
Acta Polytechnica Hungarica Vol. 17, No. 8, 2020

 – 29 –

JSON Documents Processing Using Situation-

Oriented Databases

Valeriy Mironov1, Artem Gusarenko1, Nafisa Yusupova1, Yuriy

Smetanin2

1Ufa State Aviation Technical University, Computer Science & Robotics Dept.,

Karl Marks st., 12, 450008 Ufa, Russia;

{mironov, gusarenko}@ugatu.su, yussupova@ugatu.ac.ru

2Russian Foundation for Basic Research, Head of Information Technologies &

Computing Systems Dept., Leninsky Prospekt st., 32a, 119334 Moscow, Russia;

smetanin@rfbr.ru

Abstract: Situation-oriented databases provide processing of documents from

heterogeneous data sources under the control of a hierarchical situational model. This

article discusses the problem of processing database documents in JSON format, along

with XML. Two implementation approaches are discussed: (1) on the fly JSON to XML

document conversion and using Document Object Model for processing XML, and (2)

loading the JSON document into an associative/indexed array followed by applying the

template engine. The database interpreter works with external heterogeneous data

extracted from files, databases, archives, web services, data is processed using virtual

documents. Examples of processing JSON documents received from a web service are

analyzed. Data from the San Francisco Open Data web server is used as the JSON test

source. Query in Socrata Query Language used for JSON data extraction is presented. The

implementation of approaches in the research situation-oriented database prototype based

on Hypertext Preprocessor is considered.

Keywords: hierarchical model; situation-oriented databases; NoSQL; databases; model-

driven development; open data

1 Introduction

Web applications that are widely used now, in the course of performing their

functions, should support the interaction, on the one hand, with users and other

applications, on the other hand, with a variety of local and remote data sources.

Traditionally, relational databases were used as data sources, which caused the

problem of mapping [1] relational data to data [2] in other formats, such as XML

[3]. However, Now the range of data formats used has significantly expanded, in

V. Mironov et al. JSON Documents Processing Using Situation-Oriented Databases

 – 30 –

particular, thanks to the success of the NoSQL [4] movement (such as Key-Values

databases, JSON-oriented document databases, Graph databases) and Polyglot

Persistence [5]. In this regard, new approaches to the flexible processing of

heterogeneous data in web applications are needed. The development of modern

web applications is strongly influenced by new approaches such as Service-

Oriented that estimated in work [6] in aspect of characteristics of Model-Driven

Architectures which use domain-specific languages [7]. Recently, the experience

of creating situation-oriented web applications has become relevant [8], applicable

for NoSQL in model-driven [9] database development such as SODB together

with Big Data technologies [10].

The ideas put forward in the framework of these approaches have had multiple

impacts, including on Situation-Oriented Databases (SODB) [11]. SODB is a new

approach to developing web applications, driven by the embedded Hierarchical

Situation Model (HSM) [12]. It is based on the uniform processing of

heterogeneous data [1]. The SODB approach novelty in the field of heterogeneous

data integration is the concept of virtual documents that are mapped to real data in

various formats (Fig. 1). When a virtual document is declared in the HSM model,

it’s mapping to real data is specified. After that, the processing of this virtual

document can be specified with the reference to its declaration. The advanced

invariance principle assumes that changing the mapping [2] specifications should

not affect the specifications for processing virtual documents.

Save

HSM
Interpreter

Query

Result

(HSM, CSM,
Params)

Send

Processing

Virtual

Store

dom

HSM
CSM

Virtual
Docs

Load

File Docs

Arc Docs

Zip Archives

Tables

DB

Servers

Web
Services

states

doc

Real

Stores

Mapping

states

Current

Upload

Table Docs

Allowable

Figure 1

SODB architecture

Initially, SODB focused on processing virtual documents in XML format and on

the using of appropriate XML technologies such as XSLT [11]. Recently, for

XML has appeared a competitor such as JSON. Due to its simplicity and

laconism, JSON has become popular and is actively used along with XML when

exchanging data between web servers [3] and between the browser and the server.

Acta Polytechnica Hungarica Vol. 17, No. 8, 2020

 – 31 –

In this regard, there was an implementation problem of the JSON data processing

functions in the SODB.

