
Acta Polytechnica Hungarica Vol. 18, No. 4, 2021

A denotational semantics of a concatenative/
compositional programming language

Jurij Mihelič, William Steingartner, Valerie Novitzká
University of Ljubljana, Faculty of Computer Science and Informatics,
Večna pot 113, 1000 Ljubljana, Slovenia;
jurij.mihelic@fri.uni-lj.si

Technical University of Košice, Faculty of Electrical Engineering and Informatics,
Letná 9, 042 00 Košice, Slovakia;
{william.steingartner, valerie.novitzka}@tuke.sk

Abstract: A distinctive feature of concatenative languages is that a concatenation of their
programs corresponds to a composition of meaning functions of these programs. At first
programming in such languages may resemble assembly language programming. In spite of
this, they also exhibit many similarities to high-level functional programming languages. We
start our presentation with the definition of the language syntax. The main part of the paper
consists of the definition of a meaning of programs in the language. To do this we employ
a well-known method based on denotational semantics. We also informally introduce the
language and its meaning as well as present its background and provide motivation for the
work. Our exposition is accompanied by many examples and in the last part of the paper, we
also discuss various language extensions and identify several proposals for further research.

Keywords: concatenative, compositional, denotational semantics, function, programming
language, syntax, stack

1 Introduction
In this paper, we focus on defining the denotational semantics for a new concate-
native/compositional language. We begin the paper with a review of the area and
related work. First, in the next subsection, we review approaches to define a mean-
ing of programs. Since the presented programming paradigm is not well known,
we present its background with a related work. Finally, we will give an informal
introduction to the discussed programming language.

1.1 Short overview of the area
Each programming language should have its own formal definition. This defini-
tion consists of formal syntax and formal semantics. The former can be concrete

– 231 –

J. Mihelič et al. A denotational semantics of a concatenative/compositional programming language

or abstract where a concrete syntax serves for syntax analysis and abstract syntax is
suitable for defining the semantics of a program. The latter expresses the meaning
of a program. For programs written in purely functional languages, a value of a
term is a meaning of the program [8]. In contrary, the semantics of an imperative
program is defined as a change of memory states (storage).
Our goal is to define a semantics for our language KKJ1. Since there are several
well-known approaches to semantics that are reciprocally equivalent and they are
used for different purposes, we briefly look over them. One of the most popular
methods for defining the semantics of programming languages is structural oper-
ational semantics (also known as small-step semantics). This method models, in
details, computations explicitly in particular steps of execution and describes the
effects of program constructs on program states and each step is expressed as the
transition relation [17]. Operational semantics specifies programming languages in
terms of program execution on abstract machines which provide an intermediate
language stage for compilation. They bridge the gap between the high level of a
programming language and the low level of a real machine [4]. Structural opera-
tional semantics represents computation by means of deductive systems that turn the
abstract machine into a system of logical inferences [19]. An alternative approach
in operational semantics is known as natural semantics or big-step semantics. In
natural semantics [10], the relationship between the initial and the final state of an
execution is constructed. This method is mostly used for imperative languages but
it has nice application also in area of domain specific languages, e.g. [2].
A further particular type of small-step semantics is Reduction Semantics with Eval-
uation Contexts (RSEC) [5], also known as contextual semantics. This method mod-
els an execution as a sequence of atomic rewrites of state, between each of which
some small amount of time passes [3, 6].
Another approach to semantic methods is axiomatic semantics which models the
relationship between pre- and post-conditions on program variables – it describes
properties of program state, using the first-order logic [11, 14].
Action semantics [13, 24] is considered as a hybrid of denotational and operational
semantics. Action semantics uses English phrases for defining the meaning of syn-
tactic constructs (still being formal). It serves mostly as a very illustrative frame-
work for teaching semantics [24].
In this approach, we present how to formulate and define the denotational seman-
tics. However, denotational semantics is one of the oldest semantic methods [14],
where only the contribution of each construct to the computational meaning of the
enclosing program is modeled. This method defines the meaning of a program using
functions/mappings defined over sets and/or lattices, respectively [18]. The interme-
diate states during the execution of the constructs are generally of no relevance and
are thus not represented. One of its main aims is to provide a proper mathemati-
cal foundation for reasoning about programs and for understanding the fundamental
concepts of programming languages. Therefore, denotational semantics plays an
important rôle in the language design process.

1 KKJ – konkatenacijski/kompozicijski jezik in Slovene or konkatenatı́vny/kompozičný
jazyk in Slovak, both meaning concatenative/compositional language.

