
Acta Polytechnica Hungarica Vol. 10, No. 3, 2013

 – 203 –

Multi-Paradigm Metric and its Applicability on
JAVA Projects

Sanjay Misra

Department of Computer Engineering, Atilim University
Kizilcaşar Mh., 06830 Incek, Ankara/Ankara Province, Ankara, Turkey
smisra@atilim.edu.tr

Ferid Cafer

BOTT Information Systems, Silicon Block No:20
Middle East Technical University Teknopolis, 06531, Ankara, Turkey
ferid.cafer@bott.com.tr

Ibahim Akman

Department of Computer Engineering, Atilim University
Kizilcaşar Mh., 06830 Incek, Ankara/Ankara Province, Ankara, Turkey
akman@atilim.edu.tr

Luis Fernandez-Sanz

Universidad de Alcalá, Depto. de Ciencias de la Computación
Plaza de San Diego, s/n, 28801 Alcalá de Henares, Madrid, Spain
luis.fernandezs@uah.es

Abstract: JAVA is one of the favorite languages amongst software developers. However, the
numbers of specific software metrics to evaluate the JAVA code are limited. In this paper,
we evaluate the applicability of a recently developed multi paradigm metric to JAVA
projects. The experimentations show that the Multi paradigm metric is an effective measure
for estimating the complexity of the JAVA code/projects, and therefore it can be used for
controlling the quality of the projects. We have also evaluated the multi-paradigm metric
against the principles of measurement theory.

Keywords: Multi-paradigm metric; Software complexity; JAVA; software development

S. Misra et al. Multi-Paradigm Metric and its Application on JAVA Projects

 – 204 –

1 Introduction

One of the important issues in the software development process is to maintain the
quality of the software. Complex codes are not desirable because they are hard to
maintain and reduce the quality of the software [1] [2]. The complex codes also
decrease the understandability and increase the burden on reviewers, testers and
maintainers. In this point of view, if the complexity is not controlled from the
beginning of software development, it may cause higher maintainability and
reduce the quality of the product. As a result, complex code increases the cost of
software/software product. To overcome this issue, the complexity of the code
should be controlled. Software metrics are the tools to control the complexity.
Researchers are making continuous efforts to produce metrics to control the
complexity of the code. Further, software metrics tend to compare various
parameters such as cost, effort, time, maintenance, understanding and reliability.
Metrics are indispensable from several aspects, such as measuring the
understandability of a code, the testability of the software, the maintainability and
the development processes [3].

Over last two decades, object oriented programming languages have gained
considerable acceptance from the software development community. Among
several object-oriented languages, JAVA has become a favorite language for
developing software products. The popularity of JAVA has arisen as a
consequence of its unique features. On the other hand, to evaluate the quality of
the software code written in JAVA, few metrics [4] are available in the literature.
We mention the effort of researchers [4-10] who tried to control the quality of
JAVA by considering different aspects and features of JAVA programming.
Dufour [4] proposed dynamic metrics for JAVA. Cahoon et al. [5] worked on data
flow analysis for software perfecting linked data structures in JAVA controllers.
Sudaresan et al. [6] researched practical virtual method call resolution for JAVA.
Vijaykrishnan et al. [7] have produced tuning branch predictors to support virtual
method invocation in JAVA. Qian et al. [8] proposed a comprehensive approach
to array bounds check elimination for JAVA. Erik Ruf [9] proposed a
methodology for the effective synchronization removal for JAVA. Shuf et al. [10]
proposed a structured view and opportunities for optimizations by characterizing
the memory behaviour of JAVA workloads. Mäkelä et al. [11] proposed a new
client based metric, Lack of Coherence in clients (LCIC), and developed a tool for
measuring the metric for JAVA projects. The authors tried to improve the quality
of code through the LCIC metric, which measures how a class is used by other
classes in a context. In their comparison analysis, the authors also suggested which
type of refactoring is required. In an another empirical study of JAVA inheritance
evaluation, Nasseri et al. [12] found that larger and highly coupled classes were
less cohesive and more frequently moved than smaller and less coupled classes.
Kaczmarek and Kucharski [13] demonstrated how to estimate size and efforts for
JAVA based applications. They presented three models of size estimations, which

Acta Polytechnica Hungarica Vol. 10, No. 3, 2013

 – 205 –

were based on class and method size. The authors concluded that for big projects,
for example projects of nearly one million lines of code, the average class and
method size will be independent from the application size. Giuseppe [14]
proposed a semantic similarity metric which combines the features and intrinsic
information content. Romano [15] proposed using source code metrics to predict
change-prone JAVA interfaces. None of the above works evaluate the quality of
the JAVA code, which is responsible for the understandability and therefore the
maintainability of the JAVA product. It is worth mentioning that maintainability is
identified as one of the most important software quality [16] attributes.