2 Problem Discussion

The SODB architecture, presented in Fig. 1, explains the principles of processing

heterogeneous documents [12]. The basis of the SODB is the hierarchical situation

model [6] HSM. HSM specifies a hierarchical set of allowable business process

states, conditions for state transitions, actions provided in the current states.

The HSM Interpreter executes the HSM model on external queries, identifying the

current states and performing the actions associated with the current states. The

sets of current states (CSM – Current State Model) are saved between the

interpretation cycles.

There are two types of elements for processing data in the HSM: (1) the doc

element specifies a virtual XML document, and (2) the dom element specifies a

DOM object (XML Document Object Model) for loading and processing a virtual

document. A virtual XML document can be mapped on a real document in the

form of a local XML file, a remote XML web service, a ZIP archive containing

compressed XML files, a relational database that stores XML documents.

Similarly, real JSON document can exist in the form of a local JSON file, remote

JSON web service, ZIP-archive with JSON-packed files, relational database,

storing JSON-documents.

The conceptual model [7] for processing a virtual XML document is shown in

Fig. 2 a. Here is a fragment of the HSM model, including the state sta , which

contains three child elements: (1) doc is a definition of a virtual document,

(2) dom is a virtual document processing object, and (3) wdg is a widget that

forms the HTML-code for sending to the user's browser. A real XML document

that maps a virtual document is loaded into the DOM object. Here, it is processed,

for example, in the form of XSL transformation in accordance with the specified

XSLT stylesheet. The result of the processing is used to generate a view in the

client's browser using a widget.

Two approaches can be proposed to implement this scheme in the case where a

virtual document is mapped to a JSON document: (1) JSON to XML

transformation, and (2) processing JSON in special objects.

V. Mironov et al. JSON Documents Processing Using Situation-Oriented Databases

 – 32 –

doc

sta

dom

wdg

XML
mapping

load

xslt

echo

doc

sta

dom

wdg

XML

mapping

load

xslt

echo

JSON
json2xml

XSL
XSL

doc

sta

arr

wdg

mapping

load

smarty

echo

JSON

TPL

a b c

Figure 2

Models of XML / JSON processing in SODB

2.1 JSON to XML Transformation

The model for processing a JSON document with transformation to XML format

is shown in Fig. 2 b. The conversion is done on the fly before loading the

document into a DOM object, further processing is performed just like processing

an XML document. The advantage of this approach is due to the large capabilities

of XSLT with respect to JSON. Some difficulties originate if the result of

processing should be in JSON format. An additional XSL transformation is

required to reverse the conversion of XML to JSON in this case.

2.2 JSON Processing Objects

The JSON document processing model using JSON processing objects is shown in

Fig. 2 c. In this case, the JSON document is loaded into a special object for

processing. Object arr is an associative array (an abstract data type composed

of a collection of ‘key, value’ pairs), which provides access to particular elements

of the JSON document. A suitable template engine, such as Smarty, can be used to

handle an associative array and form the widget's code. The capabilities of the

template engine are more modest than XSLT, but they are usually sufficient to

solve a wide range of transformation tasks.

Both approaches discussed above were implemented in the HSM Interpreter

research prototype. Interpreter is written in PHP [3] and is used as an engine for

the server part of the web application. The performance of the approaches has

been tested on several test cases, two of which are detailed below.

3 PHP-based Examples

Consider two examples of workable HSM models that illustrate the technique of

applying both approaches.

Acta Polytechnica Hungarica Vol. 17, No. 8, 2020

 – 33 –

Figure 3

Web service JSON data source example

Qty Range Locations

54 1935--2010
27 1941--2014 Golden Gate Bridge

22 1936--2017 City Hall

19 1938--2015 Fairmont Hotel (950 Mason Street, Nob Hill)
14 1995--2017 Treasure Island

10 1961--2008 Chinatown

10 1936--2015 Coit Tower
10 1956--2000 St. Peter & Paul's Church

d

title
{ _ }

wwmu-gmzc.json

http://data.sfgov.org/resource/

production_company
release_year
locations
fun_facts
director
distributer
writer
actor_1
actor_2
actor_3

qty

{ _ }

JSON

minyear
maxyear
locations

row
doc

qty

XML

minyear
maxyear
locations

a

b

c

[_][_]

3.1 Used JSON Data Source

Data from the SF OpenData web server, which provides a variety of information

about San Francisco, including in JSON format, was used as the JSON test source.