– 232 –

Acta Polytechnica Hungarica Vol. 18, No. 4, 2021

1.2 Background

In this paper, we focus on a simple programming language introducing only a hand-
ful of programming constructs while still offering a flexible and useful programming
environment. The simplicity of the language, which for the purposes of this presen-
tation we call KKJ, spurs a plethora of possibilities such as an option to clearly
define semantics, to straightforwardly implement an interpreter or a compiler, and
to design program analysis tools for the purpose of optimization or verification, etc.
The so called concatenative/compositional nature of the language offers a great flex-
ibility for decomposing a program into units than can be executed in parallel, and,
as such, have a potential to be suitable for modern multi-core computer architec-
tures as well as to serve as an intermediate code representation in compilers and
interpreters. We provide a brief discussion on this later in the paper.
The proposed language abstracts away all the intricate details of any possible under-
lying hardware and processor architecture. Nevertheless, implementing programs
in KKJ may occasionally resemble programming in an assembly language (without
architectural details) since a programmer uses only simple basic “instructions” to
arrive at a solution for a particular programming task.
On the other hand, the language also offers a programming construct representing
first-class anonymous function which is usually not present in low-level languages
and as such a programmer’s perspective is raised to a level usually occurring in
higher-level programming languages. In particular, programming in KKJ becomes
similar to programming in functional programming languages without using vari-
ables, e.g., the tacit or point-free style of programming which is oftentimes aspired.
Many ideas found in this paper already appear in some similar form throughout the
scientific literature. Already in 1977, John Backus in his Turing award lecture ar-
gued for simplification of conventional programming languages as well as proposed
functional programming systems as an alternative. He explicated a function-level
programming where new programs are written by putting together existing pro-
grams rather than by manipulating values and then abstracting from those values
to produce programs. The result of his efforts is the FP language proposed in the
lecture, which through many improvements involving several researchers evolved
later into the FL [1], and other programming languages.
In contrast, conventional well-known functional programming languages such as
Haskell and Lisp mostly base on the lambda calculus which puts forth value-level
programming where new values are constructed from existing ones until the final re-
sult is obtained. The development of these has already greatly advanced from their
inception and many modern functional programming languages offer both high ex-
pressiveness as well as execution speed.
Nevertheless, even though both function-level and value-level functional program-
ming adopt somewhat different views on object manipulation their fundamental
programming concept is still a function. In several other successful programming
paradigms, such a concept may also be an object (i.e., object-oriented programming)
or a relation (i.e., logic programming).
Our other source of inspiration is the area of concatenative programming languages.
The term arises from the property that a (syntactic) concatenation of programs cor-
responds to the (semantic) composition of functions. Indeed, both aspects actually

– 233 –

J. Mihelič et al. A denotational semantics of a concatenative/compositional programming language

represent monoid algebraic structure. In particular, an empty program is a unit for
program concatenation and program concatenation is clearly associative while an
identity function is a unit for function composition and composition is associative
as well.
The paradigm of concatenative languages is valuable for fundamental software en-
gineering research (ideally for language experimentation and worth to be applied
in software engineering because of their unique features) and might prove to be a
suitable foundation for future programming [7, 21, 22] .
Unfortunately, the area received little attention from a scientific community and thus
its treatment lack theoretical rigor and strictness. Moreover, many of the concatena-
tive languages exist only as a prototype implementation, are not actively developed,
and they lack financial support as well as any serious development environment and
support. A list of several examples including brief descriptions is available on the
http://concatenative.org website. Nevertheless, there are some prominent exam-
ples worth mentioning.
The Forth language [12] appeared in 1970 and is considered as a flexible, extensible,
stack-based, procedural, concatenative programming language with many applica-
tions. Another is the Joy language [23] from 2001 which is considered as a purely
functional, of theoretical interest and has established the term concatenative and
had influenced many other concatenative languages. Finally, the Factor language
[15, 25] which was conceived in 2003 and is an actively developed, dynamically
typed, garbage collected language with a self-hosting compiler, interactive devel-
opment environment, and large standard library. It supports both functional and
object-oriented programming paradigm and is well used in practice.
Finally, we mention also several stack-based application virtual machines which
often display many similarities with concatenative paradigm and they have already
proved themselves to be successful and efficient in practice. Probably the most well-
know examples are the Java Virtual Machine and Common Language Runtime as
well as Erlang’s BEAM runtime.
The language proposed in this paper resembles many of the above-mentioned lan-
guages in the way function composition is used, but it is simpler in order to enable
theoretical consideration using formal methods. Our simplifications are partially in
syntax (e.g., less syntactic domains) and also in semantics (e.g., no modules and
information hiding), but the main concatenative features are present (e.g., function
combinators).
The goal of the paper is two fold: first, to serve as a presentation of concatenative
(compositional) programming constructs, and, second, to establish a firm basis for
understanding the meaning of concatenative programs which is currently missing
in the scientific literature. Indeed, current implementations of such programming
languages are based on ad hoc definition of the concepts.

1.3 Informal description of KKJ
Since the corresponding concatenative programming paradigm of the proposed lan-
guage is not well-known we start with a brief informal description of KKJ followed
by a demonstration of the evaluation of an example program.
Syntactically a program in KKJ is just a sequence of words, i.e., numerals represent-

– 234 –

Acta Polytechnica Hungarica Vol. 18, No. 4, 2021

ing numbers and names representing functions, where words are separated with a
whitespace. Additionally, there is also a programming construct called a quotation
(i.e., abstraction) which encapsulates another program with brackets and it repre-
sents a definition of an anonymous function. The term quotation is also used in the
Lisp programming language for a similar construct.
Observe the following two examples of programs in KKJ. The first one is without
quotations and it consists of ten words:

3 4 add dup ispos 5 6 swap choose mul, (1)

and the second one contains two quotations:

14 {dup dup} {add add} compose apply. (2)

As we will see later, both programs evaluate to the same value, i.e., they are seman-
tically equivalent. We notice also, that the defined syntax exhibits such a great sim-
plicity that it is consequently very straightforward to implement an efficient parser
to perform syntax analysis.
Now we focus our attention to the meaning of the above two programs. In what fol-
lows we show two different approaches for program evaluation. The first approach
is based on term-rewriting (i.e., reduction semantics) where specific patterns in the
program are found and being replaced until a normal form of the program is ob-
tained. An example evaluation of the program 1 is shown in Table 1. We omit rule
specification and rely on a reader’s intuitive understanding.