In this paper, we apply a recently proposed metric [17] that was developed for
multi-paradigm languages on JAVA projects. A multi-paradigm language is a
language which includes features of two or more than two programming
paradigms. The metric developed in [17] considered procedural, object oriented
paradigm, and combined the function point metric [18] to estimate complexity due
to the functionality of the code/project and an object oriented metric [19] to
estimate the complexity of object oriented features. The proposed multi-paradigm
metric [17] was applied in a project written in C++. Since JAVA is also a multi
paradigm language, which includes features of procedural and object-oriented
language, we apply the same metric to evaluate JAVA projects. In fact, the agenda
of the present paper is twofold. Firstly, we want to check the applicability of the
multi-paradigm metric in JAVA projects; and secondly, we want to perform more
experimentation for the empirical validation of the multi paradigm metric, given
that the real applicability of a metric cannot be proved without a series of
empirical observations [20]. Even more, we will evaluate the theoretical
soundness of the multi paradigm metric by applying the principles of
measurement theory to the multi paradigm metric.

Before moving ahead, we would like to summarize our previous works in this
area. We have developed metrics for procedural languages [21], object oriented
languages [19], [22], [23], and multi paradigm languages [17]. One of the
coauthors of this paper is also involved in developing metrics for various
purposes, e.g. web-services, [24], [25], SOA and XML schema languages[26],
[27], Business Process Modeling[28], etc. Another coauthor has proposed a
scheme for the verification and validation of JAVA code by combining code style
check and some code metrics to prioritize test cases [29].

The structure of the paper is as follows. The definition of the multi paradigm
metric is given in Section 2. In Section 3, we first evaluate the metric to check its
soundness from the principles of measurement theory, and then we apply the
metric on JAVA projects in Section 4. The conclusion of the work is in the last
section.

S. Misra et al. Multi-Paradigm Metric and its Application on JAVA Projects

 – 206 –

2 Multi-Paradigm Complexity Measure
Measurement

In order to compute the complexity of software system, the authors [17] have
suggested how to compute the quality of the code by considering that the overall
complexity of the software system depends on the functionality as well as on
different factors of the object oriented and procedural parts of the system.

Accordingly, the computation of the quality of code for multi-paradigm programs
is presented as,

Code Quality (CQ): The CQ is defined by the number of function points to the
complexity values due to all the factors in the multi-paradigm program code.

CQ = (FP / MCM)* 10,000 (1)

where, FP [30] is the Function Point calculations for the code, and MCM
represents the multi-paradigm complexity measurement and computes the
complexity of the code as given in equation (2). MCM followed the similar
approach of a metric developed for python [13].

lCproceduraCDclassCIclassMCM (2)

where CIclass = Complexity of Inherited Classes,

CDclass = Complexity of Distinct Class,

and Cprocedural = Procedural Complexity.

All these factors are defined as follows:

The complexity of an independent class is calculated first because it plays a role
either in the inheritance hierarchy or as a distinct class. In other words, for
calculating CIclass or CDclass, first it is necessary to calculate Cclass, the
complexity of an independent class. The complexity (Cclass) of an independent
class can be computed as:

)()()()()(cohesionWobjectsWstructuresWvariablesWattributesWCclass (3.1),

where Cclass represents the Complexity of a single class.

In the above formula, the weight due to cohesion is subtracted because it reduces
the complexity and is desirable from the point of view of software developers [1].

The weight of attributes or variables is computed as:

MNDANDtesor attribuvariables W *4)((3.1.1)

where AND represents the Number of Arbitrarily Named Distinct
Variables/Attributes, and

MND represents the Number of Meaningfully Named Distinct
Variables/Attributes.

Acta Polytechnica Hungarica Vol. 10, No. 3, 2013

 – 207 –

Weight of structure: W (structures) is defined as the weight of structure of the
methods inside the class:

)()(BCSWstructuresW (3.1.2)

where BCS are basic control structures.