Namely, Film Locations service was used (a filming locations listing of movies

shot in San Francisco). The structure and composition of the facts about the films

and locations provided by the data source are shown in Fig. 3 a.

Let us need summary data, not just facts. For example, suppose for each

location you need to calculate the number of facts (qty) and their time range

(minyear, maxyear) (Fig. 3 b). Equivalent representation in XML-format is

given on Fig. 3 c. Thus, we want to obtain the result in the form presented in Fig.

3 d. This problem can be solved in two ways: (1) to download fact-document in

the original format Fig. 3 a and convert it to the desired format by XSL

transformation, and (2) to receive the document in the desired format Fig. 3 b

from the web service by sending a request to the server. In the tests we use the

second way.

V. Mironov et al. JSON Documents Processing Using Situation-Oriented Databases

 – 34 –

The SF OpenData service allows you to formulate GET queries using the SoQL –

SQL-like query language. To solve our problem, a query was constructed, which

provides grouping by attribute locations, calculation of statistical indicators for

groups by means of aggregate functions count, min, max, restriction and

sequencing of output results:

$select = locations, count (*) as qty,

 min (release_year) as minyear,

 max (release_year) as maxyear

$group = locations

$having = qty > 9

$order = qty desc

Before sending to the server, the query must be coded in accordance with the rules

for setting parameters in HTTP GET requests.

3.2 JSON to XML Transformation Example

In Fig. 4 is an example of the HSM model, which involves processing a JSON

document based on JSON to XML transformation. In the state sta:JSON-

Processing two virtual multi-documents are specified.

Multi-document doc:SFGov is provided for downloading JSON-data. It is

mapped to web services SF OpenData [8]. The type attribute indicates the JSON-

format documents. Entry-element ent:FilmLocs defines a separate virtual

document in the multi-document, mapped to the Film Locations in San Francisco

Web service [8]. The path attribute specifies a resource, and the get attribute

specifies an SoQL query that is coded in accordance with the rules for creating

GET parameters.

Multi-document doc:TmpDoc is provided to demonstrate the possibility of local

saving of downloaded data. It serves to store data in a relational database on a

MySQL server. The action attribute instructs to establish a connection with

MySQL using the default parameters. Element ent:putDoc specifies a virtual

document that is stored in the cell of table xmldocs in the line with the given

value of the identifier id in column doc. Element ent:getDoc is specified a

virtual document extracted from the same cell of the table xmldocs.

In the root state a submodel [9] sub:proc is envisaged, providing processing of

virtual documents. The internal state sta:proc is intended to handle under

normal conditions and states sta:loadErr and sta:saveErr – when an

error occurs.

Acta Polytechnica Hungarica Vol. 17, No. 8, 2020

 – 35 –

In the state sta:proc first element dom:Films creates and loads a DOM-

object. The srcDoc attribute refers to the virtual document ent:FilmLocs in

the multi-document doc:SFGov. Therefore, a corresponding JSON document is

downloaded from the corresponding web service (see Fig. 3 b). This document is

converted on the fly into XML format before loading into the DOM object.

During the conversion, the JSON array element (enclosed in square brackets)

wraps itself in tags doc, and the JSON object element (bounded by curly

brackets) turns into tags row (see Fig. 3 с). The onLoadErr attribute instructs to

jump to the sta:loadErr state if errors are detected during the load process.

Presence of the attribute saveDoc means that after processing the contents of the

DOM object must be stored in the corresponding virtual document. Attribute

refers to a virtual document ent:putDoc of the multi-document doc:TmpDoc

therefore XML-based representation JSON-document will be saved in the

corresponding MySQL table cell. The onSaveErr attribute instructs to jump to

the sta:saveErr state if error is detected during data saving.