Table 1
Evaluation of a program based on term-rewriting.

program substitutions
3 4 add dup ispos 5 6 swap choose mul 3 4 add → 7,

5 6 swap → 6 5

7 dup ispos 6 5 choose mul 7 dup → 7 7

7 7 ispos 6 5 choose mul 7 ispos → true

7 true 6 5 choose mul true 6 5 choose → 6

7 6 mul 7 6 mul → 42

42

Based on the example one can clearly see that the language is functional in a way
that basic expressions represent built-in (or primitive) functions and a sequence of
expressions forms a new expression representing a composition of functions; in
other words, a computation is carried out entirely through the evaluation of expres-
sions. Even though a functional point of view is a more appropriate one, built-in
functions may also represent constructs usually found in the imperative paradigm of
programming.
Another approach to evaluation is based on the stack data structure (i.e., state-
transition semantics), where a program successively transforms the stack. Each
word represents a function operating on the stack, where numerals represent func-
tions pushing a number onto the stack. Again, an example evaluation of the program
(1) is shown in Table 2.

– 235 –

J. Mihelič et al. A denotational semantics of a concatenative/compositional programming language

Table 2
Evaluation of a program based on a stack.

program stack
3 4 add dup ispos 5 6 swap choose mul

4 add dup ispos 5 6 swap choose mul 3
add dup ispos 5 6 swap choose mul 3 4

dup ispos 5 6 swap choose mul 7
ispos 5 6 swap choose mul 7 7

5 6 swap choose mul 7 true
6 swap choose mul 7 true 5

swap choose mul 7 true 5 6
choose mul 7 true 6 5

mul 7 6
42

Indeed, many concatenative programming languages are stack-based (i.e., opera-
tions manipulate the implicit stack), which may suggest an imperative view. How-
ever, in imperative languages the state is implicit, but it is explicitly manipulated
(e.g. via assignments) whereas in stack-based concatenative languages the stack
manipulation is considered implicit. Moreover, operations in these languages may
also be regarded as unary transformations from stack to another stack.
Consider now the program (2). What value does it evaluate to? What is the meaning
of a quotations {dup dup} and {add add}? We intuitively know that the first one
is a function that duplicates the top element twice and the second one is a func-
tion that pops and adds three top values on the stack. Now, composing these two
functions, i.e., the meaning of {dup dup} {add add} compose, results in a new
function which given a number returns its triple. So, we simply calculate 3× 14
here. Nevertheless, to clearly answer these questions we have to formally define a
meaning function and that is the goal of the rest of the paper.

2 Syntax and semantics

In this section, we present a foundations of KKJ– we start with the definition of
syntax. Then we define an abstraction of computer memory as memory states. After
this step, we are ready to define a semantics of KKJ.

2.1 Syntax
Before delving into the semantics of KKJ, we define abstract syntax if its expres-
sions of KKJ. First, we introduce syntactic domains:

• i ∈ IntNum – integer numerals, i.e., strings of digits,

• n ∈ Name – names, i.e., strings of alphanumeric characters,

• E ∈ Expr – expressions.

– 236 –

Acta Polytechnica Hungarica Vol. 18, No. 4, 2021

Here, the elements i ∈ IntNum represent integer numbers and they have no internal
structure from the semantic point of view, but syntactically they can be represented
with a regular expression [0, . . . ,9]+. Similarly n ∈Name represent function names
without any internal structure significant to defining semantics and its internal syn-
tax is described with a regular expression [a, . . . ,z][a, . . . ,z,0, . . . ,9]*.

To describe the syntax of expressions E ∈ Expr in the programming language KKJ,
we use the well-known BNF-notation:

E ::= ε
∣∣ i
∣∣ n
∣∣ {E} ∣∣ E E. (3)

Here, ε stands for an empty expression, a numeral i ∈ IntNum and a name n ∈
Name are considered as expressions as well. Additionally, one can form a new
expression by quoting (with brackets) an existing expression, i.e., a quotation {E},
to represent an anonymous function defined by the expression E. And, finally, a new
expression can be formed by concatenating (in juxtaposition using only whitespace
as a delimiter) two expressions, i.e., E E, simply to represent their composition.

We also note here that a name n ∈ Name is considered to represent a built-in (also
called primitive) operation such as add, sub, pop, dup, compose, and apply. We
exactly specify these names in the following sections while specifying semantics.
We assume that undefined names are not allowed in correct programs, whereas in
practice they would cause the program to crash or raise an exception. However, we
extend later the basic syntax of the language with a construct which allows us to
assign functions to names.

2.2 Representation of states
The state is, in general, an abstraction of a computer memory (a kind of memory
snapshot) and in our case, it is actually represented by a stack. In what follows we
show how the stack is defined. First, we introduce a new semantic domain Int for
integer values and Bool for Boolean values. They are defined as

Int = Z and Bool = B= {false, true}.

Second, we introduce a semantic domain Stack for representing the stack as well as
a semantic domain Fun (a function space) for representing functions manipulating
the stack, i.e.,

Fun = Stack→ Stack.

Now to define Stack, we first introduce a new domain Value, which represents
values (i.e., elements, members) residing on the stack, i.e.,

Value = Int∪Bool∪Fun.

Finally, the type stack is represented with the following semantic domain

Stack = Value∗∪{⊥},

– 237 –

J. Mihelič et al. A denotational semantics of a concatenative/compositional programming language

where X∗ represents Kleene’s closure (or iteration) over X . Observe that, a stack
s ∈ Stack represents an abstraction (a snapshot) of the actual memory and thus
represents a state in our semantics. A particular content of the stack may also be
represented with an ordered sequence, i.e., (x1,x2, . . . ,xn)∈ Stack, where xi ∈Value
for each 1≤ i≤ n and xn is a topmost element of the stack.