Weight of objects Weight (objects) is computed as:

2)(objectsW (3.1.3)

The weights of objects are assigned as 2, because it is similar as to how an object
constructor is automatically called while creating it and it is a coupling. In other
words, calling a function or creating an object represents the same complexity.
The coupling can also occur due to method calls, which are already considered
while computing the weight of structure in MCM.

Weight of cohesion is defined as:

AMMAcohesionW /)((3.1.4)

where MA represents the Number of methods where attributes are used, and

AM represents the Number of attributes used inside methods.

While counting the number of attributes, there is no any importance of AND or
MND.

CIclass can be defined as:

There are two cases for calculating the complexity of the Inheritance classes
depending on the architecture:

 If the classes are in the same level then their weights are added.

 If they are children of a class, then their weights are multiplied due to
inheritance property.

If there are m levels of depth in the object-oriented code and level j has n classes,
then the Cognitive Code Complexity (CCC) [23] of the system is given as

m

j

n

k
jkCCCIclass

1 1

 (3.2)

CDclass can be defined as:

...)()(yCclassxCclassCDclass (3.3)

Note: All classes that are neither inherited nor derived from another are parts of
Cdclass even if they have caused coupling together with other classes.

Cprocedural can be defined as:

)()()()(cohesionWobjectsWstructuresWvariablesWlCprocedura (3.4)

S. Misra et al. Multi-Paradigm Metric and its Application on JAVA Projects

 – 208 –

Weight of variable W(variable) is defined as:

MNDANDvarialbesW *4)((3.4.1)

The variables are defined globally.

Weight of structure W(structures) is defined as the weights of all the:

methodobjectBCSWstructuresW .)()((3.4.2)

where BCS are basic control structures, and those structures are used globally.
‘object.method’ is a reachable method of a class using an object. ‘object.method’
is counted as 2, because it is calling a function written by the programmer. If the
program consists of only procedural code, then the weight of the ‘object.method’
will be 0.

Weight of objects W(objects) is defined as:

2)(objectsW (3.4.2)

Creating an object is counted as 2, as is described above (3.1.3). Here it refers to
the objects created globally or inside any function which is not a part of any class.
If the program consists of only procedural code, then the weight of the ‘objects’
will be 0.

NVNFcohesionW /)((3.4.3)

where NF is the number of functions and NV means number of variables.
Coupling is added inside W (structures) as mentioned in the beginning of the
description of the metric.

3 Theoretical Validation

For the theoretical validation of the proposed metric, we follow the properties
proposed by Briand et al. [31]. Briand et al. proposed five properties for
evaluating a complexity metric. These properties provide a useful guideline in the
construction and validation of complexity measures and have been used by several
researchers [22], [32], [33]. In the following sections, we provide all these
properties and evaluate our metric against these metrics. We want to clarify that
Code quality is dependent on two different complexity metrics: Function Point
and multi-paradigm complexity measurement. In our formulation, Function Point
calculation is estimated at the whole project level and MCM is computed at class
level. The properties proposed by Briand et al. [31] evaluate complexity measures
which are applied on programs/classes/modules. From this point of view, we
evaluate MCM against these properties, instead of code quality of multi paradigm
programs.

Acta Polytechnica Hungarica Vol. 10, No. 3, 2013

 – 209 –

Property 1: Non-Negativity

The complexity value given by MCM for a class can never be negative. In our
formulation there is only one possibility for MCM values to be negative, when the
weight of cohesion will be higher than that the sum of weights all other factors of
that class. This is not possible because the weight of cohesion is computed as
NF/NV, and this number cannot be greater than the sum of number of methods (if
we assume the weight of each method in class is one), number of attributes and
other parameters like variables, etc. Hence, MCM satisfies Property 1.

Property 2: Null Value

It is possible that the elements of our metric will be absent from the class; in this
case our metric gives a null value. See the following Table 1.

Table 1
Metric value of elements of a class

Class att str var Obj MA AM Cohesion Comp./MCM

XX 0 0 0 0 0 0 0 0

Since the proposed measures can get a null value in a class our measures satisfy
the Property.

Property complexity 3 (Symmetry): By changing the order of statements,
methods, attributes, and variables, there is no effect on our metric values. In other
words, MCM will not change by changing the order of its elements.

