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Abstract: In this paper we consider special fuzzy implications as directional increasing 

functions and we introduce the notion of inversely special fuzzy implications as directional 

decreasing functions. We recall some results connected with special R-implications shown 

by Sainio et al. [A characterization of fuzzy implications generated by generalized 

quantifiers, Fuzzy Sets and Systems 159, 2008, pp. 491-499] and we present several new 

results connected with inversely special R-implications. Also, we discuss this new property 

for other families of fuzzy implications like (S,N)-implications, f-implications and g-

implications. 
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1 Introduction 

Standard monotonicity is one of the key properties of any function. Some 

functions used in fuzzy logic like t-norms, t-conorms, copulas are increasing in 

each variable. However, a very important fuzzy connective, a fuzzy implication, is 

hybrid monotonic – it is decreasing in the first variable and increasing in the 

second one. For such functions, among others, a notion of directional 

monotonicity was introduced. Our motivation is the article Directional 

monotonicity of fusion functions (Bustince et al. [3]) in which the authors 

investigated it deeper for different families of functions. In our paper we refer it to 

fuzzy implications. It turns out that there are some directional increasing and 

decreasing implications among which we support with examples. 

In this paper we consider special fuzzy implications as directional increasing 

functions and inversely special fuzzy implications as directional decreasing 

functions (see Section 3). The first notion was introduced in 1996 by Hájek and 

Kohout [5]. Later, Sainio et al. [11] and Jayaram and Mesiar [6] showed some 

results concerning R-implications, which we cite here in Section 4. In Section 5 

we formulate main new results for inversely special R-implications, while in 

Section 6 we consider other classes of inversely special fuzzy implications: 

(𝑆, 𝑁)-implications, 𝑓-implications and 𝑔-implications. 
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2. Basic Definitions 

This section contains definitions, properties and characterizations of directional 

monotonicity, fuzzy connectives and convex functions that will be used in the 

main part of this paper. 

2.1 A Directional Monotonicity 

The notion of the directional monotonicty was introduced in 2015 for functions 

which are not monotonic in each variable. Such functions are for example 

weighted arithmetic means, OWA operators, the Choquet and Sugeno integrals. 

As we mentioned before, fuzzy implications are monotonic in each variable 

separately, but not together. However, all these types of functions can be 

monotonic in a way described below. 

Definition 1 (Bustince et al. [3, Definition 2]). Let 𝑛 ∈ ℕ, 𝑛 ≥ 2, 𝕀 be the unit 

interval [0,1] and 𝑟 ∈ ℝ𝑛 such that 𝑟 = (𝑟1, … , 𝑟𝑛) ≠ (0, … ,0). 
A function 𝐹: 𝕀𝑛 ⟶ 𝕀 is: 

i. 𝑟-increasing, if for all 𝑥 ∈ 𝕀𝑛 and 𝑐 > 0 such that 𝑥 + 𝑐𝑟 ∈ 𝕀𝑛, 

it holds that 

𝐹(𝑥 + 𝑐𝑟) ≥ 𝐹(𝑥) 
ii. 𝑟-decreasing, if for all 𝑥 ∈ 𝕀𝑛 and 𝑐 > 0 such that 𝑥 + 𝑐𝑟 ∈ 𝕀𝑛, 

it holds that 

𝐹(𝑥 + 𝑐𝑟) ≤ 𝐹(𝑥). 

Lemma 2  Let 𝑟 = (𝑟1, … , 𝑟1), 𝑟1 > 0 and 𝑛 ∈ ℕ, 𝑛 ≥ 2. A function 𝐹: 𝕀𝑛 ⟶ 𝕀 is: 

1) 𝑟-increasing if and only if it is 𝟙-increasing, 

2) 𝑟-decreasing if and only if it is 𝟙-decreasing, 

where 𝟙 = (1, … ,1)⏟    
𝑛

 

Proof. We show it only for 𝑟-increasing functions. The proof for 𝑟-decreasing 

functions is parallel. Let 𝑥 = (𝑥1, … , 𝑥𝑛) for 𝑥1, … , 𝑥𝑛 ∈ 𝕀. If a function 𝐹 is  

(𝑟1, … , 𝑟1)-increasing, then for 𝑐 > 0 such that (𝑥1 + 𝑐𝑟1, … , 𝑥𝑛 + 𝑐𝑟1) ∈ 𝕀
𝑛 we 

have 

𝐹(𝑥1 + 𝑐𝑟1, … , 𝑥𝑛 + 𝑐𝑟1) ≥ 𝐹(𝑥1, … , 𝑥𝑛)

𝐹(𝑥1 + 𝑑 ∙ 1,… , 𝑥𝑛 + 𝑑 ∙ 1) ≥ 𝐹(𝑥1, … , 𝑥𝑛)
 

Hence, 𝐹 is 𝟙-increasing, for 𝑑 > 0 and 𝑑 = 𝑐𝑟1. 

If 𝐹 is 𝟙-increasing, then for applicable 𝑐 > 0 we have 

𝐹(𝑥1 + 𝑐,… , 𝑥𝑛 + 𝑐) ≥ 𝐹(𝑥1, … , 𝑥𝑛)

𝐹(𝑥1 + 𝑑 ∙ 𝑟1, … , 𝑥𝑛 + 𝑑 ∙ 𝑟1) ≥ 𝐹(𝑥1, … , 𝑥𝑛)
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where 𝑑 =
𝑐

𝑟1
 and 𝑑 > 0. Therefore, 𝐹 is 𝑟-increasing. 

Let us consider a notion of directional monotonicity for two different types of 

functions. 

Example 3 

1. The Fodor implication is given by the formula 

𝐼𝐹𝐷(𝑥, 𝑦) = {
1,                          𝑥 ≤ 𝑦

max{1 − 𝑥, 𝑦} , 𝑥 > 𝑦
    for 𝑥, 𝑦 ∈ [0,1] 

For 𝑥 = 0.2, 𝑦 = 0.1, 𝑐 = 0.4 we have 

𝐼𝐹𝐷(𝑥, 𝑦) = 0.8 > 𝐼𝐹𝐷(𝑥 + 𝑐, 𝑦 + 𝑐) = 0.5 

For the same  𝑥, 𝑦 and 𝑐 = 0.71 we have 

𝐼𝐹𝐷(𝑥, 𝑦) = 0.8 < 𝐼𝐹𝐷(𝑥 + 𝑐, 𝑦 + 𝑐) = 0.81 

Therefore, 𝐼𝐹𝐷  is not (1,1)-increasing neither (1,1)-decreasing. 

2. The Goguen implication, given by the formula 

𝐼𝐺𝐺(𝑥, 𝑦) = {
1, 𝑥 ≤ 𝑦
𝑦

𝑥
, 𝑥 > 𝑦

 for 𝑥, 𝑦 ∈ [0,1], is (𝑟1, 𝑟2)-increasing for 𝑟1, 𝑟2 ≥ 0 

such that 𝑟2 ≥ 𝑟1. Indeed, for 𝑥 ≤ 𝑦 and 𝑐 > 0 such that 𝑥 + 𝑐𝑟1, 
 𝑦 + 𝑐𝑟2 ∈ [0,1] we have 𝑥 + 𝑐𝑟1 ≤  𝑦 + 𝑐𝑟2 when 𝑟1 ≤ 𝑟2 and then 

𝐼(𝑥, 𝑦) = 1 ≤ 1 = 𝐼(𝑥 + 𝑐𝑟1, 𝑦 + 𝑐𝑟2). For 𝑥 > 𝑦 and applicable 𝑐 > 0 

we have 
𝑦

𝑥
≤

𝑦+𝑐𝑟2

𝑥+𝑐𝑟1
 ⟺  𝑟1𝑦 − 𝑟2𝑥 ≤ 0, which is true if 𝑟1 ≤ 𝑟2. 

