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Abstract: Many researchers start their work by studying theory in order to get better 

insight into measured phenomena. Sometimes they cannot get the numeric values of 

parameters used in published equations. This is even more complicated when the theory is 

statistical and there are no closed form deterministic solutions. In this paper we introduce 

an original approach and method to analyzing a popular and frequently cited tutorial 

paper on Expectation-Maximization (EM) algorithm. The original paper has sufficient 

information to understand the algorithm. Using tools of Computer Algebra System and 

methods of Symbolic Processing (SP), the typewriting errors are discovered and the re-

derived equations are used for automatic generation of algorithmic code. The examples are 

evaluated using automatically derived code and the final numeric values agree with the 

values from the original paper. The derived results are used for further optimization, such 

as deriving the computational error in the closed form. From the closed form solutions, the 

precision can be derived in terms of number of iterations, or the minimal number of 

iterations can be expressed in terms of the required precision. This helps to optimize the 

algorithm parameters so that the algorithm becomes more efficient. 

Keywords: Symbolic processing; EM algorithm; iteration; convergence; ML estimation; 

Computer algebra system 
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1 Introduction 

Computer algebra is a field of computer science concerned with the development, 

implementation, and application of algorithms that manipulate and analyze 

expressions. Some of the issues are developing algorithms (such as algebraic 

algorithms, symbolic-numeric algorithms), studying how to build computer 

algebra systems (memory management, higher-order type systems, optimizing 

compilers), and mathematical knowledge management (representation of 

mathematical objects). Computer algebra is based on well-defined semantics, 

compose constructions, and algebraic algorithms. Symbolic computation is 

concerned with alternative forms, partially-specified domains, and symbolical 

derivations in general. Computer algebra systems is used to simplify rational 

functions, factor polynomials, find the solutions to a system of equations, give 

general formulas as answers, model industrial mathematical problems, and various 

other manipulations. Symbolic processing can be treated as a transformation of 

expression trees, such as symbols for operations (“+”, “sin”), variables, constants, 

and simplification (for example, expression equivalence). 

The EM (Expectation-Maximization) algorithm is analysed with a new type of 

processing, called symbolic processing. We illustrate the main drawbacks of 

numerical tools that have led to erroneous conclusions in the application of the 

algorithm through a practical example presented in [1]. 

Using symbolic processing, we derive the error function in closed form as a 

function of the number of iterations. Next, we determine the minimum number of 

iterations required to obtain a correct result, and as well as the required number of 

iterations as a function of the number of accurate bits of the final result of an 

algorithm. The main aim of this paper is to show how Computer Algebra (CA) 

and symbolic processing can be used in the design of numeric algorithms, and in 

discovering the properties of EM algorithm. 

2 The Method of Symbolic Processing 

Modern research in the field of engineering science usually starts with theoretical 

analysis. The next step can be simulation in order to prove the theoretical 

assumptions. The final step is practical implementation and measurements. 

Usually, the theoretical derivations are made on ideal parameter values, such in 

infinite number of samples or known signal values for time from   to  . 

Simulation is used for simulation of systems in order to gain insight into their 

functioning. For a finite number of measured values, one can expect that the result 

agrees well with the simulation. 
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Probably, the first critical step is to set the simulation parameters and write a code 

that fits the theory. The second critical step is to choose the number of iterations 

or the number of input samples. 

Symbolic processing can help to error-free derive simulation code, and to find 

typewriting errors in published results. This paper presents such an analysis. Next, 

symbolic processing can be used for finding the processing errors as the closed-

form expression for computing the number of required iteration steps; or the error 

function due to finite word-length [2, 3]. Therefore, symbolic processing can help 

gain insight into how a system works, which is preferred to experimenting with 

numeric simulations. 

Symbolic processing plays an important role in education. Even more it can be 

used in practice because the numerical tools may have problems with accuracy 

and a significant increase in the complexity. Primarily, the analysis area is 

essentially continuous and infinite [4]. This paper aims to highlight the role of 

symbolic processing applications, especially where the numerical approaches fail 

to produce the right algorithms that are important for many areas of engineering 

research, especially in communications. 

Symbolic processing repairs certain disagreement between theoretical 

performance and numerical simulations. Numerical processing may show 

unsatisfactory results [5]. It can drive the researchers to erroneous conclusions. 

Using the symbolic tools, it is easy to find and prove mistakes and gain a better 

insight into the whole process of analysis, simulation and modeling. 

Symbolic processing works with symbols. Any symbol can be replaced by a 

number when symbolic expressions become impractical, for example, for plotting 

a response to a specific excitation. 