Property complexity 4 (Module Monotonicity): If we add two classes then the
MCM values of the combined classes will be equal to the sum of MCM values of
the individual classes. In our formulation we have also considered the effect of
interference; i.e. if the classes are in a hierarchy, then first we add the complexity
of classes which are the same level and then multiply with its parent’s class. In
this case, also Module monotonicity is preserved. We can take an example of
classes in our case study. We consider three classes: Figure2P, Rectangle, and
Oval. Figure2P is a parent class of Rectangle and Oval classes. We add all these
three classes; the complexity of Rectangle and Oval will be added first and then
multiplied by the complexity of the Figure2P. According to the property of
monotonicity:

The complexity of combined classes in hierarchy will be estimated by:

Figure2P * (Rectangle + Oval) = 10 * (29 + 29)

 = 580 (A)

If we sum the MCM values of all in depended classes, the MCM values of
combined classes are

=Figure2P + Rectangle + Oval)

= 10 +29 + 29

=68 (B)

S. Misra et al. Multi-Paradigm Metric and its Application on JAVA Projects

 – 210 –

From equation A and B it is clear that the complexity of the combined classes is
always equal to or greater than the sum of the complexity of the independent
classes. As these examples confirm, our metric satisfies the module monotonicity
property.

Property complexity 5 (Disjoint Module Additivity): This property states that if
the two classes are combined, then the combined class’s complexity will equal to
the sum of complexity of the independent classes. This is the property of
additivity, the most important property to achieve the scale of the metric. We will
take two different examples to check this property, because classes may be
arranged in two ways, first in the same level and second in different levels in class
hierarchy.

1. Consider the two classes at the same level. In our case study, two classes
Rectangle and Oval are at the same level. Therefore, when we combine
these two classes we can easily observe that the MCM values of the
combined classes, i.e. 29+29 =58, will be the same as when we combine
the classes independently.

2. If we combine the classes at a different level, we will also find the same
result. Suppose we combine the Figure 2P- Rectangle and Figure 2P-Oval.

The MCM values of Figure 2P-Rectangle Class= 10*29= 290

The MCM values of Figure 2P-Ovel Class= 10*29= 290

The sum of the these two independent classes

= MCM values of (Figure 2P- Rectangle + Figure 2P-Ovel)

= 290+290

= 580 (C)

Now we compute the complexity of combined class Figure 2P- Rectangle-
Figure 2P-Ovel, which is computed as

 =Figure2P * (Rectangle + Oval) = 10 * (29 + 29)

 = 580 (D)

From equation C and D, it is proved that MCM satisfies the additive
property.

Hence, MCM satisfies this property too.

After satisfying all these five properties, i.e. additivity, module
monotonocity, symmetry, null values and non-negative, we can conclude
that our MCM is a valid and sensible measure from the theoretical point of
view. Further, if a complexity metric satisfies the fifth property, then the
metric is also on ratio scale. Property 5 proves that MCM satisfies the
additive property and is on ratio scale.

Acta Polytechnica Hungarica Vol. 10, No. 3, 2013

 – 211 –

4 Applicability of Multi-Paradigm Complexity Metric
on JAVA Projects

We have selected two projects for empirical validation of our metrics. Both
projects are available online. We chose online projects due to two reasons: 1. the
reader may also want to analyze the projects in the same way as the author. 2.
They are completed and tested projects so one can assume them without any fault.
The details of both the projects are the following:

4.1 Chatting Application

This is an application developed in JAVA for chat. The program is divided into
two; client-side and server-side [34]. Inside this program inheritance between
classes are not used; in fact, it has a simpler structure than other compared projects
though it has a higher level of functionality. Therefore, it has the highest code
quality. Its number of LOC (Lines of Code) is 1208.

Firstly, we estimate the MCM and the Function points to evaluate the code quality
of this project. The components of the MCM are computed and summarized in
Table 2.

Table 2

Chat Application – Classes

Class att str var obj MA AM cohesion Comp.