3. Let 𝐹: [0,1]2 → [0,1] be a function given by the formula 

𝐹(𝑥, 𝑦) = (1 − 𝜆) ∙ max{𝑥, 𝑦} + 𝜆 ⋅ min {𝑥, 𝑦}, 𝜆 ∈ [0,1] (see [2]). 

Then it is 𝑟-decreasing for all 𝑟 ∈ [0,1]2 such that 𝑟 = (𝑟1, 𝑟2) and 𝑟1 +
𝜆

1−𝜆
𝑟2 ≤ 0,   𝑟1+

1−𝜆

𝜆
𝑟2 ≤ 0. Indeed, for all 𝑟1, 𝑟2, 𝑥, 𝑦 ∈ [0,1] and 𝑐 > 0 

such that 𝑥 + 𝑐𝑟1, 𝑦 + 𝑐𝑟2 ∈ [0,1] we have 

(1 − 𝜆) ∙ max{𝑥, 𝑦} + 𝜆 ⋅ min{𝑥, 𝑦} ≥  

(1 − 𝜆) ∙ max{𝑥 + 𝑐𝑟1, 𝑦 + 𝑐𝑟2} + 𝜆 ⋅ min{𝑥 + 𝑐𝑟1, 𝑦 + 𝑐𝑟2} 
this leads us to the following inequalities: 

𝑟1 ≤ −
𝜆

1−𝜆
𝑟2, when 𝑥 ≥ 𝑦 and 𝑟1 ≤ −

1−𝜆

𝜆
𝑟2 for 𝑥 < 𝑦 

The notion of the directional monotonicity is a generalization of another one, i.e., 

weak monotonicity (see [12]). Thanks to Lemma 2 we can say that weak 

monotonic function is a directional one in the direction of the vector 𝟙. 

More general facts and properties of directional monotonic functions can be found 

in Bustince et al. [3]. 

2.2 Fuzzy Connectives 

We assume that the reader is familiar with the classical results concerning basic 

fuzzy logic connectives, but to make this work more self-contained, we place 

some of them here. 
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Definition 4 (Fodor and Roubens [4]). A function 𝑁: [0,1] ⟶ [0,1] is called a 

fuzzy negation if 

 𝑁(0) = 1 and  𝑁(1) = 0 

 𝑁 is decreasing 

The basic example of a fuzzy negation is the classical strong negation 𝑁𝐶 , i.e., 

𝑁𝐶(𝑥) = 1 − 𝑥, 𝑥 ∈ [0,1]. 

2.2.1 T- norms, t-conorms and Copulas 

This part contains basic definitions and theorems, which are necessary to define 

some families of fuzzy implications. 

Definition 5 (Fodor and Roubens [4]). A function 𝑇: [0,1]2 ⟶ [0,1] is called a 

triangular norm (t-norm) if it satisfies the following conditions: 

 𝑇(1, 𝑥) = 𝑥 for all 𝑥 ∈ [0,1] 
 𝑇(𝑥, 𝑦) = 𝑇(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ [0,1] 
 𝑇(𝑥, 𝑦) ≤ 𝑇(𝑢, 𝑣) for all 0 ≤ 𝑥 ≤ 𝑢 ≤ 1, 0 ≤ 𝑦 ≤ 𝑣 ≤ 1 

 𝑇(𝑥, 𝑇(𝑦, 𝑧)) = 𝑇(𝑇(𝑥, 𝑦), 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ [0,1] 

Definition 6 (Fodor and Roubens [4]). A function 𝑆: [0,1]2 ⟶ [0,1] is called 

a triangular conorm (t-conorm) if it satisfies the following conditions: 

 𝑆(0, 𝑥) = 𝑥 for all 𝑥 ∈ [0,1] 
 𝑆(𝑥, 𝑦) = 𝑆(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ [0,1] 
 𝑆(𝑥, 𝑦) ≤ 𝑆(𝑢, 𝑣) for all 0 ≤ 𝑥 ≤ 𝑢 ≤ 1, 0 ≤ 𝑦 ≤ 𝑣 ≤ 1 

 𝑆(𝑥, 𝑆(𝑦, 𝑧)) = 𝑆(𝑆(𝑥, 𝑦), 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ [0,1] 

Definition 7 (Klement et al. [7, Definitions 2.9, 2.13]). A t-norm 𝑇 is said to be: 

 Archimedean, if for each (𝑥, 𝑦) ∈ (0,1)2 there is an 𝑛 ∈ ℕ such that 

𝑥𝑇
[𝑛]
< 𝑦, where by the notation 𝑥𝑇

[𝑛]
 we understand 𝑥𝑇

[𝑛]
=

{

1,                        if 𝑛 = 0
𝑥,                        if 𝑛 = 1

𝑇(𝑥, 𝑥𝑇
[𝑛−1]),    if 𝑛 > 1

 

 Nilpotent, if it is continuous and for each 𝑥 ∈ (0,1) there is an 𝑛 ∈ ℕ 

such that 𝑥𝑇
[𝑛] = 0. 

 Strict, if it is continuous and strictly monotonic, i.e., 𝑇(𝑥, 𝑦) < 𝑇(𝑥, 𝑧) 
whenever 𝑥 > 0 and 𝑦 < 𝑧. 

The following theorem is usually used to characterize continuous Archimedean t-

norms, its first proof can be found in the article written by Ling [9]. 

Theorem 8 (Klement et al. [7, Theorem 5.1]). For a function 𝑇: [0,1]2 ⟶ [0,1] 
the following statements are equivalent: 

i. 𝑇 is a continuous Archimedean t-norm 
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ii. T has a continuous additive generator, i.e., there exists a continuous, 

strictly decreasing function 𝑓: [0,1] ⟶ [0,∞] with 𝑓(1) = 0 such that 

𝑇(𝑥, 𝑦) = 𝑓−1(min {𝑓(𝑥) + 𝑓(𝑦), 𝑓(0)}), for 𝑥, 𝑦 ∈ [0,1]. Moreover, 

such representation is unique up to a positive multiplicative constant.  

The following theorem tells about a method of constructing new t-norms from 

some family of given t-norms. 

Theorem 9 (Klement et al. [7, Theorem 3.43]). Let (𝑇𝛼)𝛼∈𝐴 be a family of t-

norms and ((𝑎𝛼 , 𝑒𝛼))𝛼∈𝐴 be a family of non-empty, pairwise disjoint open 

subintervals of [0,1]. Then the following function 𝑇: [0,1]2 ⟶ [0,1] is a t-norm: 

𝑇(𝑥, 𝑦) =  {
𝑎𝛼 + (𝑒𝛼 − 𝑎𝛼) ⋅ 𝑇𝛼 (

𝑥−𝑎𝛼

𝑒𝛼−𝑎𝛼
,
𝑦−𝑎𝛼

𝑒𝛼−𝑎𝛼
) , if (𝑥, 𝑦) ∈ [𝑎𝛼 , 𝑒𝛼]

2

min{𝑥, 𝑦} ,                                                 otherwise.
 (1) 

This theorem allows us to formulate the following definition. 