Notational remark: We mostly use symbols i, j ∈ Int for integers and b,d ∈ Bool
for Boolean values, f ,g,h ∈ Fun for functions, x,y,z ∈Value for value of any type,
and s, t ∈ Stack for stacks.

2.3 Semantics
Now let us describe denotational semantics for the language KKJ. To do this we
specify a semantics of expressions E ∈ Expr, where their meaning can be summa-
rized by a function from Stack to Stack, i.e.,

S : Expr→ (Stack→ Stack). (4)

The function S will be defined inductively in the following sections. In this paper,
we often omit the symbol S and use the semantic bracket JEK around the syntactic
parameter E ∈ Expr, when the notation is clear, e.g., JEK≡S JEK.

When providing inductive definitions, we define semantic clauses for various syn-
tactic constructs. Doing this we use several auxiliary functions defined as follows:

• newstack: → Stack,

• id: Stack→ Stack,

• push: Value→ Stack→ Stack.

Here, the newstack is an initial function which ex nihilo creates a new empty stack,
i.e., newstack= (), the id function (identity) leaves a stack unchanged, i.e., id s = s,
while the push function appends an element to a stack, i.e.,

push x (x1,x2, . . . ,xn) = (x1,x2, . . . ,xn,x),

push x ⊥=⊥,

where x,xi ∈ Value and 1≤ i≤ n,n≥ 0.

In the rest of the paper, we often write s = (x1,x2, . . . ,xn) and use the symbol · as
an infix operator representing push, i.e., s·x ≡ push x s. Moreover, we also use ·
in pattern matching, and thus define pop s·x = s as a function that returns the stack
without its top element, and top s·x = x as the function that returns the top element
of the stack. Notice also, that we define push as a curried function.

Generally, we define function JEK by defining it on each expression from eq. (3) as
follows:

JεK s = s,

JiK s = s·i ∀i ∈ IntNum
J{E}K s = s·JEK,

JE1E2K s = (JE2K◦ JE1K) s.

– 238 –

Acta Polytechnica Hungarica Vol. 18, No. 4, 2021

The semantics of an expression JnK s depends on concrete name n ∈ Name: the
language KKJ uses concrete names for arithmetic operations, Boolean operations,
operations for stack manipulation, functions, condition and loop expressions. We
explain the details of these definition in sections that follow.

2.4 Expression concatenation
Let us begin with a presentation of the semantics for expression concatenation. The
semantics of an empty program is the identity function and the concatenation of two
programs corresponds to a composition of the semantic functions corresponding to
the programs. The semantic clauses are given in Table 3.

Table 3
Semantics of the empty expression and expression concatenation

JεK = id JE1 E2K = JE2K◦ JE1K

where

f ◦g s =

{
⊥, if s =⊥∨g s =⊥;
f (g s), otherwise.

The latter rule also gives a rationale for the term concatenative for naming this sort
of programming languages, since concatenation of valid programs results in a new
valid program. Moreover, the new program semantics is defined as a composition
of the semantics of the original programs. Hence, the term compositional languages
may also be used [9] analogously to the term applicative which is sometimes used
for conventional functional programming languages.

Now, consider a sequence of expressions, we state that the exact order of how the
expression concatenation rule is applied is not important from the viewpoint of se-
mantics. First we write the following theorem.

Theorem 1. Let E1,E2,E3 ∈ Expr. We have

JE3K◦ JE1 E2K = JE2 E3K◦ JE1K.

Proof. First, observe that the function composition as defined in Table 3 is associa-
tive. Then, on the left-hand side of the equation we have

JE3K◦ JE1 E2K = JE3K◦ (JE2K◦ JE1K) = JE3K◦ JE2K◦ JE1K,

and on the right-hand side we have

JE2 E3K◦ JE1K = (JE3K◦ JE2K)◦ JE1K = JE3K◦ JE2K◦ JE1K

which are both obviously equal.

– 239 –

J. Mihelič et al. A denotational semantics of a concatenative/compositional programming language

When there are three or more concatenated expressions the rule can be applied in
multiple ways. For example, having three expressions we may decompose E1 E2 E3
into either JE1 E2 E3K= JE3K◦ JE1 E2K or JE1 E2 E3K= JE2 E3K◦ JE1K, yet still
obtaining the same semantical result. In a more general case with n concatenated
expressions, we n−2 times use Theorem 1. We can state the following corollary.

Corollary. Let E1,E2, . . . ,En ∈ Expr be n expressions. We have

JE1 E2 . . . EnK = JEnK◦ · · · ◦ JE2K◦ JE1K.

2.5 Arithmetic and Boolean operations
In this section, we consider several functions representing arithmetic and Boolean
operations. In particular, these functions deal only with integer or Boolean val-
ues, which may during the operation be consumed from the stack or produced and
pushed onto it.

See semantic clauses listed in Table 4 for semantic definitions of the selected basic
arithmetic and Boolean operations. In the specification, the meaning of JiK s is to
push the number i∈ Int corresponding to the numeral i on the stack s. For details on
how to define an additional semantic function determining the number for a given
numeral see [14].

Table 4
Semantics of arithmetic and Boolean operations

JiK s = s·i JsubK s·i· j = s·(i− j)

JaddK s·i· j = s·(i+ j) JmulK s·i· j = s·(i× j)

JfalseK s = s·false JnotK s·b = s·

{
true, if b = false;
false, otherwise.

JtrueK s = s·true JandK s·b·d = s·

{
true, if b = d = true;
false, otherwise.

JcmpK s·i· j = s·sgn(i− j) JisnegK s·i = s·

{
true, if i < 0;
false, otherwise.