CLIENT_INFO 2 2 0 0 1 2 0.5 3.5

MainFrame(S) 0 39 4 20 0 0 0 63

THBind 3 20 0 6 2 3 0.6 28.4

Client_P 2 102 5 14 2 2 1 122

MSG_RDR 0 8 0 6 0 0 0 14

S_Client 0 2 0 2 0 0 0 4

MainFrame(C) 3 30 4 16 1 3 0.3 52.7

Form 3 68 0 20 2 4 0.5 90.5

Sign_UP 0 18 0 16 0 0 0 34

Frame3 0 15 0 10 0 0 0 25

CHAT_WIN 2 16 0 12 2 2 1 29

MSG_READER 0 8 0 2 0 0 0 10

CMD_L 1 34 0 2 2 1 2 35

A graph of the complexity values (MCM) for all the classes are shown in Figure 1.
If we analyze this project (see Figure 1), we can find out that the maximum
complexity is 122 which belongs to Client_P Class. This class is the most complex
because it has the highest number of strings (22) and variables (5). In other words,
this class has several control structures with variables. The average complexity of

S. Misra et al. Multi-Paradigm Metric and its Application on JAVA Projects

 – 212 –

the classes of this project is 39. The least complex class is CLIENT_INFO with a
complexity of 3.5. This class includes only two attributes and two strings.

Figure 1

Complexity of Various Classes of the Chatting Application

The procedural complexity of this project is summarized in Table 3.

Table 3

Chat Application – Cprocedural

Non-Class var+str+obj Complexity

Cprocedural
(S_CHAT)

9 9

The main program is not very complex and it consists of 9 variables, strings and
the object (Table 3). Therefore, its complexity is 9 (Cprocedural).

Additionally in this project, all the classes are independent and no hierarchy
amongst the classes is present. So this project

1. Does not have complexity due to inheritance. i.e CIclass = 0.

2. All the classes are treated as distinct classes so the complexity of the
CDclasses will be sum of the complexity of all the classes; i.e.,

 CDclass = 511.1

Accordingly, the value of MCM is computed as:

 MCM = CIclass + CDclass + Cprocedural

 = 0 + 511.1 + 9

 = 520.1

Acta Polytechnica Hungarica Vol. 10, No. 3, 2013

 – 213 –

The function point of this project is computed with the help of the count total
computed in Table 4 and the value adjustment factors (VAF) based on the
responses to the questions [30] given in Table 5.

Table 4

Chat Application – FP

Weighting factor Information
Domain
Value

Count Simple Average Complex Total

EIs 17 3 4 6 68

EOs 78 4 5 7 312

EQs 1 3 4 6 6

ILFs 0 7 10 15 0

EIFs 17 5 7 10 119

Count Total 505

Table 5

Responses of questions for VAF

FP = count total* [0.65 + 0.01 x ∑ (Fi)]

 = 505 x [0.65 + 0.01 x 32]

 = 489.85

Once we compute the MCM and function point (FP), we finally have to compute
the code quality of the project.

The code complexity of this project is computed as,

CQ = (FP / MCM) * 10000

CQ = (489.85 / 520.1) * 10000

CQ = 9418.38108

The code quality of this project is computed as 9418, which represents that the
complexity of this project is not very high. In fact, CQ values are inversely
proportional to complexity, i.e. high CQ values correlates to low complexity. This
point will be clearer when we compare this project with a more complex project
presented and computed in the next section.

FP
Question

1 2 3 4 5 6 7 8 9 10 11 12 13 14 ∑(Fi)

Value
Adjustment
factor

0 5 5 3 1 3 3 0 3 2 3 0 0 4 32

S. Misra et al. Multi-Paradigm Metric and its Application on JAVA Projects

 – 214 –

4.2 Microprocessor Simulator

Our second project is a Microprocessor simulator. This is a simple 8085 simulator
program developed in JAVA [35]. This project includes 16 classes and
encompasses numerous nested loops. Its number of LOC is 2332. Due to its
extremely complex structure and simpler functionalities, it has a lower CQ value.

We have to compute MCM and the function points to measure the code quality of
this project. Table 6 shows the different parameters of MCM for all the classes of
the project. Based on the complexity values, we have devised a graph for the
complexities of all the classes in Figure 2.

Table 6

Microprocessor Simulator – Classes

class att str var obj MA AM cohesion Comp.