Definition 10 (Klement et al. [7, Definition 3.44]). Let (𝑇𝛼)𝛼∈𝐴 be a family of t-

norms and ((𝑎𝛼 , 𝑒𝛼))𝛼∈𝐴 be a family of non-empty, pairwise disjoint open 

subintervals of [0,1]. The t-norm 𝑇 defined by (1) is called the ordinal sum of the 

summands < 𝑎𝛼 , 𝑒𝛼 , 𝑇𝛼 >, 𝛼 ∈ 𝐴, and we shall write 𝑇 = (< 𝑎𝛼 , 𝑒𝛼 , 𝑇𝛼 >)𝛼∈𝐴. 

In the following theorem, we recall a very important characterization of 

continuous t-norms. 

Theorem 11 (Klement et al. [7, Theorem 5.11]). For a function 𝑇: [0,1]2 → [0,1] 
the following statements are equivalent: 

i. 𝑇 is a continuous t-norm. 

ii. 𝑇 is uniquely representable as an ordinal sum of continuous Archimedean 

t-norms, i.e., 𝑇 is defined by a formula (1). 

We present a definition of a copula below. This notion is necessary to show its 

relationship with t-norms. 

Definition 12 (Klement et al. [7, Definition 9.4]). A function 𝐶: [0,1]2 ⟶ [0,1] is 

a copula if, for all 𝑥, 𝑦, 𝑢, 𝑣 ∈ [0,1] with 𝑥 ≤ 𝑢 and 𝑦 ≤ 𝑣, it satisfies the 

following conditions: 

 𝐶(𝑥, 𝑦) + 𝐶(𝑢, 𝑣) ≥ 𝐶(𝑥, 𝑣) + 𝐶(𝑢, 𝑦) 
 𝐶(𝑥, 0) = 𝐶(0, 𝑥) = 0 

 𝐶(𝑥, 1) = 𝐶(1, 𝑥) = 𝑥 

Definition 13. A function 𝑓: [0,1]2 ⟶ [0,1] is said to be 1-Lipschitz if it satisfies 

the Lipschitz property with constant 1 i.e., 

|𝑓(𝑥1, 𝑦1) − 𝑓(𝑥2, 𝑦2)| ≤ |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2| for all 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ [0,1]. 

The next theorem is the full characterization of t-norms which are copulas. 
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Theorem 14 (Moynihan [10, Theorem 3.1], Klement et al [7, Theorem 9.10]). For 

a t-norm T the following statements are equivalent: 

i. 𝑇 is a copula. 

ii. 𝑇 is 1-Lipschitz. 

2.2.2 Convex Functions 

This section contains known theorems, which describe continuous and convex 

functions. Properties presented here are needed in the next part of the work for 

additive generators of t-norms. 

Definition 15 (Kuczma [8, p.130]). Let 𝐷 ⊂ ℝ𝑛 , 𝑛 ∈ ℕ be a convex and open set. 

A function 𝑓: 𝐷 ⟶ ℝ is called convex if it satisfies the Jensen’s functional 

inequality 𝑓 (
𝑥+𝑦

2
) ≤

𝑓(𝑥)+𝑓(𝑦)

2
   for all 𝑥, 𝑦 ∈ 𝐷. 

Definition 16 (Kuczma [8, p.130]). Let 𝐷 ⊂ ℝ𝑛 , 𝑛 ∈ ℕ be a convex and open set. 

A function 𝑓: 𝐷 ⟶ ℝ is called concave if it satisfies the following functional 

inequality 𝑓 (
𝑥+𝑦

2
) ≥

𝑓(𝑥)+𝑓(𝑦)

2
   for all 𝑥, 𝑦 ∈ 𝐷. 

Theorem 17 (Kuczma [8, Theorem 7.1.1]). For a function 𝑓: 𝐷 ⟶ ℝ the 

following statements are equivalent: 

i. 𝑓 is convex and continuous. 

ii. For all 𝜆 ∈ [0,1] and all 𝑥, 𝑦 ∈ 𝐷 it holds 

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦).   (2) 

The following characterization is true for continuous functions. 

Theorem 18 (Kuczma [8, Theorems 7.3.2 and 7.3.3]). For a continuous function 

𝑓: [0,1] ⟶ ℝ the following statements are equivalent: 

i. 𝑓 is convex. 

ii. 𝑓 satisfies the inequality 

𝑓(𝑦 + 𝜀) − 𝑓(𝑦) ≤ 𝑓(𝑥 + 𝜀) − 𝑓(𝑥),    (3) 

for all 𝑥, 𝑦 ∈ [0,1] such that 𝑦 ≤ 𝑥 and all 𝜀 > 0 such that 𝑥 + 𝜀, 𝑦 + 𝜀 ∈
[0,1]. 

It is well-known that a function 𝑓 is convex, if and only if, – 𝑓 is concave. 

Therefore, the analogous theorem can be formulated for concave functions. 

Theorem 19. For a continuous function 𝑓: [0,1] ⟶ ℝ the following statements 

are equivalent: 

i. 𝑓 is concave. 

ii. 𝑓 satisfies the inequality 

𝑓(𝑦 + 𝜀) − 𝑓(𝑦) ≥ 𝑓(𝑥 + 𝜀) − 𝑓(𝑥), (4) 

for all 𝑥, 𝑦 ∈ [0,1] such that 𝑦 ≤ 𝑥 and all 𝜀 > 0 such that 𝑥 + 𝜀, 𝑦 + 𝜀 ∈
[0,1]. 
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2.2.3 Fuzzy Implications 

In this part we present main definitions connected with fuzzy implications. 

Definition 20 (Fodor and Roubens [4], Baczyński and Jayaram [1]). A function 

𝐼: [0,1]2 ⟶ [0,1] is called a fuzzy implication if it satisfies, for all 

𝑥,  𝑥1,  𝑥2, 𝑦, 𝑦1 , 𝑦2 ∈ [0,1], the following conditions: 

 if 𝑥1 ≤ 𝑥2, then 𝐼(𝑥1, 𝑦) ≥ 𝐼(𝑥2, 𝑦) 
 if 𝑦1 ≤ 𝑦2, then 𝐼(𝑥, 𝑦1) ≤ 𝐼(𝑥, 𝑦2) 
 𝐼(0,0) = 1 

 𝐼(1,1) = 1 

 𝐼(1,0) = 0 

Below, we cite one result that will be useful in the last part of our paper. 

Theorem 21 (Baczyński and Jayaram [1]). Let 𝜙: [0,1] ⟶ [0,1] be an increasing 

bijection. If 𝐼 is a fuzzy implication, then the 𝜙-conjugate of 𝐼 given by formula 

𝐼𝜙(𝑥, 𝑦) = 𝜙
−1(𝐼(𝜙(𝑥), 𝜙(𝑦))) for 𝑥, 𝑦 ∈ [0,1] is also a fuzzy implication. 

Now, we present definitions of some families of fuzzy implications that will 

appear later. 

Definition 22 (Baczyński and Jayaram [1]). A function 𝐼: [0,1]2 ⟶ [0,1] is called 

an 𝑅-implication if there exists a t-norm 𝑇 such that 

𝐼(𝑥, 𝑦) = sup{𝑡 ∈ [0,1]: 𝑇(𝑥, 𝑡) ≤ 𝑦},   for 𝑥, 𝑦 ∈ [0,1] (5) 

If 𝐼 is generated from a t-norm 𝑇, then it will be denoted by 𝐼𝑇 . 