Therefore, writing programs using symbolic processing can be seen as a set of 

instructions that manipulate the symbols and can be used to perform a much wider 

range of activities [6]. The efficiency of symbolic processing becomes more 

important if systems and signals are more complex. 

There is no algebraic solution for all forms of processing, and symbolic processing 

will not be able to solve all problems. Even then, the final result can be expressed 

in a form of special function that can be computed for known numerical values of 

system parameters. 

In the next section, we will demonstrate the derivation of the EM algorithm using 

symbolic processing. 
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3 The Expectation-Maximization Algorithm 

The Expectation-Maximization (EM) algorithm is ideally suited to estimate the 

parameters of a probability function, especially when direct access to all of the 

data is impossible [5]. A brief description of the algorithm can be found in 

literature [5] that is suitable for signal processing practitioners. An illustrative 

example is also presented there. Unfortunately, the algorithmic steps there 

disagree with the theoretical statements, and do not provide the numeric results 

given in Table of [5]. 

Those who want to test the knowledge learned from the example may be confused 

about the reason for such disagreements. The error can be in the initial statements, 

in the derived algorithmic steps, or it can be typewriting error. 

A computer algebra system (specifically Mathematica) and symbolic processing 

are used in this paper to start analysis from the theoretical statements, derive the 

algorithmic code, and calculate the final results. 

It is important to emphasize the role of the new analysis of the EM algorithm 

because EM is the backbone for algorithms that are used in significant analyse, 

measurement data processing and simulations [1, 7, 8]. 

The main goal of EM is approximation Maximum Likelihood from incomplete 

data. The most general form starts from the pdf of the incomplete data: 

 )(

)()(
y

dxxfyg


  (1) 

where )( xf  is the probability density function of complete data, and   is set of 

parameters. 

An observation y determines a subset of   that is denoted as )(y . 

The EM algorithm consists of two steps: the E-step and the M-step. The E-step 

(Expectation step) takes an expectation with respect to the unknown variables 

using the current estimate of the parameter and conditioned upon the observation. 

The M-step (Maximization step) then provides a new estimation of the 

parameters, in that it produces a maximum-likelihood (ML) estimates of 

parameters when there is many-to-one mapping. These two steps are iterated until 

convergence [5]. 

For the E-step compute: 

],)([log)( ][][ kk yxfEQ    (2) 

where )(Q  is Q  function. 
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For the M-step compute: 

)(maxarg ][]1[ kk Q 


  (3) 

4 An Example Problem 

The example problem is to find the unknown value of p using the EM algorithm. 

In this example the initial value of p is defined as a symbol, and we know that its 

true value is 1/2 (as specified in the example in [9]). The application of EM to this 

example is calculated symbolically (using Mathematica), and we show 

mathematical description. 

The expressions which are derived in this paper, were not derived in the paper [5] 

and cannot be obtained by hand. On the other side, the estimated parametar p is 

obtained with the value of 0.52 in the paper [5], but nowhere it explains the 

deviation from the true value of 0.5. We obtain the exact value of 0.5 and explain 

the way how we get it. 

This section repeats Example from [5]. The application of EM to this example is 

calculated symbolically (using Mathematica), and we show mathematical 

description. Let a set of random variables is 
1

{X , 
2

X , …, }
m

X . For example 
1

X  

represents the number of round dark objects, 
2

X  represents the number of square 

dark objects, and 
m

X  represents the number of light objects. Let 
1

x , 
2

x , …, 
m

x  

be a sequence of outcomes of the random variables 
1

X , 
2

X , …, 
m

X  that have 

been observed. It is assumed that 
i

X  is independent of 
j

X  for ji  . If the 

number of outcomes (total number of observed objects) is n , then ix  are 

nonnegative integers such that 

nx
m

i
i 

1

 (4) 

If 
1

X , 
2

X , …, 
m

X  are mutually exclusive events with  )(
11

xXP  =
1

p , ..., 

)(
mm

xXP  =
m

p , then the probability 
1

X  that occurs 
1

x  times, ...,  
m

X  occurs 

mx  times is given by 





m

i i

ix

i

mm
x

p
nxXxXxXP

1

2211
!