JisposK s·i = s·

{
true, if i > 0;
false, otherwise.

The table also includes basic arithmetic operations such as addition (add), subtrac-
tion (sub), and multiplication (mul) as well as operations to produce Boolean values
(true and false) together with operations for logical negation (not) and conjunc-
tion (and).

– 240 –

Acta Polytechnica Hungarica Vol. 18, No. 4, 2021

Additionally, we also include the operation for comparing (cmp) two integer num-
bers producing -1,0, or 1 on the stack if the first number is lower, the numbers
are equal, or the second number is lower, respectively. And finally, operations to
determine whether the top number on the stack is negative (isneg) or is positive
(ispos).

Observe also, that the listed operations are defined only when the “input types
match” as indicated by the use of variable names in the stack notation. For ex-
ample, the operation JaddK s·i· j is only defined when the top two elements i and
j of the stack belong to the Int domain while it is not defined in all other cases,
e.g., when the top element j ∈ Bool, etc. Hence, the meaning of 7 true add is
evaluated as

J7 true addK s = JaddK s·7·true =⊥.

In this paper, we do not delve into details of type checking issues; we assume that
the expressions are always correct regarding types. See also [16] for an in-depth
discussion on types.

Several other important arithmetic and integer comparison operations can easily be
formed using the basic operations from Table 4. To demonstrate this we give some
examples in Table 5. Note: In the examples, we also use the operations dup (top
of stack duplication) and swap (exchange of the top two elements) which are both
defined in the next subsection.

Table 5
Several derived arithmetic and logical operations

pred ≡ 1 sub . . . predecessor
succ ≡ 1 add . . . successor
neg ≡ 0 swap sub . . . negation

iszero ≡ dup isneg not swap ispos not and . . . is it zero?
lt ≡ cmp isneg . . . <
le ≡ cmp dup isneg swap iszero or . . . ≤
eq ≡ cmp iszero . . . =
ne ≡ eq not . . . 6=
ge ≡ lt not . . . ≥
gt ≡ le not . . . >
or ≡ not swap not and not . . . logical disjunction

square ≡ dup mul . . . square

2.6 Stack manipulation
In a programming language based on the function application parameters given to a
function are explicitly specified by a programmer, but in a language based on func-
tion composition, parameters are implicitly set on a data stack and must there also be
put into a specific order as required by the corresponding operation. Consequently,
the programmer must be able to explicitly manage the stack by using special oper-

– 241 –

J. Mihelič et al. A denotational semantics of a concatenative/compositional programming language

ations for manipulating the values on the stack. Such operations are occasionally
also called rewiring operations.

We present definitions of semantic clauses for several stack manipulation operators
in Table 6. Here, clear empties the stack, id represent the identity function, pop
removes the top element, dup duplicates the top element, over duplicates the ele-
ment just below the top of stack, swap exchanges the top two elements, and rotl

rotates the top three element to the left.

Table 6
Semantics of basic stack manipulation operators

JclearK s = newstack JoverK s·x·y = s·x·y·x

JidK = id JswapK s·x·y = s·y·x

JpopK = pop JrotlK s·x·y·z = s·y·z·x

JdupK s·x = s·x·x

Using the operations in Table 6 we can clearly perform the removal of arbitrary
number of top stack elements, e.g., pop2 ≡ pop pop, pop3 ≡ pop pop pop, etc.
We can also duplicate the top two elements, e.g., dup2≡ over over, but we cannot
duplicate three or more top elements of the stack.

Let us notice also that rotl operation enables us to obtain any permutation of the
top three stack elements. See Table 7 for definitions of operations which, given a
stack s·x·y·z with top three elements x, y, and z, produce a particular permutation.

Table 7
Several derived stack manipulation operations

id . . . s·x·y·z
swap . . . s·x·z·y

swapOver ≡ rotl swap . . . s·y·x·z
rotl . . . s·y·z·x
rotr ≡ rotl rotl . . . s·z·x·y

mirror ≡ rotl rotl swap . . . s·z·y·x

2.7 Functions
In this subsection, we continue with a semantic clause for a quotation which rep-
resents an anonymous function. We also define some useful operations for manip-
ulating functions; such operations are usually called combinators. See Table 8 for
the list of quintessential semantic clauses appearing in concatenative programming
languages.

Here, the semantics of quotation is to push the enclosing function on the stack.
Operation apply takes an existing function from the stack and applies the function

– 242 –

Acta Polytechnica Hungarica Vol. 18, No. 4, 2021

Table 8
Semantics of quotations and function operations

J{E}K s = s·JEK JcomposeK s· f ·g = s·(g◦ f)

JapplyK s· f = f s JapplyOverK s· f ·x = (f s)·x

JquoteK s·x = s·push x

on the remaining stack, quote takes a value from the stack and produces a function
that pushes that value on the stack. Next, we have the compose operation which
takes two functions and produces their composition, and applyOver which acts
similarly to apply but it preserves the top element of the stack.

As an example, let us now evaluate the program (2) from the introduction.

J14 {dup dup} {add add} compose applyK s =

= JapplyK◦ JcomposeK◦ J{add add}K◦ J{dup dup}K◦ J14K s

= JapplyK◦ JcomposeK◦push Jadd addK◦push Jdup dupK◦ J14K s

= JapplyK◦ JcomposeK s·14·Jdup dupK·Jadd addK
= JapplyK s·14·(Jadd addK◦ Jdup dupK)
= Jadd addK◦ Jdup dupK s·14 = JaddK◦ JaddK◦ JdupK◦ JdupK s·14
= JaddK◦ JaddK s·14·14·14 = s·42

Now consider a function twice ≡ dup compose apply which applies a function
twice. We have JtwiceK s· f = (f ◦ f) s. However, maybe contrary to the intu-
ition, the input and output arity of the function f need not match. For example,
let f = {dup} which takes zero elements from the stack and produces one, thus
J{dup} twiceK s·x = JdupK◦ JdupK s·x = s·x·x·x.