Definition 23 (Baczyński and Jayaram [1]). A function 𝐼: [0,1]2 ⟶ [0,1] is called 

an (𝑆, 𝑁)-implication if there exists a t-conorm 𝑆 and a fuzzy negation 𝑁 such that  

𝐼(𝑥, 𝑦) = 𝑆(𝑁(𝑥), 𝑦),  for 𝑥, 𝑦 ∈ [0,1]. (6) 

3 Special and Inversely Special Implications 

As we mentioned before, the notion of directional monotonicity was introduced in 

2015 (Bustince et al. [3]). However, earlier, in 1996, it appeared for fuzzy 

implications in the article by Hájek and Kohout [5], investigated in 2007 by Sainio 

et al. [11] and also in 2009 by Jayaram and Mesiar [6]. The authors suggested the 

following notion. 

Definition 24 (Sainio et al. [11]). A fuzzy implication 𝐼 is called special if 

∀𝜀>0  ∀𝑥,𝑦∈[0,1]  (𝑥 + 𝜀, 𝑦 + 𝜀 ∈ [0,1] ⇒ 𝐼(𝑥, 𝑦) ≤ 𝐼(𝑥 + 𝜀, 𝑦 + 𝜀)). (SP) 

According to the Definition 1 we can say that special implications are 

(1,1)-increasing functions. 
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Below, we give some examples of special implications. 

Example 25 

1. The Łukasiewicz implication given by the formula 

𝐼Ł(𝑥, 𝑦) = min{1, 1 − 𝑥 + 𝑦}, for 𝑥, 𝑦 ∈ [0,1] (7) 

is a special implication (see [6]). Note that 𝐼Ł(𝑥, 𝑦) = 𝐼Ł(𝑥 + 𝜀, 𝑦 + 𝜀) for 

𝜀 > 0 and 𝑥 + 𝜀, 𝑦 + 𝜀 ∈ [0,1]. 
2. The Gödel implication given by the formula 

𝐼𝐺(𝑥, 𝑦) = {
1,     𝑥 ≤ 𝑦
𝑦,   𝑥 > 𝑦

, for 𝑥, 𝑦 ∈ [0,1], 

is special. Indeed, 𝐼(𝑥, 𝑦) = 𝐼(𝑥 + 𝜀, 𝑦 + 𝜀) for 𝑥 ≤ 𝑦 and suitable  

𝜀 > 0. We also have 𝐼(𝑥, 𝑦) = 𝑦 ≤ y + ε = I(x + ε, y + ε) for 𝑥 > 𝑦 and 

proper 𝜀 > 0. 

Analogously, we formulate the notion for fuzzy implications which are (1,1)-
decreasing functions. 

Definition 26  A fuzzy implication 𝐼: [0,1]2 ⟶ [0,1] is called inversely special if 

∀𝜀>0  ∀𝑥,𝑦∈[0,1]  (𝑥 + 𝜀, 𝑦 + 𝜀 ∈ [0,1] ⇒ 𝐼(𝑥, 𝑦) ≥ 𝐼(𝑥 + 𝜀, 𝑦 + 𝜀)). (ISP) 

Below we show several examples of inversely special implications, which belong 

to different families of fuzzy implications. 

Example 27 

1. The Łukasiewicz implication 𝐼Ł is inveresly special (see Example 25). 

2. Let 𝑆 be a t-conorm, 𝑁 the fuzzy negation given by 

 𝑁(𝑥) = {
0, 𝑥 = 1
1, 𝑥 < 1

. 

Then the (𝑆, 𝑁)-implication given by 𝐼(𝑥, 𝑦) = 𝑆(𝑁(𝑥), 𝑦) = {
1, 𝑥 < 1
𝑦, 𝑥 = 1

  

for 𝑥, 𝑦 ∈ [0,1] is inversely special. Indeed, for 𝑥, 𝑦 < 1 and 𝜀 > 0 such 

that 𝑥 + 𝜀 < 1 we have 1 = 𝐼(𝑥, 𝑦) ≥ 𝐼(𝑥 + 𝜀, 𝑦 + 𝜀) = 1. The 

condition (ISP) holds also for 𝑥, 𝑦 < 1 such that  𝑥 + 𝜀 = 1, since in this 

case 𝐼(𝑥, 𝑦) = 1 ≥ 𝑦 + 𝜀 = 𝐼(𝑥 + 𝜀, 𝑦 + 𝜀). Note that this implication is 

also the R-implication generated from the drastic product t-norm 𝑇𝐷 

given by the formula 𝑇𝐷(𝑥, 𝑦) = {
0,            (𝑥, 𝑦) ∈ [0,1)2

min{𝑥, 𝑦} ,     otherwise
  

for 𝑥, 𝑦 ∈ [0,1]. 
3. It is easy to check that the Rescher implication given by the formula 

𝐼𝑅𝑆(𝑥, 𝑦) = {
1,     𝑥 ≤ 𝑦
0,   𝑥 > 𝑦

, for 𝑥, 𝑦 ∈ [0,1] is inversely special. 

4. Note that the Gödel implication (see Example 25) is not inversely 

special. Let us take 𝑥 = 0.5, 𝑦 = 0.3 and 𝜀 = 0.2, then 𝐼(𝑥, 𝑦) = 0.3 <
𝐼(𝑥 + 𝜀, 𝑦 + 𝜀) = 0.5. 
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Lemma 28  Let 𝐼 be a fuzzy implication. If 𝐼 is special or inversely special, then it 

satisfies 

 The identity principle i.e., 𝐼(𝑥, 𝑥) = 1 for all 𝑥 ∈ [0,1] (IP) 

 The left ordering property i.e.,  ∀𝑥,𝑦∈[0,1]  (𝑥 ≤ 𝑦 ⇒ 𝐼(𝑥, 𝑦) = 1) 

Proof. We show it for inversely special implications (as for special ones it is 

similar). Let 𝐼 be an inversely special implication and take 𝑥 ∈ [0,1) and 𝜀 > 0. 

Let us fix 𝜀 = 1 − 𝑥 > 0, we have 

1 ≥ 𝐼(𝑥, 𝑥) ≥ 𝐼(𝑥 + 𝜀, 𝑥 + 𝜀) = 𝐼(1,1) = 1 

Of course 𝐼(1,1) = 1, hence 𝐼(𝑥, 𝑥) = 1 for 𝑥 ∈ [0,1], so I satisfies (IP). 

To show the second condition, let us take 𝑥, 𝑦 ∈ [0,1] such that 𝑥 ≤ 𝑦, then 

1 ≥ 𝐼(𝑥, 𝑦) ≥ 𝐼(𝑦, 𝑦) = 1 

because of the monotonicity of 𝐼. Therefore, 𝐼(𝑥, 𝑦) = 1 

Note that the fuzzy implication 𝐼 from Example 27 point 2 satisfies the left 

neutrality property, i.e., 

𝐼(1, 𝑦) = 𝑦, for 𝑦 ∈ [0,1]  (NP) 

However, it does not satisfy the ordering property i.e., the following equality 

 ∀𝑥,𝑦∈[0,1]  (𝑥 ≤ 𝑦 ⇔ 𝐼(𝑥, 𝑦) = 1) (OP) 

Indeed, 𝐼(𝑥, 𝑦) = 1 for 𝑥 = 0.9 and 𝑦 = 0.5. This makes a difference between 

fuzzy implications satisfying (ISP) and (SP). If a special implication satisfies (NP) 

then it satisfies (OP) as well (see [6, Proposition 2.7]). Here, as we have seen, it 

can be opposite. 

