments created a forum called the LabVIEW MakerHub15 for developers

working with the LabVIEW environment, with a lot of helpful third-party content.

In order to interconnect Myo Armband with LabVIEW, we downloaded Myo

UDP to LabVIEW – this enables LabVIEW to work with an UDP stream of data

sensed by Myo Armband’s EMG sensors, as shown in Figure 11.

Figure 11

Front Panel for Myo Armband with the Functions Palette open in LabVIEW

5.2 Leap Motion in LabVIEW

The LabVIEW MakerHub interface for Leap Motion is a free open-source

LabVIEW add-on, which makes it easy to use Leap Motion to track hand and

fingertip positions with sub-millimeter accuracy, to get velocity and acceleration

vectors and to recognize gestures like swipes, taps and circles. This interface made

it possible to read all RAW data from Leap Motion and to use them in block

diagrams. See Figure 12 and Figure 13 for an example of this – measurement of

hand velocity.

Figure 12

Front Panel for Myo Armband with the Functions Palette open in LabVIEW

15 LabVIEW MakerHub homepage, https://www.LabVIEWmakerhub.com/.

https://www.labviewmakerhub.com/

J. Mihaľov et al. Potential of Low Cost Motion Sensors Compared to Programming Environments

Figure 13

Block Diagram for Myo Armband with the Functions Palette open in LabVIEW

5.2 Kinect in LabVIEW

In order to utilize Kinect within LabVIEW, again, it is required to install the

Kinect plug-in from MakerHub or just to use the built-in Kinect API. All Kinect

possibilities can be utilized by developers to create block diagrams such as color,

depth, skeletal or infrared video streams, as shown in Figure 14.

Figure 14

View on RGB-D map from LabView included Hand Gesture recognition

5.3 LabVIEW Conclusion

Work in Labview programming environment was different when compared with

Unity3D and Unreal Game Engine mainly thanks to block diagram and front

panel. Similar to Unreal Game Engine we spend only 50% of the time to prepare a

fully functional application able to sense users movements and gestures. In

Labview there are no options to prepare game environments and game

applications but after our experience with Labview we decided to use it for our

next experiments with motion sensors aimed toward industry and Smart Cities.

Acta Polytechnica Hungarica Vol. 15, No. 6, 2018

 – 173 –

Conclusion

We presented three low-cost sensors, which we used in three different

programming environments. Kinect and Leap Motion are infrared light sensing

depth sensors, while Myo Armband is a sensor sensing EMG skin surface signals.

These three sensors are fully compatible with both Unity3D and Unreal engines,

mostly used for entertainment and gaming. The sensors are also compatible with

the LabVIEW programming environment, mostly utilized for robotics and

industry.

However, the free version of LabVIEW may not be used for our purposes of low-

cost sensor combination, disqualifying it from such a challenge. However, in the

paid (expensive) version, both its usage and software development are rather easy.

We made an experiment showing how the three motion sensors work within the

three programming environments. In Unity3D, we used C#, in Unreal we used the

Blueprints workspace, while in LabVIEW we used the standard front panel and

block diagram workspace. In these environments, working with the sensors was

comfortable and highly accurate. However, to create a low-cost sensor

combination, Unreal seems to be the best choice. Both Unity3D and Unreal

Engine support virtual reality and they are compatible with 2D as well as 3D and

2D/3D worlds. Blueprints may be easily used with the Unreal engine, making this

environment the most appropriate. The Unreal engine is the most user-friendly,

with a wide range of capabilities and useful extensions. Even though it is said to

be a game engine, it is a powerful programming environment. At the time we

wrote this article, we thought Kinect would be ideal for our research needs.

We were considering whether Leap Motion and Myo Armband would be suitable

for our research. We are focusing on sensors that are used by both, households and

industry. They could be part of intelligent homes, serve as a controller for

controlling non-contact computer games, and so on. They could be helpful in

operations and save lives like Adora and Virtualrehab. Therefore, their reliability

is important. From an industrial point of view, their consumption is also

important. Various development environments are used to integrate these sensors

in different areas. For playing games, is the best way to use Unity 3D and Unreal

Engine, and is advisable to use LabView for sensor networks development or to

implement is Smart City. After our experiments we can say that Kinect is suitable

for controlling games and creating simple Smart Home soloutions. We do not

consider Kinect suitable for Smart City and industrial purposes.