2.8 Conditional expression
Now let us introduce a simple conditional expression. It consumes three elements
from the stack: one Boolean value and two more elements. The Boolean value
represents a condition, based on which one of the other two elements is pushed
back to the stack. We call this operation choose and its semantic definition is given
in Table 9.

To define choose, we also introduced a special utility function cond which has the
following signature

(Stack→ Stack)× (Stack→ Stack)× (Stack→ Stack)→ (Stack→ Stack).

The function cond takes three stack manipulating functions and combines them into
a new one. Here, the idea of applying cond(f ,g,h) to the given stack s is as follows.
First, the function f is applied to s, and the top element of the resulting stack s′ is
checked: if it is true∈Bool or false∈Bool then g or h is applied on s′, respectively.

– 243 –

J. Mihelič et al. A denotational semantics of a concatenative/compositional programming language

Table 9
Semantics of the choose conditional operator

JchooseK s·b·x·y = cond(push b,push x,push y) s

where

cond(f ,g,h) s =

g s′, if f s = s′·true;
h s′, if f s = s′·false;
⊥, otherwise.

Notice that, the function cond may not be defined when the function f does not
leave a Boolean value on the top of the stack; however, we are only interested in
cases when it does. Now, let us define a total function and consider cases when
cond is total.

Definition 1. A function f is total if f s =⊥ if and only if s =⊥.

Lemma 1. Let f , g, and h be total functions on Stack, f ,g,h : Stack→ Stack. If
the application of f always produces a Boolean value from Bool on the top of stack,
then the function cond(f ,g,h) is also total.

Proof. Consider the definition of cond from Table 9. Since, f is total we have
s 6= ⊥ =⇒ f s 6= ⊥, and, by assumption, either f s = s′ ·true or f s = s′ ·false.
In the former, we have cond(f ,g,h) s = g (pop (f s))′, and, in the latter, we have
cond(f ,g,h) s = h (pop (f s))′.

Since, the function push b (used in the definition of choose) always pushes a
Boolean on the stack, we have the following corollary.

Corollary. The semantic clause JchooseK s·b·x·y is a total function.

Proof. Observe, that all push b, push x, and push y are total functions. Moreover,
push b leaves b ∈ Bool on the top of the stack. Now, use Theorem 2.8.

We can also observe this if we simplify the definition of the choose operation like
this:

JchooseK s·b·x·y = cond(push b,push x,push y) s =

{
s·x, if b = true;
s·y, otherwise.

– 244 –

Acta Polytechnica Hungarica Vol. 18, No. 4, 2021

Obviously, the cond function is quite versatile and consequently used as a basis in
other conditional and looping programming constructs. For example, let us intro-
duce an operation if≡ choose apply and its semantics as

JifK s·b· f ·g = Jchoose applyK s·b· f ·g = JapplyK◦ JchooseK s·b· f ·g
= JapplyK◦ cond(push b,push f ,push g) s = cond(push b, f ,g) s

=

{
f s, if b = true;
g s, otherwise.

We also observe similar corollary.

Corollary. The semantic clause JifK s·b· f ·g is a total function if f and g are total
functions.

Proof. Let b ∈ Bool be a Boolean expression. From the semantics of JifK we see
that either JifK s·b· f ·g = f s and JifK s·b· f ·g = g s, which are both total if f and
g are total.

2.9 Iteration
In imperative languages, one of the more general programming constructs support-
ing iteration is a while loop. In this section, we consider a similar construct for our
language.
Intuitively the while operation expects two functions on the stack: a loop condi-
tion followed by a loop body. It then executes the condition, which should push a
Boolean value on the stack. The top of the stack is then checked and consumed: if it
equals false the iteration ends, otherwise if it equals true the body is executed and
the process is repeated.

To define a semantics of the while operation we employ similar idea as is presented
in [14]. In particular, we first rewrite while using if operation, i.e.,

{C} {B} while=C {B {C} {B} while} {} if

and proceed as follows

J{C} {B} whileK s = JC {B {C} {B} while} {} ifK s

= JifK◦ J{}K◦ J{B {C} {B} while}K◦ JCK s

= JifK (JCK s)·JB {C} {B} whileK·id
= JifK (JCK s)·(J{C} {B} whileK◦ JBK)·id
= cond(JCK,J{C} {B} whileK◦ JBK, id) s

Unfortunately, we cannot use this equation as a denotational clause because it is not
a compositional definition, but if we denote h = J{C} {B} whileK, we can rewrite
it as

h s = cond(JCK,h◦ JBK, id) s

– 245 –

J. Mihelič et al. A denotational semantics of a concatenative/compositional programming language

and see that h is a least fixed point of a functional F defined by

F h = cond(JCK,h◦ JBK, id).

Now note that J{C} {B} whileK s = JwhileK s·JCK·JBK and summarize the se-
mantics of while in Table 10. The functionality of the auxiliary function FIX is

FIX : ((Stack→ Stack)→ (Stack→ Stack))→ (Stack→ Stack).

The FIX F function thus returns the least fixed point of F , i.e., F(FIX F) = FIX F
and if F g = g then FIX F is smaller than g. We refer the reader to [14] for the
details.