For all fuzzy implications, the following result is true. 

Theorem 29 (cf. Jayaram and Mesiar [6, Theorem 9.6]). For an increasing 

bijection 𝜙: [0,1] ⟶ [0,1] the following statements are equivalent: 

i. For each inversely special implication I, the implication 𝐼𝜙 is an inversely 

special fuzzy implication. 

ii. 𝜙 is convex. 

Proof. (𝑖.⇒ 𝑖𝑖. ) We can take any fuzzy implication which satisfies (ISP), so let us 

consider the Łukasiewicz implication 𝐼Ł. Assume that (𝐼Ł)𝜙 is inversely special for 

some increasing bijection 𝜙. Let us fix arbitrarily 𝑥, 𝑦 ∈ [0,1] such that 𝑥 ≥ 𝑦 and 

take any 𝜀 > 0 such that 𝑥 + 𝜀, 𝑦 + 𝜀 ∈ [0,1]. From (ISP) for (𝐼Ł)𝜙  we obtain 

𝜙−1(1 − 𝜙(𝑥) + 𝜙(𝑦)) =  (𝐼Ł)𝜙(𝑥, 𝑦) ≥ (𝐼Ł)𝜙(𝑥 + 𝜀, 𝑦 + 𝜀)

= 𝜙−1(1 − 𝜙(𝑥 + 𝜀) + 𝜙(𝑦 + 𝜀)) 

thus, by the monotonicity of 𝜙−1, we have 



K. Miś Directional Monotonicity of Fuzzy Implications 

 – 112 – 

1 − 𝜙(𝑥) + 𝜙(𝑦) ≥ 1 − 𝜙(𝑥 + 𝜀) + 𝜙(𝑦 + 𝜀) 

hence 

𝜙(𝑥 + 𝜀) − 𝜙(𝑥) ≥ 𝜙(𝑦 + 𝜀) − 𝜙(𝑦) 

and 𝜙 is convex in virtue of Theorem 18. 

(𝑖𝑖.⇒ 𝑖. ) Since 𝐼 is inversely special, then it satisfies the left ordering property. 

We show that 𝐼𝜙 satisfies it too. Let us take 𝑥 ∈ [0,1) and define 𝜀 = 1 − 𝜙(𝑥) >

0. From (ISP) for I we obtain 

1 ≥ 𝐼(𝜙(𝑥), 𝜙(𝑥)) ≥ 𝐼(𝜙(𝑥) + 𝜀, 𝜙(𝑥) + 𝜀) = 𝐼(1,1) = 1 

Of course 

𝐼𝜙(𝑥, 𝑥) = 𝜙
−1 (𝐼(𝜙(𝑥), 𝜙(𝑥))) = 𝜙−1(1) = 1 

Thus, 1 = 𝐼𝜙(𝑥, 𝑥) ≤ 𝐼𝜙(𝑥, 𝑦) ≤ 1 for any 𝑥, 𝑦 ∈ [0,1] such that 𝑥 ≤ 𝑦, because 

of the monotonicity of the fuzzy implication 𝐼𝜙, hence 𝐼𝜙(𝑥, 𝑦) = 1 for 𝑥 ≤ 𝑦. 

Therefore, it remains to show that 𝐼𝜙 is inversely special for 𝑥, 𝑦 ∈ [0,1] such that 

𝑥 > 𝑦. To do this let us fix arbitrarily 𝑥, 𝑦 ∈ [0,1) such that 𝑥 > 𝑦 (the case when 

𝑥 = 1 is not applicable in the definition of (ISP)). We know that  

𝐼(𝜙(𝑥), 𝜙(𝑦)) ≥ 𝐼(𝜙(𝑥) + 𝛿, 𝜙(𝑦) + 𝛿) 

for any 𝛿 > 0 such that 𝜙(𝑥) + 𝛿, 𝜙(𝑦) + 𝛿 ∈ [0,1]. Let us take any 𝜀 > 0 such 

that 𝑥 + 𝜀 ≤ 1. Bijection 𝜙 is in particular continuous, so from our assumption on 

convexity and by Theorem 18 we have 𝜙(𝑦 + 𝜀) ≥ 𝜙(𝑦) + 𝜙(𝑥 + 𝜀) − 𝜙(𝑥). 
Now, for 𝛿 = 𝜙(𝑥 + 𝜀) − 𝜙(𝑥) > 0 we have 

𝐼(𝜙(𝑥), 𝜙(𝑦))  ≥ 𝐼(𝜙(𝑥 + 𝜀), 𝜙(𝑦) + 𝜙(𝑥 + 𝜀) − 𝜙(𝑥))

≥ 𝐼(𝜙(𝑥 + 𝜀), 𝜙(𝑦 + 𝜀))
 

Therefore 𝜙−1 (𝐼(𝜙(𝑥), 𝜙(𝑦))) ≥ 𝜙−1 (𝐼(𝜙(𝑥 + 𝜀), 𝜙(𝑦 + 𝜀))) and thus 𝐼𝜙 is 

inversely special. 

4 Characterizations of Special R-implications 

First, we cite characterizations of special implications that are R-implications 

generated from specific t-norms. 

Theorem 30 (Sainio et al. [11, Proposition 2]). For a continuous Archimedean t-

norm T the following statements are equivalent: 

i. The R-implication 𝐼𝑇  satisfies (SP). 
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ii. The continuous additive generator of 𝑇 is a convex function. 

Theorem 31 (Sainio et al. [11, Theorem 2]). For a continuous t-norm 𝑇 the 

following statements are equivalent: 

i. The R-implication 𝐼𝑇  satisfies (SP). 

ii. 𝑇 is the ordinal sum of the summands < 𝑎𝛼 , 𝑒𝛼 , 𝑇𝛼 >, 𝛼 ∈ 𝐴, where each 

𝑇𝛼 is generated by a convex additive generator 𝑓𝛼. 

In particular, when A is the empty set, then T is the minimum t-norm and 𝐼𝑇  is the 

Gödel implication which is special. As a corollary, they received the following 

result. 

Theorem 32 (Sainio et al. [11, Corollary 2]). For a left-continuous t-norm 𝑇 the 

following statements are equivalent: 

i. The R-implication 𝐼𝑇  satisfies (SP). 

ii. 𝑇 is 1-Lipschitz. 

As an easy corollary we receive the following fact. 

Corollary 33  For a left-continuous t-norm 𝑇 the following statements are 

equivalent: 

i. The R-implication 𝐼𝑇  satisfies (SP). 

ii. 𝑇 is a copula. 

5 Characterizations of Inversely Special  

R-implications 

In this section, we present new results for inversely special fuzzy implications 

which are in some sense equivalents of results from previous section.  

The following remark says about such R-implications generated from 1-Lipschitz 

t-norms. 

Theorem 34  The Łukasiewicz implication given by (7) is the only one R-

implication generated from a 1-Lipschitz t-norm that is inversely special. 