Figure 4

HSM model examples based on JSON to XML transformation

SFGov host = "http://data.sfgov.org/resource/" type = "json"doc

FilmLocs path = "wwmu-gmzc.json"
get = "$select=locations,+count(*)+as+qty,+
 min(release_year)+as+minyear,+
 max(release_year)+as+maxyear
 &$group=locations&$having=qty>9
 &$order=qty+desc"

ent

JSON-Processingsta

Films srcDoc = "TmpDoc.getDoc"
 onLoadErr = "loadErr"

dom

sub

sta

wdg

sta

wdg

proc

proc

loadErr

showFilmLocs parent = "Show.InfoPanel"
 srcArr = "Films" xslPath = "XSL/films.tpl"

showError parent = "Show.InfoPanel"
 mess = "Error – Data is not loaded"

Films srcDoc = "SFGov.FilmLocs"
 onLoadErr = "loadErr"
 saveDoc = "TmpDoc.putDoc"
 onSaveErr = "saveErr"

dom

sta

wdg

saveErr

showError parent = "Show.InfoPanel"
 mess = "Error – Data is not saved"

TmpDoc action = "MySQLi-connect"doc

putDoc path = "INS::xmldocs.doc [id=1]"ent

getDoc path = "SEL::xmldocs.doc [id=1]"ent

V. Mironov et al. JSON Documents Processing Using Situation-Oriented Databases

 – 36 –

The second dom:Films element reloads the DOM object. The srcDoc attribute

refers to the ent:getDoc virtual document in the multi-document

doc:TmpDoc. Therefore, the XML-document will be loaded from the cell

MySQL table that has been saved earlier. (Note that the same content is loaded

into the DOM object. This is done only to demonstrate the technique of loading an

XML document from the MySQL database.)

The onLoadErr attribute prescribes go into a state sta:loadErr if errors are

found in the load process.

Widget-element wdg:ShowFilmLocs generates HTML-code snippet to display

the result in the client browser (see Fig. 3 d). The attribute srcDom refers to

dom:Films, i.e. the HTML code of the widget is formed based on the content of

this DOM object. The attribute xslPath prescribes to generate HTML-code by

XSL Transformation of XML-content in accordance with the style sheet file

XSL/films.xsl. The attribute parent points to the parent widget, the HTML

code of which should be embedded with the resulting HTML code of this widget,

i.e. it is assumed: (1) That in some state that is a parent of the state sta:proc,

widget-element wdg:Show is defined, and (2) that the HTML code generated by

the widget wdg:Show, contains an identifier attribute id = "InfoPanel".

In the states sta:loadErr and sta:saveErr widgets wdg:ShowError

generate an error message when loading and saving data [10]. These messages are

inserted into the same point in the HTML of the parent widget, into which

the result is inserted in the absence of errors.

3.3 JSON Processing Objects Example

In Fig. 5 is an example of the HSM model, which involves processing a JSON

document based on JSON processing objects. Syntactically, this model is very like

the previous one (see Fig. 4), it solves the same problem, but in a different way.

Definitions of virtual documents doc:SFGov and doc:TmpDoc have not

changed, except that the document doc:TmpDoc maps to the table jsondocs.

The main difference is that arr-elements are used instead of the dom-elements.

Arr-elements are provided in the HSM-model specifically for JSON documents.

When interpreted, they generate Arr objects – multidimensional arrays designed

to load and process JSON documents during interpretation of the HSM model.

When loaded, each JSON object is represented as an associative array, and the

JSON array is represented as an indexed array.

The first arr:Films element creates and loads an Arr-object. The attribute

srcDoc refers to a virtual document ent:FilmLocs in multi-document

doc:SFGov. Therefore, a JSON document is downloaded from the web service

and loaded into the Arr-object. As before, the onLoadErr attribute prescribes

Acta Polytechnica Hungarica Vol. 17, No. 8, 2020

 – 37 –

to go to the sta:loadErr if errors are found in the boot process. The presence

of the attribute saveDoc means that after the processing, the contents of the

Arr-object must be saved in the ent:putDoc of the multi-document

doc:TmpDoc. Therefore, arr:Films content is converted back into a JSON

document that is stored in the MySQL table cell. The attribute onSaveErr

prescribes go into a state sta:saveErr if there are errors in the save process.

The second arr:Films element reloads the Arr object. The attribute srcDoc

refers to virtual document ent:getDoc in the multi-document doc:TmpDoc.

Therefore, the JSON document will be extracted from the MySQL table cell in

which it was previously saved. The attribute onLoadErr prescribes go into a

state sta:loadErr if errors are found in the load process.