!),,,(   (5) 

where 
i

p  are constants with 0
i

p and 
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1

1




m

i
ip  (6) 

The joint distribution of 
1

X , 
2

X , …, 
m

X  is a multinomial distribution and 

),,,(
2211 mm

xXxXxXP    is given by the corresponding coefficient of the 

multinomial series 

 n
m

ppp  
21

 (7) 

Assume further that probabilities are also known As an example, assume that the 

objects are known to be trinomial distributed, that is 3m , as in [5]. Assume 

further that probabilities are also known 

4

1
1
p  (8) 

44

1
2

p
p   (9) 

Then, from (6) follows 

 
42

1
1 213

p
ppp   (10) 

We can use a notation for probability density function 

),,()|,,(
332211321

xXxXxXPpxxxf   (11) 

For the unknown parameter p , the function becomes 

321

321

321
42

1

44

1

4

1

!!!

!
)|,,(
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xxx

n
pxxxf 




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




















  (12) 

Suppose that a feature extractor is employed that can distinguish the color of the 

objects, but cannot distinguish the shape. From the measurement, the number of 

dark objects is known, 
211

xxy  , but  the number of 
1

x  or 
2

x  is unknown. The 

basic idea of EM algorithm is to find expressions that can be used for iterated 

computing of 
1

x  or 
2

x  based on known 
211

xxy   and distribution function. 

4.1 Expectation Step 

In the E-step, the expected values of 
1

x , 
2

x , and 
3

x , have to be computed using 

initial estimate and measured data. The algorithm is derived using the knowledge 

of the multinomial distribution. 
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Starting with measured 
1

y  (where 
211

xxy  ) we have to derive expressions that 

can be used in iterated algorithm in order to find the number of objects 
1

x  and 
2

x , 

and the parameter p . In other words, we have to derive expected values of 
1

x  and 

2
x  for measured 

1
y  and estimate of p  in the k th iteration 

],|[ ][
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]1[

1

kk pyxEx   (13) 

],|[ ][

12

]1[

2

kk pyxEx   (14) 

The expected values can be derived using the multinomial distribution (assuming 

that nxxx 
321

) 
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Notice that ),(
321

XXX   is binomial with class probability ),(
321

ppp  , then 

(assuming 1
321
 ppp , nxy 

31
) the probability 

),( 3311 xXyYP  becomes 

!!

)(
!),(

3

3

3

1

1
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p

y
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nxXyYP

xy
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Assume that the probability of some event x  is known, say )(xP , and the number 

of events can be from 0 to n , the expectation value of x is defined by 





n

x

xPxxE
0

)(][  (17) 

Noticing that 
211

xxy   and 
11

0 yx  , expectation of 
1

x  requires to know 

conditional probability )(
1

xP , 





1

0
111 )(][

y

x

xPxxE  (18) 

Assuming that 
1

y  has occurred, the conditional probability )(
1

xP  equals 

)(

),(
)(

11

1111
1

yYP

yYxXP
xP




  (19) 

Applying those definitions on ]1[

1

kx , the iterated algorithm can be derived. 

Unfortunately, the presented relations in [5] disagree with expected. 
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4.2 Maximization Step 

The maximum of some function, say )|,,(
321

pxxxf , can be obtained by taking 

the derivative of the function f  with respect to parameter p , equating to zero, 

and solving for p . Since the logarithm is monotonically increasing, maximizing 

)log( f  is equivalent to maximizing f . 

The function f  is known in terms of the parameter p , and we can try to solve for 

p  the following equation 

  0)|,,(log
d

d
321

pxxxf
p

 (20) 

If solution exists, it becomes the second part of EM algorithm. 

5 Implementation of Computer Algebra System Code 

into EM Algorithm 

In this paper, we re-derive the expressions obtained in [5] because they do not 

produce the expected results in the numeric example presented in [5]. 

Computer algebra systems (CAS), such as Mathematica [10], can be used for 

derivation of all equations required for algorithm. The main motive is to avoid 

manual derivation and thus derive all relations without error. 

All derivations are in a document called notebook that looks like technical paper 

in electronic form. There are cells with textual description, such as title, section 

head, text with formula, but also cells named input and output. In the input cells 

we write expressions that can be evaluated. 

5.1 Entering Knowledge in CAS 

The simplest way to re-derive equations is to start with definitions. The first line 

of the first input cell can be the definition of the trinomial distribution 

 

By executing the input cell there is no visible output cell. As a matter of fact, we 

define new knowledge that becomes a part of the CAS. The meaning of the code 

is that we define a function called f, a function with 6 arguments, (x1, x2, x3, 

p1, p2, p3), where instead of any argument with _ we can use any other symbol 
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or number (instead of x1_ we can use 
1

x ). The symbol :=  tells to CAS to 

remember the expression that follows, but without execution, and so there is no 

output cell. 

Once the knowledge is inputted to CAS, we can use for presentation or evaluation. 