Proof. Let us take a 1-Lipschitz t-norm 𝑇 and consider the R-implication 

generated from it. For the simplificity let us denote it by I. First notice that for 

every R-implication we have 

𝐼(1, 𝑦) = sup{𝑡 ∈ [0,1] = 𝑇(1, 𝑡) ≤ 𝑦} = 𝑦 

for y∈ [0,1]. From Theorem 32 we know that 𝐼 is special. Let us take 𝑥, 𝑦 ∈ [0,1) 
such that 𝑥 > 𝑦 and 𝜀 = 1 − 𝑥 > 0. Since 𝐼 satisfies (SP) we can write 

𝐼(𝑥, 𝑦) ≤ 𝐼(𝑥 + 𝜀, 𝑦 + 𝜀) = 𝐼(1,1 − 𝑥 + 𝑦) = 1 − 𝑥 + 𝑦 = 𝐼Ł(𝑥, 𝑦) 
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Also, 𝐼 satisfies (ISP). Therefore 

𝐼(𝑥, 𝑦) ≥ 𝐼(𝑥 + 𝜀, 𝑦 + 𝜀) = 𝐼(1,1 − 𝑥 + 𝑦) = 1 − 𝑥 + 𝑦 = 𝐼Ł(𝑥, 𝑦) 

for 𝑥 > 𝑦. Therefore 𝐼(𝑥, 𝑦) = 𝐼Ł(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ [0,1) such that 𝑥 > 𝑦. From 

Lemma 28 we know that 𝐼(𝑥, 𝑦) = 1 for 𝑥 ≤ 𝑦. 

Hence 𝐼(𝑥, 𝑦) = 𝐼Ł(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ [0,1]. 

For some 𝑅-implications generated from continuous t-norms, we can formulate a 

characterization of inversely special implications in the analogous way to special 

ones (compare the following result with Theorem 30). 

Theorem 35  For a continuous Archimedean t-norm T the following statements 

are equivalent: 

i. The R-implication 𝐼𝑇  satisfies (ISP). 

ii. The continuous additive generator of 𝑇 is a concave function. 

Proof. (𝑖.⇒ 𝑖𝑖. ) Let 𝑇 be a continuous Archimedean t-norm and 𝐼𝑇  be the R-

implication generated from 𝑇. Also, let 𝑓: [0,1] ⟶ [0,1] be the additive generator 

of 𝑇, i.e., 𝑇(𝑥, 𝑦) = 𝑓−1(min{𝑓(𝑥) + 𝑓(𝑦), 𝑓(0)}), for 𝑥, 𝑦 ∈ [0,1]. Hence, by 

Theorem 2.5.21 in [1] we obtain 

𝐼𝑇(𝑥, 𝑦) = 𝑓
−1(max{𝑓(𝑦) − 𝑓(𝑥), 0}), for all 𝑥, 𝑦 ∈ [0,1] 

From Theorem 19 it is enough to show the condition (4). Let us fix arbitrarily 

𝑥, 𝑦 ∈ [0,1] such that 𝑥 ≥ 𝑦. Then 𝑓(𝑥) ≤ 𝑓(𝑦), so 𝑓(𝑦) − 𝑓(𝑥) ≥ 0 and hence 

𝐼𝑇(𝑥, 𝑦) = 𝑓
−1(𝑓(𝑦) − 𝑓(𝑥)) 

for such 𝑥, 𝑦. Since 𝐼𝑇  is inversely special, for any 𝜀 > 0 such that 𝑥 + 𝜀, 𝑦 + 𝜀 ∈
[0,1], we receive 

𝐼𝑇(𝑥, 𝑦) ≥ 𝐼𝑇(𝑥 + 𝜀, 𝑦 + 𝜀) 

so 

𝑓−1(𝑓(𝑦) − 𝑓(𝑥)) ≥ 𝑓−1(𝑓(𝑦 + 𝜀) − 𝑓(𝑥 + 𝜀)) 

𝑓−1 is also a decreasing function, therefore 

𝑓(𝑦) − 𝑓(𝑥) ≤ 𝑓(𝑦 + 𝜀) − 𝑓(𝑥 + 𝜀) 

hence 

𝑓(𝑦 + 𝜀) − 𝑓(𝑦) ≥ 𝑓(𝑥 + 𝜀) − 𝑓(𝑥) 

thus, by Theorem 19, 𝑓 is a concave function. 

(𝑖𝑖.⇒ 𝑖. ) Let us assume that 𝑓 is a concave function and by Theorem 19 we have 

𝑓(𝑦 + 𝜀) − 𝑓(𝑦) ≥ 𝑓(𝑥 + 𝜀) − 𝑓(𝑥) 

for 𝑥, 𝑦 ∈ [0,1], 𝑥 ≥ 𝑦 and applicable 𝜀 > 0. Hence 
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𝑓−1(𝑓(𝑦) − 𝑓(𝑥)) ≥ 𝑓−1(𝑓(𝑦 + 𝜀) − 𝑓(𝑥 + 𝜀)) 

thus 

𝐼𝑇(𝑥, 𝑦) ≥ 𝐼𝑇(𝑥 + 𝜀, 𝑦 + 𝜀) 

We know that 𝐼𝑇(𝑥, 𝑦) = 1 for 𝑥 < 𝑦 and therefore 𝐼𝑇  is inversely special. 

Now we consider continuous t-norms (compare the following result with Theorem 

31) 

Theorem 36  For a continuous t-norm 𝑇 the following statements are equivalent: 

i. The R-implication 𝐼𝑇  satisfies (ISP). 

ii. 𝑇 is continuous Archimedean with a concave generator. 

Proof. (𝑖.⇒ 𝑖𝑖. ) Let us take a continuous t-norm 𝑇 and consider the R-implication 

𝐼𝑇  generated from this 𝑇. From Theorem 11 we know that 𝑇 can be represented as 

an ordinal sum of continuous Archimedean t-norms. Then 𝐼𝑇  is given by the 

following formula (see [1, Theorem 2.5.24]): 

𝐼𝑇(𝑥, 𝑦) = {

1,                                                                                          𝑥 ≤ 𝑦

𝑎𝛼 + (𝑒𝛼 − 𝑎𝛼) ⋅ 𝐼𝑇𝛼 (
𝑥 − 𝑎𝛼
𝑒𝛼 − 𝑎𝛼

,
𝑦 − 𝑎𝛼
𝑒𝛼 − 𝑎𝛼

),        (𝑥, 𝑦) ∈ [𝑎𝛼 , 𝑒𝛼]
2

𝑦,                                                                                  otherwise.

 

Let us consider three cases with respect to the index set 𝐴. 

1. If 𝐴 = ∅, then  𝐼𝑇 = 𝐼𝐺  (see Example 25 point 2). However, we have 

shown that 𝐼𝐺  is special but not inversely special. 

2. If �̿� = 1 and 𝑎𝛼 = 0, 𝑒𝛼 = 1, then 𝑇 =< 0,1, 𝑇 > and T is a continuous 

Archimedean t-norm. In this case, in virtue of Theorem 35, 𝐼𝑇  is 

inversely special if and only if 𝑇 has a concave generator. 

3. In all other situations we consider two possibilities. 

a. There exists 𝛼0 ∈ 𝐴 such that 𝑎𝛼0 = 0 and 𝑒𝛼0 < 1. Let us take 

𝑥 ∈ (𝑒𝛼0, 1), 𝑦 ∈ (𝑎𝛼0, 𝑒𝛼0), then there exists 𝜀 > 0 such that 

𝑥 + 𝜀 ∈ (𝑒𝛼0, 1), 𝑦 + 𝜀 ∈ (𝑎𝛼0, 𝑒𝛼0). Then 𝐼𝑇(𝑥, 𝑦) = 𝑦 < 𝑦 +
𝜀 = 𝐼𝑇(𝑥 + 𝜀, 𝑦 + 𝜀), so 𝐼𝑇  does not satisfy (ISP) in this case. 

b. 𝑎𝛼 > 0, for all 𝛼 ∈ 𝐴. Let 𝑎𝛼0 = min {𝑎𝛼: 𝛼 ∈ 𝐴} and 𝑒𝛼0 =

min {𝑒𝛼: 𝛼 ∈ 𝐴}. Consider 𝑥 ∈ (𝑎𝛼0, 𝑒𝛼0) such that 
𝑥

2
< 𝑎𝛼0. 