SFGov host = "http://data.sfgov.org/resource/" type = "json"doc

FilmLocs path = "wwmu-gmzc.json"
get = "$select=locations,+count(*)+as+qty,+
 min(release_year)+as+minyear,+
 max(release_year)+as+maxyear
 &$group=locations&$having=qty>9
 &$order=qty+desc"

ent

JSON-Processingsta

Films srcDoc = "TmpDoc.getDoc"
 onLoadErr = "loadErr"

arr

sub

sta

wdg

sta

wdg

proc

proc

loadErr

showFilmLocs parent = "Show.InfoPanel"
 srcArr = "Films" tplPath = "TPL/films.tpl"

showError parent = "Show.InfoPanel"
 mess = "Error – Data is not loaded"

Films srcDoc = "SFGov.FilmLocs"
 onLoadErr = "loadErr"
 saveDoc = "TmpDoc.putDoc"
 onSaveErr = "saveErr"

arr

sta

wdg

saveErr

showError parent = "Show.InfoPanel"
 mess = "Error – Data is not saved"

TmpDoc action = "MySQLi-connect"doc

putDoc path = "INS::jsondocs.doc [id=1]"ent

getDoc path = "SEL::jsondocs.doc [id=1]"ent

Figure 5

HSM model examples based on JSON processing objects

Widget element wdg:ShowFilmLocs generates HTML-code snippet to display

the result in the client browser (see Fig. 3 d). The attribute srcArr refers to

arr:Films, i.e. HTML-code of the widget is formed on the basis of the content

of this Arr-object. The tplPath attribute instructs to generate the HTML code

from the Arr-object content using the Smarty template engine per the template

V. Mironov et al. JSON Documents Processing Using Situation-Oriented Databases

 – 38 –

file TPL/films.tpl. The attribute parent indicates that the resulting HTML

code of this widget should be embedded in the parent HTML code of the widget

wdg:Show.

In states sta:loadErr and sta:saveErr the wdg:ShowError widgets

generate an error message when loading and saving data. These messages are

inserted into the same point in the HTML of the parent widget, into which the

result is inserted in the absence of errors.

4 The Results Discussion

Two approaches. Now DBMS can work with JSON-documents in the sense

that it can maps virtual documents for real data in JSON-format. When using the

first approach, internal processing of JSON documents is performed, as before, in

XML format. When using the second approach, internal processing is performed

in the format of multidimensional associative / index arrays. If the first approach

allows using the power of XML technologies, then the second approach is more

familiar for JSON documents.

High abstraction. As in the case of XML, JSON specifications are set at a

high level of abstraction. Essential aspects of JSON documents are specified in the

HSM model declarations, and technical details such as using an algorithm for

converting JSON to XML format, creating objects and loading JSON documents

into them, etc. are hidden from the developer and executed by the interpreter.

For example, the HSM model developer does not need to explicitly specify which

of the two approaches to use for processing the JSON document. Based on the

context, the interpreter chooses either transformation into an XML-format if the

document needs to be loaded into the DOM-object, or conversion to a

multidimensional array if the document needs to be loaded into the Arr-object.

Uniformity. With both approaches to providing JSON functionality, the

structure of the HSM models remains unchanged. The structure is the same as in

the case of using XML-documents, the differences appear only in the attributes.

Thus, a successful linguistic notation has been found both for specifying virtual

documents and for processing them: using a doc-element, a virtual multi-

document is defined and its mapping to real data is specified, and using dom/arr-

elements, a uniform processing of the virtual document is specified.

Invariance. The above invariance principle is observed within the same

approach, i.e., changing the address of the JSON document and the physical store

will require changes to the specifications of the doc-element and will not require

changes to dom/arr elements that reference this doc-element. At the same time, the

principle of invariance is violated when moving from the JSON to XML method

to the JSON processing objects method, since it will require you to replace the

Acta Polytechnica Hungarica Vol. 17, No. 8, 2020

 – 39 –

dom-elements with arr-elements and change the attributes that is, you need to

make changes to the document processing specifications. In the future, it is

supposed to investigate the possibility of unification so that in the HSM-model

one could use some generalized Document Processing Object element, which,

depending on the context, can be interpreted as a dom-element or as an arr-

element.