Acknowledgement

This work was supported by KEGA Agency of the Ministry of Education,

Science, Research and Sport of the Slovak Republic under Grant No. 077TUKE-

4/2015 „Promoting the interconnection of Computer and Software Engineering

using the KPIkit“.

J. Mihaľov et al. Potential of Low Cost Motion Sensors Compared to Programming Environments

This work was supported by KEGA Agency of the Ministry of Education,

Science, Research and Sport of the Slovak Republic under Grant No. 003TUKE-

4/2017 Implementation of Modern Methods and Education Forms in the Area of

Security of Information and Communication Technologies towards Requirements

of Labour Market. This support is very gratefully acknowledged.

References

[1] Craig A. and Krishnan S., “Fusion of Leap Motion and Kinect Sensor for

Impreved Field of View and Accuracy for VR Applications” In: 2016,

Stanford EE26, [online] [quoted: 29.6.2018], Available at:

http://stanford.edu/class/ee267/Spring2016/report_craig_krishnan.pdf

[2] Kainz, O. et al., “Low-cost Assistive Device for Hand Gesture Recognition

using sEMG”, Proceedings of SPIE, Bellingham 2016, pp. 1-7

[3] Nan X., Zhang Z., Zhang N., Guo F., He Y., Guan L., “VDesing: Toward

Image Segmentation and Composition in Cave Using Finger Interactions”,

IN: 2013 IEEE China Summit & International Conference, DOI:

10.1109/ChinaSIP.2013.6625382, ISBN: 978-1-4799-1043-4

[4] Szabó C., Korečko Š., Sobota B., “Data Processing for Virtual Reality,” In:

Advances in Robotics and Virtual Reality: Intelligent Systems Reference

Library: Volume 26. - Berlin Heidelberg: Springer-Verlag, 2012, pp. 333-

361, ISBN 978-3-642-23362-3 - ISSN 1868-4394

[5] Vokorokos L., Hartinger M., Ádám N., Chovancová E., Radušovský J.,

“Increasing Efficiency of the Sequential Algorithms Programs Execution

Using CUDA,” In: SAMI 2014: IEEE 12th International Symposium on

Applied Machine Intelligence and Informatics : Proceedings : January 23-

25, 2014, Herl'any, Slovakia. - Danvers: IEEE Computer Society, 2014, pp.

281-284, ISBN 978-1-4799-3441-6

[6] Lor Johan P., “International and Comparative Librarianship: A Thematic

Approach”, 2014, ISBN 13: 9783110268003

[7] Vokorokos L., Mihaľov J. and Leščišin Ľ., “Possibilities of Depth Cameras

and Ultra Wide Band Sensor”, In: SAMI 2016, IEEE, 2016, pp. 57-61,

DOI: 10.1109/SAMI.2016.7422982, ISBN 978-1-4673-8739-2

[8] Penelle B., Debeir O., “Multi-Sensor Data Fusion for Hand Tracking using

Kinect and Leap Motion”, In: VRIC '14 Proceedings of the 2014 Virtual

Reality International Conference, Article No. 22, DOI:

10.1145/2617841.2620710

[9] Kopják J, Kovács, “Event driven software modeling for combinational

logic networks based control programs” In: Szakál Anikó (szerk.),

Proceedings of the 16th IEEE Conference International Conference on

Intelligent Engineering System 2012. Lisszabon, Portugália, 2012.06.11-

2012.06.13. Lisszabon: Institute of Electrical and Electronics Engineers

(IEEE), 2012, pp. 253-257, ISBN: 978-1-4673-2695-7

http://stanford.edu/class/ee267/Spring2016/report_craig_krishnan.pdf

Acta Polytechnica Hungarica Vol. 15, No. 6, 2018

 – 175 –

[10] Marin. G., Dominio F., Zanuttigh P., “Hand gesture recognition with Leap

Motion and Kinect devices”, IN: Image Processing (ICIP), 2014 IEEE

International Conference, DOI: 10.1109/ICIP.2014.7025313

[11] Matos N., Santos A., Vasconcelos A.,“ Kinteract: a multi-sensor physical

rehabilitation solution based on interactive games”, IN: PervasiveHealth’14

Proceedings of th 8th International Conference on pervasive Computing

Technologies for Healthcare, pp. 350-353, DOI:

10.4108/icst.pervasivehealth.2014.255325

[12] Weichert F., Bachmann D., Rudak B., Fisseler D., 2013, “Analysis of the

accuracy and robustness of the Leap Motion Controller.”, IN: Sensors

2013, DOI: 10.3390/s130506380, ISSN 1424-8220

[13] Pagliari D., and Pinto L.,“Calibration of Kinect for Xbox One and

Comparison between the Two Generations of Microsoft Sensors ”, Sensors

2015, 27569-27589, ISSN 1424-8220, 2015. DOI:10.3390/s151127569

[14] Lachat E., Macher H., Mittet M. A., Landes T., Grussenmeyer P., “First

Experiences with KinectV2 Sensor for Close Range 3d Modelling. ” In

Proceedings of the Conference on 3D VirtualReconstruction and

Visualization of Complex Architectures, Avila, Spain, 25-27 February

2015; pp. 93-100, DOI: 10.5194/isprsarchives-XL-5-W4-93-2015

[15] Chovanec M., Bíly J., Chovancová E., Radušovský J., “Algorithms for User

Detection and Authentication based on Face Analysis”, In: ICETA 2013:

11th IEEE International Conference on Emerging eLearning Technologies

and Applications, October 24-25, 2013, Stary Smokovec. - Danvers: IEEE,

2013, pp. 63-66, ISBN 978-1-4799-2161-4

[16] Kainz, O. et al., “Detection of Persons and Height Esatimation in Video

Sequence“, International Journal of Engineering Sciences & Research

Technology. Vol. 5, No. 3, 2016, pp. 603-609

[17] Pinto J., Dais P., Eliseu S., Santos B. S.,“ Interactive configurable virtual

environment with Kinect navigation and interaction”, IN: Sciences and

Technologies of Interaction 2015, Online: 30.3.2017

[18] Beaulieu-Boire L., Belzile-Lachapelle S., Blanchette A., Desmarais P.O.,

Lamontagne-Montminy L., Tremblay C., Corriveau H., Tousignant M.,

“Balance Rehabilitation using Xbox Kinect among an Elderly Population:

A Pilot Study” IN: Novel Physiotherapies 2015, DOI:

http://doi.org/10.4172/2165-7025.1000261

[19] Zug S. et al. “Are laser scanners replaceable bz Kinect sensors in robotic

applications?” IN: IEEE International Symposium on Robotic and Sensors

Environments, 2012, DOI: http://doi.org/10.1109/ROSE.2012.6402619

[20] Mulling T., and Sathiyanarayanan M., 2015, “Characteristics of Hand

Gesture Navigation: a case study using a wearable device (MYO)”, IN:

Proc. of the 29th British Human Computer Interaction (HCI), pp. 283-284,

http://doi.org/10.4172/2165-7025.1000261
http://doi.org/10.4172/2165-7025.1000261

J. Mihaľov et al. Potential of Low Cost Motion Sensors Compared to Programming Environments

ACM, July 2015, DOI: http://doi.org/10.1145/2783446.2783612, ISBN:

978-1-4503-3643-7

[21] Kainz O., Jakab F., “Approach to Hand Tracking and Gesture Recognition

Based on Depth-Sensing Cameras and EMG Monitoring”, IN: Acta

Informatica Pragensia 3, 2014, 104-112, DOI: 10.18267/j.aip.38

[22] Jobes S. K., Bernier J. M., Dryer S. L., Douglas E. D., “Arm Mounted

Exoskeleton to Mechanically Assist Activities of Daily Living”, IN:

American society for engineering education 2016 Conference, Online

30.3.2017

[23] Cabreira A. T. and Hwang F., “An Analysis of Mid-air Gestures Used

Across Three Platforms,” in Proceedings of the 2015 British HCI

Conference, ser. British HCI ’15. ACM, 2015, pp. 257-258, doi:

10.1145/2783446.2783599

[24] Ennert M., Chovancová E., Dudláková Z., “Testing of IDS model using

several intrusion detection tools,” In: Journal of Applied Mathematics and

Computational Mechanics. Vol. 14, No. 1 (2015), pp. 55-62, ISSN 2353-

0588

[25] Vokorokos L., Mihaľov J., Chovancová E., “Motion Sensors: Gesticulation

Efficiency Across Multiple Platform”, 20th Jubilee IEEE International

conference on Intelligent engineering systems, pp 293-298, 2016, doi:

10.1109/INES.2016.7555139

[26] Bartneck, C., Soucy, M., Fleuret, K., & Sandoval, E. B. (2015). “The Robot

Engine - Making The Unity 3D Game Engine Work For HRI “.

Proceedings of the IEEE International Symposium on Robot and Human

Interactive Communication, Kobe pp. 431-437, DOI:

10.1109/ROMAN.2015.7333561

[27] Jakab, F. et al.: Rich Media Delivery, Computer Science and Technology

Research Survey (CSTRS), Vol. 3, 2008, pp. 31-36

[28] Kim L. S., Suk H. J., Kang J. H., Jung J. M., Laine T. H., Westlin J.,

“Using Unity3D to Facilitate Mobile Augmented Reality Game

Development”, IN: 2014 IEEE World Forum on Internet of Things, DOI:

10.1109/WF-IoT.2014.6803110

[29] György Györök, “Embedded hybrid Controller with programmable Analog

Circuit”, In: IEEE 14th International Conference on Intelligent Systems.

Gran Canaria, Spain, 05/05/2010-07/05/2010. Gran Canaria: pp. 1-4, Paper

59, ISBN: 978-4244-7651-0

[30] Felipe A. Pires, Wilian M. Santos, Kleber de O. Andrade, Glauco A. P.

Caurin, Adriano A. G. Siqueira, “Robotic Platform for Telerehabilitation

Studies based on Unity Game Engine”, In: Serious Games and Applications

for Health (SeGAH), 2014 IEEE 3rd International Conference, 14-16 May

2014, DOI: 10.1109/SeGAH.2014.7067094, ISBN: 978-1-4799-4823-9

http://doi.org/10.1145/2783446.2783612

Acta Polytechnica Hungarica Vol. 15, No. 6, 2018

 – 177 –

[31] Mishra P., Shrawankar U., “Comparison between Famous Game Engines

and Eminent Games”, IN: International Journal of Interactive Multimedia

and Artificial Intelligence, 2016, ISSN: 1989-1660, DOI:

10.9781/ijimai.2016.4113

[32] Madoš B., Hurtuk J., Čajkovský M., Kudra E., “Visual programming tool

for computer with data flow computation control” In: Acta Electrotechnica

et Informatica, year. 14, č. 4 (2014), pp. 27-30, ISSN 1335-8243

[33] Chovancová E., Vokorokos L., Chovanec M., “Cloud computing system for

small and medium corporations,” In: SAMI 2015. - Danvers: IEEE, 2015 S.

171-174. - ISBN 978-147998221-9

[34] Navarro J.C., León-Vargas F., Pérez J.B., “EMG-Based System for basic

hand movement recognition”, IN: Dyna, year 79, pp. 41-49, Medellin,

2012, ISSN 0012-7553

[35] Sathish S., Nithyakalyani K., Vinurajkumar S., Vijayalakshmi C.,

Sivaraman J., “Control of Robotic Wheel Chair using EMG Signals for

Paralysed Persons”, IN: Indian Journalof Sience and Technology, Vol. 9,

January 2016, DOI: 10.17485/ijst/2016/v9i1/85726, ISSN: 0974-6846