Then there exists 𝜀 > 0 such that 𝑥 + 𝜀 ∈ (𝑎𝛼0, 𝑒𝛼0) and  
𝑥+𝜀

2
< 𝑎𝛼0. Then 𝐼𝑇 (𝑥,

𝑥

2
) =

𝑥

2
<

𝑥

2
+
𝜀

2
= 𝐼𝑇(𝑥 + 𝜀,

𝑥+𝜀

2
). 

As we have shown, if 𝐼𝑇  is represented by a proper ordinal sum (case 3) it is not 

inversely special. Therefore 𝐼𝑇  is inversely special if and only if 𝑇 is continuous 

Archimedean with a concave generator. 

(𝑖𝑖.⇒ 𝑖. ) This follows from Theorem 35. 
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Based on the above results, we can formulate the following fact. 

Theorem 37  For a continuous t-norm 𝑇 the following statements are equivalent: 

i. The R-implication 𝐼𝑇  satisfies (ISP). 

ii. The R-implication 𝐼𝑇  is 𝜙-conjugate with the Łukasiewicz implication, 

where 𝜙 is convex. 

Proof. (𝑖.⇒ 𝑖𝑖. ) Let T be a continuous t-norm. From Theorem 36 we know that if 

the R-implication generated from a continuous t-norm 𝑇 satisfies (ISP), then 𝑇 is 

also Archimedean. Among all such t-norms there are only two classes – nilpotent 

and strict t-norms (see [7, Theorem 2.18]). Let f be the additive generator of T. If 

𝑇 is nilpotent, then 𝑓(0) < ∞ and if 𝑇 is strict, then 𝑓(0) = ∞ (see [7, 

Proposition 3.29]). We also know from Theorem 36 that 𝑓 is concave, so by 

Theorem 18 the condition (4), i.e., the inequality 

𝑓(𝑦 + 𝜀) − 𝑓(𝑦) ≥ 𝑓(𝑥 + 𝜀) − 𝑓(𝑥) 

is true for 𝑥, 𝑦 ∈ [0,1] such that 𝑦 ≤ 𝑥 and 𝜀 > 0 such that 𝑥 + 𝜀, 𝑦 + 𝜀 ∈ [0,1]. 
Let 𝑦 = 0 and take any 𝑥 ∈ (0,1) and 𝜀 ∈ (0,1) such that 𝑥 + 𝜀 ∈ (0,1). From the 

above inequality we obtain that 

𝑓(0) ≤ 𝑓(𝑥) − 𝑓(𝑥 + 𝜀) − 𝑓(𝜀) 

Therefore, 𝑓(0) < ∞ (because 𝑓(𝑥), 𝑓(𝑥 + 𝜀), 𝑓(𝜀) < ∞) and 𝑇 must be 

nilpotent. Hence 𝐼𝑇  is 𝜙-conjugate with the Łukasiewicz implication (see [1, 

Lemma 2.5.23]). Moreover, we can define 𝜙 in the following way  

𝜙(𝑥) = 1 −
𝑓(𝑥)

𝑓(0)
 for 𝑥 ∈ [0,1]. Also if 𝑓 is concave, then of course 𝜙 is convex. 

(𝑖𝑖.⇒ 𝑖. ) For any increasing bijection 𝜙, by Proposition 2.5.10 in [1], the function 

(𝐼Ł)𝜙  is a continuous 𝑅-implication generated from the continuous t-norm 𝜙-

conjugate with the Łukasiewicz t-norm, i.e., (𝑇Ł)𝜙(𝑥, 𝑦) = 𝜙
−1(max {𝜙(𝑥) +

𝜙(𝑦) − 1,0}), 𝑥, 𝑦 ∈ [0,1]. From Theorem 29 we know that (𝐼Ł)𝜙   satisfies (ISP), 

if 𝜙 is convex. 

Now, we present a proposition which contains a little more general 

characterization of directional decreasing 𝑅-implications generated from 

continuous t-norms. 

Proposition 38  Let 𝜀, 𝜀1, 𝜀2 > 0, 𝜀2 ≤ 𝜀 ≤ 𝜀1, 𝑇 be a continuous t-norm and 𝐼𝑇  be 

the 𝑅-implication generated from 𝑇. Then the following statements are equivalent: 

i. 𝐼𝑇  is an inversely special implication. 

ii. 𝐼𝑇  is (𝜀1, 𝜀)-decreasing. 

iii. 𝐼𝑇  is (𝜀, 𝜀2)-decreasing. 

Proof. (𝑖.⇒ 𝑖𝑖. ) If an 𝑅-implication 𝐼𝑇  is inversely special, then t-norm 𝑇 is 

continuous Archimedean with an additive generator 𝑓. Therefore for 𝑥, 𝑦 ∈ [0,1],
𝑥 ≥ 𝑦 and applicable 𝜀 > 0 we can write the following inequality 
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𝑓−1(𝑓(𝑦) − 𝑓(𝑥)) ≥ 𝑓−1(𝑓(𝑦 + 𝜀) − 𝑓(𝑥 + 𝜀)) 

thus for proper 𝜀1 > 0 we have 

𝑓(𝑦) − 𝑓(𝑥) ≤ 𝑓(𝑦 + 𝜀) − 𝑓(𝑥 + 𝜀) ≤ 𝑓(𝑦 + 𝜀) − 𝑓(𝑥 + 𝜀1) 

because 𝑓 is strictly decreasing. Further, 𝑓−1(𝑓(𝑦) − 𝑓(𝑥)) ≥ 𝑓−1(𝑓(𝑦 + 𝜀) −

𝑓(𝑥 + 𝜀1)), what means 𝐼𝑇(𝑥, 𝑦) ≥ 𝐼𝑇(𝑥 + 𝜀1, 𝑦 + 𝜀) in this case. Moreover, we 

have 

1 = 𝐼𝑇(𝑥, 𝑦) ≥ 𝐼𝑇(𝑥 + 𝜀1, 𝑦 + 𝜀) 

for any 𝑥 < 𝑦 and applicable 𝜀 > 0. Proofs (𝑖𝑖.⇒ 𝑖. ), (𝑖𝑖𝑖.⇒ 𝑖. ) are obvious and 

(𝑖.⇒ 𝑖𝑖𝑖. ) is analogous to the above one. 

The similar result can be formulated for special implications and the proof is 

similar to the above one. 

Proposition 39  Let 𝜀, 𝜀1, 𝜀2 > 0, 𝜀1 ≤ 𝜀 ≤ 𝜀2, 𝑇 be a continuous t-norm and 𝐼𝑇  be 

the 𝑅-implication generated from 𝑇. Then the following statements are equivalent: 

i. 𝐼𝑇  is a special implication. 

ii. 𝐼𝑇  is (𝜀1, 𝜀)-increasing. 

iii. 𝐼𝑇  is (𝜀, 𝜀2)-increasing. 

6 Other Classes of Inversely Special Implications 

In this part we consider different families of fuzzy implications, i.e., (𝑆, 𝑁)-
implications, 𝑓-implications and 𝑔-implications. We will use the following 

theorems to characterize inversely special (𝑆, 𝑁)-implications. 