Table 10
Semantics of the while operation

JwhileK s· f ·g = FIX F

where

F h = cond(f ,h◦g, id)

3 Extensions and discussion

In this subsection, we discuss some features of and possible extensions to the pro-
posed programming language. Our language only includes values of three types,
i.e., Int, Bool, and Fun. However, an additional type could straightforwardly be
added similarly as we introduced these three by defining a new semantic domain
and corresponding primitive operations.

For example, to support a list data structure in KKJ, we can define a new semantic
domain List = Value∗ with additional primitive operations such as head, tail,
cons defined similarly as in many functional programming languages.

Instead of this, we would rather propose another research direction where functions
take the role of lists. In particular, the content of the list represented by a function
are the elements which are pushed to the stack if the function is applied. Differ-
ent functions may represent the same list, e.g., {1 2} and {1 dup dup add} both
push 1 and 2 on the stack.
Concatenation of lists thus corresponds to a composition of functions, i.e., the
compose operation. Furthermore, to prepend an element to a list we define

cons≡ swap quote swap compose.

– 246 –

Acta Polytechnica Hungarica Vol. 18, No. 4, 2021

Its semantics is evaluated as

JconsK s·x· f = Jswap quote swap composeK s·x· f
= Jquote swap composeK s· f ·x
= Jswap composeK s· f ·push x

= JcomposeK s·push x· f
= s·(f ◦push x)

Clearly, the resulting list (function on the stack) first pushes the prepended element
x and afterwards also the elements represented by f .
Another useful programming operation is to take one or more elements from the
stack and store them in a list for later manipulation. We refer to such operations as
stack packing and we already introduced one such operation, i.e., quote.
Using functions as lists we can easily build operation which packs an arbitrary num-
ber of the top stack elements. The idea lies in the repeated use of cons. For example:
quote2 ≡ quote cons and quote3 ≡ quote cons cons pack two and three
elements from the stack into a list, respectively. Again let us evaluate the semantics
of quote2

Jquote2K s·x·y = Jquote consK s·x·y
= JconsK s·x·push x

= s·(push y◦push x)

Besides that, we can also access an arbitrary element of the stack and push it on the
top. We refer to this as stack picking and we already have operations to pick the
top and the element below the top, i.e., dup and over, respectively. To construct
the operation which picks the element two positions below the stack top, we simply
use pick2 ≡ quote2 over applyOver, and similarly pick3 ≡ quote3 over

applyOver to pick the element three positions below the stack top. Here, the se-
mantics of pick2 is

Jpick2K s·x·y·z = Jquote2 over applyOverK s·x·y·z
= Jover applyOverK s·x·(push z◦push y)

= JapplyOverK s·x·(push z◦push y)·x
= s·x·y·z·x

Most of the programming languages also support the assignment of values to names
to ease the task of programming to the users. A somewhat standard technique to
do this is to extend the state to contain also the definitions of assignments, i.e.,
State = Stack×Defs where Defs = Name→ Fun. Similarly, the semantic clauses
of existing programming constructs must be extended to work on the State, i.e., on
its first component, while a new programming construct to support assignment must

– 247 –

J. Mihelič et al. A denotational semantics of a concatenative/compositional programming language

also be defined. We refer the reader to [20] for a more detailed presentation on the
technique supporting also variable scoping in an imperative language.
An interesting further research direction is to exploit the parallelism which is inher-
ently present in concatenative programs. Both concatenation and composition are
associative, hence, any order of execution, as well as parallel execution, produce the
same result. For example

J3 4 add dup ispos 5 6 swap choose mulK s =

= J5 6 swap choose mulK◦ J3 4 add dup isposK s

Clearly, all operations are considered to be pure, i.e., without side effects. Associa-
tivity may also be exploited for program optimization and refactoring.

Finally, the implementation of a developer toolchain for concatenative language is
quite straightforward. The syntax exhibits great simplicity and thus support easy
parsing. Here, an interesting example is the Forth programming language parser
which supports constructs to change itself. Additionally, stack-based evaluation
is also straightforward as the stack is a standard structure directly supported by
almost all modern computer architectures. Moreover, even the anonymous func-
tions syntactically represented by quotations are easily represented and manipu-
lated by pointers. To support these claims we developed a parser and evaluation
engine of the KKJ language with some extensions (e.g. more primitive opera-
tions and support for function definitions) in the Haskell programming language.
The corresponding source code is freely available under a permissive license at
https://www.github.com/jurem/kkj-lang.

Conclusions

In this paper, we proposed and examined a simple yet powerful programming lan-
guage which exhibits properties of both low-level, e.g., assembly, and, high-level,
e.g., functional languages. Additionally, the term-rewriting view on the evalua-
tion puts the language among functional ones while stack-based view puts it among
imperative ones. We strongly believe that these dichotomies represent a great ad-
vantage to such languages and many features and properties are yet waiting to be
discovered.
The discussed language syntactically and semantically belongs to a group of con-
catenative and compositional programming languages, respectively. We formally
defined the syntax as well as the semantics of the language, and, hence, formed a
basis for further theoretical investigation of concatenative programming languages
whose formal treatment received little attention in the scientific literature.
Despite this, various variants of such languages are already present (however, usu-
ally missing the quotation construct) in the mainstream industry mostly as interme-
diate languages or as virtual-machine byte-code. In particular Java Virtual Machine
(JVM), Common Language Infrastructure (CLI) and the Python virtual machine
(PVM) are typical examples of common stack-based virtual machines. Even, until
version 5.0, Lua’s virtual machine was a stack-based machine; however, 5.0’s virtual
machine is a register machine. Another example is the GraalVM (virtual machine
allowing polyglot features for JVM, Python and other languages).