UserRam 1 14 0 8 2 1 2 21

RunPro 1 5 0 0 2 1 2 4

Proceed1 22 2512 15 0 7 22 0.3 2548.7

Proceed 17 5454 25 2 13 17 0.7 5497.3

SetFlag 5 44 0 0 1 5 0.2 48.8

RunErrors 0 12 0 8 0 0 0 20

MemArea 4 18 4 6 2 4 0.5 31.5

InstArea 2 18 0 24 1 1 1 43

SetC 2 15 3 0 1 2 0.5 19.5

Check 1 22 8 0 1 1 1 30

Check1 2 50 0 0 1 2 0.5 51.5

About 0 10 0 12 0 0 0 22

Check2 4 16 2 0 1 4 0.2 21.8

Check3 2 18 2 0 1 2 0.5 21.5

Check4 3 27 2 0 1 3 0.3 31.7

FlagsWindow 0 10 2 8 0 0 0 20

The graph in Figure 2 reflects the trends of the complexity of the classes of the
projects. The average complexity of the classes is 527, which shows that, in
general, the complexities of the classes are high. The highest complexity is 5497,
which belongs to the class Proceed and is a consequence of the fact that this class
contains the highest number of strings and that the complexity created by these
strings is 5454. The lowest complexity belongs to the class RunPro, which is 4 due
to its lowest amount of strings and attributes.

Acta Polytechnica Hungarica Vol. 10, No. 3, 2013

 – 215 –

Figure 2

Complexity of Various Classes of the Microprocessor Simulator

We have to compute the complexity of the main program to calculate the
procedural complexity (Cprocedural) of the project. The main program of the
project has no variables, strings or objects, so complexity of this part is estimated
as zero (Table 7).

Table 7

Microprocessor Simulator – Cprocedural

Non-Class var+str+obj Complexity

Cprocedural 0 0

Additionally, this project has several inheritance hierarchies. Figure 3
demonstrates the hierarchies among different classes. In fact, these hierarchies are
the main reason of the increment of the overall complexity of the project.

Figure 3

Microprocessor – Inheritance

Figure 3 shows that five classes are the child/subclasses in four different
hierarchies. In one of the hierarchies, the depth of the inheritance tree is two.

S. Misra et al. Multi-Paradigm Metric and its Application on JAVA Projects

 – 216 –

Proceed class is at level two in the hierarchy. In the formulation of the complexity
of the classes due to inheritance (CIclass), the complexities of classes are
multiplied by each other. Accordingly, the total complexity of the classes caused
by inheritance is computed as:

CIclass =Complexity of (MemArea*(RunPro*(Proceed))+ FlagWindows*SetFlag
 + Check4*SetC + Check2*Check3)

 =31.5(4(5497.3)) + 20(48.8) + 31.7(19.5) + 21.8(21.5)

 = 692659.8 + 976 + 618.15 + 468.7

 = 694722.7

The classes which are not in the hierarchy are treated as distinct classes. The total
complexities of the distinct classes are computed as:

CDclass = 2736.2

Subsequently, the complexity of overall projects is calculated as:

MCM = CIclass + CDclass + Cprocedural

 = 694722.7 + 2736.2+0

 = 697458.9

The function point calculation is estimated with the information domain values for
the project (to compute the total count) and value adjustment factors, as given in
Tables 8 and Table 9, respectively.

Table 8

Microprocessor Simulator – FP

Weighting factor Information
Domain Value Count Simple Average Complex Total

EIs 0 3 4 6 0

EOs 17 4 5 7 85

EQs 0 3 4 6 0

ILFs 0 7 10 15 0

EIFs 14 5 7 10 98

Count Total 183

Table 9

Responses of questions for VAF

FP = count total* [0.65 + 0.01 x ∑(Fi)] = 183 x [0.65 + 0.01 x 19]

 = 153.72

FP Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ∑(Fi)

Value Adjustment
factor

0 3 0 2 0 0 0 0 3 2 5 0 0 4 19

Acta Polytechnica Hungarica Vol. 10, No. 3, 2013

 – 217 –

The Code quality of the project is computed as:

CQ = (FP / MCM) * 10000

CQ = (153.72 / 697458.9) * 10000

CQ = 2.20400

The code quality of this project is estimated as 2.20400.

Now we compare the above two projects. The code quality of both projects are
computed as 9418 and 2.20. According to the structure of the metric, a high value
of CQ represents low complexity and vice-versa. This means that the second
project is comparatively more complex than the first project because its CQ value
of 2.20 is much smaller than the 9418. The number of classes in the chatting
application and Microprocessor simulator are 13 and 16, respectively, which are
not too different (in terms of number). However, the average complexity of the
Microprocessor class is 527 and the Chat application is 39, which reflects that the
complexity of classes in Microprocessor simulator is much more complex in
comparison to the classes of chatting applications. The complexity of the
Microprocessor simulator is high because it contains a complex structure
characterized by several nested loops.