Theorem 40 (Baczyński and Jayaram [1, Theorem 2.4.17]). For a t-conorm 𝑆 and 

a fuzzy negation 𝑁 the following statements are equivalent: 

i. 𝐼𝑆,𝑁 is a continuous (𝑆, 𝑁)-implication that satisfies (IP). 

ii. 𝑆 is a nilpotent t-conorm and 𝑁 ≥ 𝑁𝑆, where 𝑁𝑆 is the natural negation of 

S (see Definition 2.3.1 in [1]). 

Theorem 41 (Baczyński and Jayaram [1, Theorem 2.4.20]). For a function 

𝐼: [0,1]2 → [0,1] the following statements are equivalent. 

i. 𝐼 is an (𝑆, 𝑁)-implication obtained from a nilpotent t-conorm 𝑆 and its 

natural negation 𝑁𝑆. 

ii. 𝐼 is 𝜙-conjugate with the Łukasiewicz implication. 

Thanks to these results, we can formulate the following corollary. 
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Corollary 42 For a function 𝐼: [0,1]2 → [0,1] the following statements are 

equivalent. 

i. 𝐼 is an inversely special (𝑆, 𝑁)-implication obtained from a continuous t-

conorm 𝑆 and its natural negation 𝑁𝑆. 

ii. 𝐼 is 𝜙-conjugate with the Łukasiewicz implication, where 𝜙 is convex. 

Proof. (𝑖.⇒ 𝑖𝑖. ) Let 𝐼 be an inversely special (𝑆, 𝑁)-implication obtained from a 

continuous t-conorm 𝑆 and its natural negation 𝑁𝑆. If 𝐼 satisfies (ISP), then by 

Lemma 28 it satisfies (IP). I is in particular continuous, so in virtue of Theorem 40 

the t-conorm S is nilpotent. Now, from Theorem 41 and Theorem 29 we obtain the 

thesis. 

(𝑖𝑖.⇒ 𝑖.) By Theorem 2.4.5 in [1] the function (𝐼Ł)𝜙 is the (𝑆, 𝑁)-implication 

obtained from the 𝜙-conjugate Łukasiewicz t-conorm 𝑆Ł (which is in particular 

continuous) and its natural negation. From Theorem 29 we know that (𝐼Ł)𝜙  

satisfies (ISP), if 𝜙 is convex. 

A fuzzy implication 𝜙-conjugate with an 𝑅-implication generated from any t-

norm is also an 𝑅-implication (see [1, Proposition 2.5.10]). Since all implications 

𝜙-conjugate with the Łukasiewicz implication are 𝑅-implications, (𝑆, 𝑁)-
implications satisfying (ISP) and generated from a continuous t-conorm and the 

natural negation of this t-conorm are a subclass of inversely special 𝑅-

implications. 

Now let us consider 𝑓-implications and 𝑔-implications. We will see there are no 

inversely special implications among them. 

First, let us recall some definitions and their properties. 

Definition 43 (Baczyński and Jayaram [1, Definition 3.1.1]). Let 𝑓: [0,1] → [0,1] 
be a strictly decreasing and continuous function with 𝑓(1) = 0. The function 

𝐼: [0,1]2 → [0,1] defined by 

𝐼(𝑥, 𝑦) = 𝑓−1 (𝑥 ⋅ 𝑓(𝑦)) 

for 𝑥, 𝑦 ∈ [0,1] with understanding 0 ⋅ ∞ = 0, is called an 𝑓-generated 

implication. The function 𝑓 itself is called an 𝑓-generator of the 𝐼. In such case, to 

emphasize the apparent relation, we will write 𝐼𝑓. 

Theorem 44 (Baczyński and Jayaram [1, Theorem 3.1.7]). If 𝑓 is an 𝑓-generator, 

then 𝐼𝑓 does not satisfy (IP). 

From the above theorem and Lemma 28 it is clear that all 𝑓-implications are not 

inversely special. 

Corollary 45 There is no 𝑓-implication satisfying (ISP). 
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Definition 46 (Baczyński and Jayaram [1, Definition 3.2.1]). Let  

𝑔: [0,1] ⟶ [0,1] be a strictly increasing and continuous function with 𝑔(0) = 0. 

The function 𝐼: [0,1]2 ⟶ [0,1] defined by 

𝐼(𝑥, 𝑦) = 𝑔−1 (min {
1

𝑥
∙ 𝑔(𝑦), 𝑔(1)}) 

for 𝑥, 𝑦 ∈ [0,1], with the understanding 
1

0
= ∞ and ∞ ∙ 0 = ∞, is called a 𝑔-

generated implication. The function 𝑔 itself is called a 𝑔-generator of the 𝐼 and we 

will write 𝐼𝑔 instead of 𝐼. 

Theorem 47 (Baczyński and Jayaram [1, Theorem 3.2.9]). If 𝑔 is a 𝑔-generator, 

then the following statements are equivalent: 

i. 𝐼𝑔 satisfies (OP). 

ii. 𝐼𝑔 is a Goguen implication. 

Now we can prove the following fact. 

Proposition 48 There is no 𝑔-implication satisfying (ISP). 

Proof. Let us suppose that there is a 𝑔-implication 𝐼𝑔 which is inversely special. 

Then it satisfies the left ordering property. From Theorem 47 we know that if 𝑔-

implication satisfies (OP), then it is the Goguen implication, which is not 

inversely special. That means that 𝐼𝑔does not satisfy the following condition: 

𝐼𝑔(𝑥, 𝑦) = 1 ⇒ 𝑥 ≤ 𝑦 for 𝑥, 𝑦 ∈ [0,1]. 

Therefore, there exist 𝑥, 𝑦 ∈ [0,1] such that 𝐼𝑔(𝑥, 𝑦) = 1 and 𝑥 > 𝑦. Observe that 

𝑥 < 1 and 𝑦 > 0, since 𝐼𝑔(1, 𝑦) = 𝑦 and 𝐼𝑔(𝑥, 0)=0 if 𝑥 > 0. Thus there exists 

𝜀 > 0 such that 𝑥′ = 𝑥 − 𝜀 > 0,   𝑦′ = 𝑦 − 𝜀 ≥ 0 and 𝑥′ > 𝑦′. We assumed that 

𝐼𝑔 satisfies (ISP) and hence 𝐼𝑔(𝑥
′, 𝑦′) ≥ 𝐼𝑔(𝑥

′ + 𝜀, 𝑦′ + 𝜀) = 𝐼𝑔(𝑥, 𝑦) = 1. 

Furthermore, we can take 𝜀 = 𝑦 and then 𝑥′ = 𝑥 − 𝑦, 𝑦′ = 0 and we get 

0 = 𝐼𝑔(𝑥 − 𝑦, 0) = 𝐼𝑔(𝑥
′, 𝑦′) ≥ 𝐼𝑔(𝑥, 𝑦) = 1, 

a contradiction. Therefore 𝐼𝑔 cannot satisfy (ISP). 

Conclusions 

In this paper we have investigated special and inversely special implications, as 

directional monotonics, and we have provided some examples of them. We have 

characterized all inversely special 𝑅-implications generated from continuous t-

norms. Also, we have considered other families of fuzzy implications. Our 

conclusion is that there are no inversely special implications other than 𝑅-

implications in the set. Finally, we have shown some generalizations of inversely 

special implications as directional monotonic functions. 
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