Implementation. The above functionality of virtual multi-documents is

implemented in the research prototype of the HSM interpreter as part of the engine

for managing web applications based on DBMS. The prototype of the HSM

interpreter, written in PHP language, as well as test HSM-models, other programs,

and data of Web applications are located on the webserver http://hsm.ugatu.su.

When a client accesses the root script of a web application, the HSM interpreter

runs, which executes a cycle of interpretation of the corresponding HSM model.

In the process of interpretation, the corresponding CSM-model is corrected and

the resulting HTML-code sent to the client. The built-in features and add-ons of

the PHP-platform are actively used for access to local files, archives, relational

databases [4], remote web servers.

Effect. Using the proposed approach reduces the complexity of programming

web applications based on DBMS, compared with traditional "manual"

programming in the languages of server-side scripts such as PHP. This is achieved

due to a higher level of abstraction of the HSM model when the set of routine

operations specified in the declarative form when determining virtual multiloquent

is assigned to the HSM-model interpreter.

Conclusions

Being an information processor for processing documents from heterogeneous

data sources, situationally-oriented databases need the functionality of processing

JSON documents. The approaches discussed above make it possible to solve this

problem by transforming the JSON document either into an XML format on the

fly or into an associative-index array. In the second case, it was required to

provide in the situational model special arr-elements, which generate associative-

index arrays for loading and processing JSON documents during interpretation.

A comparative consideration of both approaches in a practical example of

processing the document retrieved from the web service showed a high uniformity

of the situational models used for this. JSON-functionality is implemented in

the prototype of the HSM interpreter on the PHP platform as part of the control

mechanism of web applications based on SODB.

Acknowledgment

This work is supported by RFBR grant 19-07-00682.

V. Mironov et al. JSON Documents Processing Using Situation-Oriented Databases

 – 40 –

References

[1] Janga, P., Davis, K. C.: Mapping heterogeneous XML document

collections to relational databases. Lecture Notes In Computer Science,

Vol. 8824, 2014, pp. 86-99

[2] Cobo, M. J. et al.: A relational database model for science mapping

analysis. Acta Polytechnica Hungarica, 12 (6), 2015, pp. 43-62

[3] Amanatidis, T., Chatzigeorgiou, A.: Studying the evolution of PHP web

applications. Information and Software Technology, 72, 2016, pp. 48-67

[4] Varga, V. et al.: Conceptual design of document NoSQL database with

formal concept analysis. Acta Polytechnica Hungarica, 13 (2), 2016, pp.

229-248

[5] Fowler M., Sadalage P. J., NoSQL Distilled: A Brief Guide to the

Emerging World of Polyglot Persistence. Addison-Wesley, 2013

[6] Ameller, D., Burgués, X., Collell, O., et al.: Development of service-

oriented architectures using model-driven development: A mapping study.

Information and Software Technology, Vol. 62, 2015, pp. 42-66

[7] Kosar, T. et al.: Domain-Specific Languages: A Systematic Mapping

Study. Information and Software Technology, 71, 2016, pp. 77-91

[8] Xuanzhe Liu et al.: Data-driven composition for service-oriented situational

web applications. IEEE Transactions on Services Computing, Vol. 8, Iss. 1,

2015, pp. 2-16

[9] Agh, H., Ramsin, R.: A pattern-based model-driven approach for situational

method engineering. Information and Software Technology, 78, 2016, pp.

95-120

[10] Osvaldo, S. S., Jr. et al.: Developing software systems to Big Data platform

based on MapReduce model: An approach based on Model Driven

Engineering. Information and Software Technology, 92, 2017, pp. 30-48

[11] Mironov, V. V., Gusarenko, A. S., Yusupova, N. I.: Situation-oriented

databases: document management on the base of embedded dynamic

model. CEUR Workshop Proceedings (CEUR-WS.org): Selected Papers of

the XI International Scientific-Practical Conference Modern Information

Technologies and IT-Education (SITITO 2016) Vol. 1761, P. 238-247,

Moscow, Russia, 2016, pp. 238-247

[12] Mironov, V. V., Gusarenko, A. S., Yusupova, N. I.: The invariance of the

virtual data in the situationally oriented database when displayed on

heterogeneous data storages. Vestnik Komp'iuternykh i Informatsionnykh

Tekhnologii [Herald of Computer and Information Technologies], No. 1

(151) 2017, pp. 29-36 (In Russian)