The above two projects are different in nature. The MCM has well differentiated
both projects in terms of their complexities. These experimentations prove the
applicability of multi-paradigm metric in JAVA projects.

Conclusion and Future Work

A multi-paradigm complexity metric is evaluated through measurement theory
and applied to the two JAVA projects. The evaluation of compliance with
measurement theory has proved that this metric satisfies the additive property.
This additive nature of the metric proves its theoretical soundness. Furthermore,
the metric is applied to two real JAVA projects. The projects are different in
nature (in terms of their architecture of the classes), and the MCM demonstrates a
good differentiation between them in terms of their complexity, which reinforces
that the MCM is useful in estimating the complexity of JAVA projects. As a
future work, we aim to fix the thresholds [36] for MCM. To achieve thresholds,
we will perform more experimentation on real projects in industry. We also plan
to apply the MCM on projects developed in other languages.

References

[1] Francalanci, C., Merlo, F.: The Impact of Complexity on Software Design
Quality and Costs: An Exploratory Empirical Analysis of Open Source
Applications White paper available at: (last accessed 16.03.2010)

 http://is2.lse.ac.uk/asp/aspecis/20080122.pdf

S. Misra et al. Multi-Paradigm Metric and its Application on JAVA Projects

 – 218 –

[2] Banker R. D., Datar S. M., Zweig, D. (1989) Software Complexity and
Maintainability, Proceedings of the tenth international conference on
Information Systems, pp. 247-255, Boston, Massachusetts, United States

[3] Dawei E. (2007) The Software Complexity Model and Metrics for Object-
Oriented, In Proc. of IEEE International Workshop on Anti-counterfeiting,
Security, Identification, pp. 464-469

[4] Dufour B., Driesen K., Hendren L., Verbrugge C. (2003) Dynamic Metrics
For JAVA, In Proceedings of the Conference On Object-Oriented
Programming, Systems, Languages, and Applications, October 26-30,
2003, Anaheim, California, USA, pp. 149-168

[5] Cahoon B., McKinley K. S. (2001) Data Flow Analysis for Software
Prefetching Linked Data Structures In JAVA Controller. In Proc. of The
2001 International Conference on Parallel Architectures and Compilation
Techniques, pp. 280-291, September 2001, Barcelona, Spain

[6] Sundaresan V., Hendren L., Razafimahefa C., Rai R. V., Lam P., Gagnon
E., Godin C. (2000) Practical Virtual Method Call Resolution for JAVA. In
Proceedings of the Conference on Object-Oriented Programming, Systems,
Languages, And Applications, pp. 264-280, ACM Press

[7] Vijaykrishnan N., Ranganathan N. (1999) Tuning Branch Predictors to
Support Virtual Method Invocation In JAVA. In Proceedings of the 5th
USENIX Conference on Object-Oriented Technologies and Systems, May
1999, pp. 16-16

[8] Qian F., Hendren L., Verbrugge C. (2002) A Comprehensive Approach To
Array Bounds Check Elimination For JAVA. In Proc. of the International
Conference on Compiler Construction, Lecturer Notes in Computer
Science, 2304, pp. 325-341

[9] Ruf E. (2000) Effective Synchronization Removal for JAVA. In Proc. of
the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 208-218

[10] Shuf Y., Serrano M. J., Gupta M., Singh J. P. (2001) Characterizing the
Memory Behavior of JAVA Workloads: A Structured View and
Opportunities for Optimizations. In Proceedings of the 2001 ACM
SIGMETRICS International Conference on Measurement and Modelling of
Computer Systems, pp. 194-205

[11] Mäkelä S. Leppänen V. (2009) Client-based Cohesion Metrics for JAVA
Programs, Science of Computer Programming, 74(5/6), pp. 355-378

[12] Nasseri E. Counsell S., Shepperd M. (2010) Class Movement and Re-
Location: An Empirical Study of JAVA Inheritance Evolution, Journal of
Systems and Software, 83(2) pp. 303-315