– 248 –

Acta Polytechnica Hungarica Vol. 18, No. 4, 2021

Our main goal in the paper was to select the prominent features of concatenative
languages and formally describe their meaning using tools and techniques from the
field of denotational semantics. As we feel that the area deserves more scientific
attention we also identified and proposed several possible research directions.

Acknowledgement

The first author was supported by the Slovak Academic Information Agency under
the National Scholarship program during his research stay in 2018. The second and
third authors were supported by the project KEGA 011TUKE-4/2020: “A develop-
ment of the new semantic technologies in educating of young IT experts”.

References

[1] A. Aiken, J. H. Williams, and Wimmers. “The FL project: The design of a
functional language”, 1991.

[2] M. Benčı́k and L. Dedera. “Natural semantics of battle management lan-
guages”. In 2019 Communication and Information Technologies (KIT), pp.
1-4, 2019.

[3] O. Danvy and L. R. Nielsen. “Refocusing in reduction semantics”. BRICS,
Department of Computer Science, University of Aarhus, 2004.

[4] S. Diehl, P. Hartel, and P. Sestoft. “Abstract machines for programming lan-
guage implementation”. Future Generation Computer Systems, 16(7):739-
751, 2000.

[5] A. K. Wright and M. Felleisen. “A syntactic approach to type soundness”.
Journal Information and Computation, 115(1):38-94, 1994.

[6] P. Haller and H. Miller. “A reduction semantics for direct-style asynchronous
observables”. Journal of Logical and Algebraic Methods in Programming,
105:75-111, 2019.

[7] D. Herzberg and T. Reichert. “Concatenative programming – An Overlooked
Paradigm in Functional Programming”. In Proceedings of the 4th Interna-
tional Conference on Software and Data Technologies, pp. 257-262, 2009.

[8] J.M.E. Hyland and C.-H.L. Ong. “On full abstraction for PCF: I, II, and III”.
Information and Computation, 163(2):285-408, 2000.

[9] T. Jones and M. Homer. “The practice of a compositional functional pro-
gramming language”. In Proceedings of the 16th Asian Symposium on Pro-
gramming Languages and Systems, 2018.

[10] G. Kahn. “Natural semantics”. In Proceedings of the 4th Annual Symposium
on Theoretical Aspects of Computer Science, STACS ’87, page 22-39, Berlin,
Heidelberg, 1987. Springer-Verlag.

[11] R. A. Kemmerer. “Hoare’s axiomatic semantics”. In roceedings of ACM
SIGSOFT International Symposium on Software Testing and Analysis, Clear-
water Beach, Florida, 1997. ACM Press.

– 249 –

J. Mihelič et al. A denotational semantics of a concatenative/compositional programming language

[12] C. Moore. “Forth: a new way to program a mini-computer”. Astronomy and
Astrophysics Supplement, Vol. 15, pp. 497-511, 1974.

[13] P. D. Mosses. “Theory and practice of action semantics”. In MFCS ’96,
Proc. 21st Int. Symp. on Mathematical Foundations of Computer Science,
pages 37-61. Springer-Verlag, 1996.

[14] H. R. Nielson and F. Nielson. “Semantics with Applications: An Appetizer”.
Springer-Verlag London, 2007.

[15] S. Pestov, D. Ehrenberg, and J. Groff. “Factor: A dynamic stack-based pro-
gramming language”. In Proceedings of the 6th Symposium on Dynamic
Languages, DLS ’10, ACM, New York, NY, USA, pp. 43-58, 2010.

[16] B. C. Pierce. “Types and Programming Languages”. The MIT Press, 1st
edition, 2002.

[17] G. D. Plotkin. “The origins of structural operational semantics”. J. Log.
Algebr. Program., Vol. 60-61, pp. 3-15, 2004.

[18] D. A. Schmidt. “Denotational semantics. Methodology for Language Devel-
opment”. Allyn and Bacon, 1986.

[19] K. Slonneger and B. Kurtz. “Formal Syntax and Semantics of Program-
ming Languages: A Laboratory Based Approach”. Addison-Wesley Long-
man Publishing Co., Inc., USA, 1st edition, 1995.

[20] W. Steingartner, V. Novitzká, M. Bačı́ková, and Š. Korečko. “New approach
to categorical semantics for procedural languages”. Computing and Infor-
matics, 36(6):1385-1414, 2017.

[21] S. Szymoniak. “Security protocols analysis including various time parame-
ters”. Mathematical Biosciences and Engineering, 18(2): 1136-1153, 2021.

[22] O. Siedlecka-Lamch, S. Szymoniak, M. Kurkowski, I. El Fray. Towards Most
Efficient Method for Untimed Security Protocols Verification. In: Proceed-
ings of the 24th Pacific Asia Conference on Information Systems: Information
Systems (IS) for the Future, PACIS 2020. 2020

[23] M. von Thun. “Joy: Forth’s functional cousin”. In In Proceedings from the
17th EuroForth Conference, 2001.

[24] D. A. Watt. “Action Semantics in Retrospect”. In Palsberg J. (eds) Semantics
and Algebraic Specification. Lecture Notes in Computer Science, Vol. 5700,
Springer, Berlin, Heidelberg, 2009.

[25] A. L. Zackery, S. Perugini. “An Introduction to Concatenative Programming
in Factor”. J. Comput. Sci. Coll. 35(5):70-77, 2019. Consortium for Com-
puting Sciences in Colleges, Evansville, IN, USA.

– 250 –