Acta Polytechnica Hungarica Vol. 10, No. 3, 2013

 – 219 –

[13] Kaczmarek J. Kucharski M. (2004) Size and Effort Estimation for
Applications Written in JAVA, Information and Software Technology,
46(9) pp. 589-601

[14] Pirró G. (2009) A Semantic Similarity Metric Combining Features and
Intrinsic Information Content, Data & Knowledge Engineering, 68(11) pp.
1289-1308

[15] Romano D. (2011) Using Source Code Metrics to Predict Change-Prone
JAVA Interfaces, In Proc of 27th IEEE International Conference on
Software maintenance, pp. 303-312

[16] Sommerville, I. (2004) Software Engineering, 7th Edition, Addison Wesley,
2004

[17] Misra S., Akman I., Cafer F. (2011) A Multi Paradigm Complexity Metric,
Lecture Notes in Computer Science, 6786/2011, pp. 342-354

[18] Albrecht A. J. (1979) Measuring Application Development Productivity,
Proceedings of the Joint SHARE, GUIDE, and IBM Application
Development Symposium, Monterey, California, October 14-17, IBM
Corporation (1979) pp. 83-92

[19] Misra S, Cafer F. (2011) Estimating Complexity of Programs in Python
Language Technical Gazette, 18 (1) pp. 1-10

[20] Misra S. (2011) An Approach for Empirical Validation Process for
Software Complexity Measures, Acta Polytechnica Hungarica, 8(2), pp.
141-160

[21] Misra S., Akman I. (2010) Unified Complexity Metric: A Measure of
Complexity, Proc. of National Academy of Sciences Section A. 80(2) pp.
167-176

[22] Misra S., and Akman I. (2008) Weighted Class Complexity: A Measure of
Complexity for Object Oriented Systems, Journal of Information Science
and Engineering, 24, pp. 1689-1708

[23] Misra S., Akman I., Koyuncu M. (2011) An Inheritance Complexity Metric
for Object Oriented Code: A Cognitive Approach, SADHANA (Springer),
36(3) pp. 317-338

[24] Basci D., Misra S. (2011) Metrics Suite for Maintainability of XML Web-
Services’ IET Software 5(3), pp. 320-341

[25] Basci D., Misra S. (2009) Data Complexity Metrics for Web-Services,
Advances in Electrical and Computer Engineering, 9(2), pp. 9-15

[26] Basci D., Misra S. (2011) Entropy as a Measure of Complexity of XML
Schema Documents’ Int. A. journal of Information Technology, 8(1) pp.
16-25

S. Misra et al. Multi-Paradigm Metric and its Application on JAVA Projects

 – 220 –

[27] Basci D., Misra S. (2009) Measuring and Evaluating a Design Complexity
Metric for XML Schema Documents, Journal of Information Science and
Engineering, 25(5) pp. 1405-1425

[28] Tonbul G. and Misra S. (2009) Error Density Metrics for Business Process
Modeling, In Proc. of the 24th International Symposium on Computer and
Information Sciences, pp. 542-546

[29] Lara, P., Fernandez, l. (2008) Test Case Generation, UML and Eclipse,
Dr.Dobbs Journal, 22 (11) pp. 49-52

[30] Roger S. P. (2005) Software Engineering – A practitioner’s approach, 6th
Edition. McGraw-Hill

[31] Briand L. C., Morasca S., Basily V. R.(1996) Property-based Software
Engineering Measurement, IEEE Transactions on Software Engineering, 22
(1), pp. 68-86

[32] Gupta V, Chhabra J. K. (2009) Package Coupling Measurement in Object-
oriented Software. Journal of Computer Science and Technology 24(2), pp.
273-283

[33] Costagliola G., Ferrucci F., Tortora G., Vitiello G. (2005) Class Points: An
Approach for the Size Estimation of Object-Oriented Systems, IEEE
Transactions on Software Engineering, 31(1) pp. 52-74

[34] Source Codes World – Chatting Application (last accessed 21.02.2010)
Available at: http://www.sourcecodesworld.com/source/show.asp?ScriptID=524

[35] Source Codes World – Microprocessor Simulator (last accessed
21.02.2010)

Available at: http://www.sourcecodesworld.com/source/show.asp?ScriptID=849

[36] Misra S. (2011) Evaluation Criteria for Object-oriented Metrics, Acta
Polytechnica Hungarica, 8(5), pp. 109-136