The mathematical expressions may look different than a code. Let us replace 

symbolic arguments with symbols that appear in textbooks (use 
1

x  instead of x1), 

and present in the traditional form (transform the expression using command 

//TraditionalForm). 

This expression still does not look same as equation (15). Therefore, we evaluate 

the expression again for the same symbolic arguments, and in the next line use the 

expression (% stays for previous expression) and apply substitution as in equation 

(4), and finally, display the result in the traditional form  

 

Now, we obtain the same result as equation (15). This means that inputted 

knowledge is visually identical as in textbook. Notice that the last output is a 

result of the line that follows input In[3], that is actually input In[4], and the 

displayed output is Out[4].  

The binomial distribution can be defined in a similar way 

 

This defines a function called f, a function with 5 arguments, (y1, y2, p1, p2, n). 

The head of the function is the same as for the trinomial distribution, but the 

difference is in the number of arguments. Instead of any argument with _ we can 

use any other symbol or number (instead of y2_ we can use 
3

x , and instead of 

p1_ we can use 
21

pp  ). Replacing arguments with appropriate symbols, and 

using the command for displaying expression in the traditional form, equation (16) 

is derived 
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5.2 Derivation of The Expectation Step 

In order to find out expectation of 
1

x , the conditional probability )(
1

xP  should be 

computed using equation (19) 

 

In the nominator the trinomial distribution is used, while in the denominator the 

binomial distribution is applied. The command Simplify is use to find the 

simplest form of the expression. Next, the derived expression is used in equation 

(18), and the final result is not the same as in [5] 

 

The same procedure is used for deriving expected value of 
2

x , but this time the 

same result is as in [5] 
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Sum of expected values of 
1

x  and 
2

x  should be 
1

y , that is obvious from the 

derived expressions using CAS, but also proves that one of two results in [5] is not 

correct. Now, it is obviously that the sign – in the denominator of the expectation 

of 
1

x  is not correct in [5, Box 2, equation (37)]. Also, in the original text [5], it 

used y  and 
1

y  for the same variable, that may be also confusing for some 

readers. 

The presented derivation in this paper shows that all results can be found out 

automatically, and intermediate results and defined functions can be visually 

identified to be the same with those from textbooks. 

Once the general expressions are derived, a particular solution follows as a special 

case. For example, if the probabilities are known, they can be denoted by subscript 
e 

 

The expected value of 
1

x  for this specific case can be derived by substituting 

parameters in the general solution for 
1

x  

 

Following the same procedure, the expected value of 
2

x  is derived 
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The derived results differ from that in [5, equations (5) and (6)], and instead of p , 

the automatically derived expressions have 2/p . 

5.3 Derivation of The Maximization Step 

For known probabilities of a specific case, the trinomial distribution can be 

expressed in terms of 
1

x , 
2

x , 
3

x , and the parameter p  

 

The same expression is presented in [5]. Since this is a continuous function in p , 

the first derivative can be computed 

 

The parameter p  can be expressed in terms of for the extreme (and again, the 

same expression is presented in [5]) 

 

But, the value of 
2

x  is unknown, Instead of 
2

x , we can use the expected value of 

2
x , that was derived in the expectation step. In order to obtain the same form of 

the final results as in [5], some rearrangements can be evaluated (to collect all 

terms in numerator and denominator that are multiplied by p ) 
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The final result is not the same as in [5]. It seems that p2  is used instead of p  in 

the recurrence relation in [5]. 

The presented derivation in this section shows that the final result can be found 

out automatically following the mathematical notation from textbooks or 

published papers. 

5.4 Derivation of The Code 

Once the expressions are derived from inputting the knowledge into CAS, the 

algorithm in the form of code can be simply transformed. 

The code can be derived for some input parameters, such as the total number of 

objects, number of dark or light objects, initial guess for p , required accuracy, or 

probabilities 

 

The expressions used in the code is a special case of the general expressions in 

terms of the known parameters or the previous value of p  
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Iterated algorithm can be a while loop, in that new number ob objects or new p is 

calculated 

 

Finally, the results of iterations can be viewed as table of values 

 

Number of displayed digits can be also specified 

 

The values from table are the same as in [5]. Therefore, using CAS, we derive all 

expressions and code for EM algorithm. Also, we avoid typewriting errors in the 

original text, prove all of the steps, and compute the numerical results for a 

specific case. For example, it is obvious that 1y  cannot be 100 [5, page 50 after 

equation (8)], because 100n  and ny 
1

. A typewriting error is in the derivation 

of expectation step [5, page 53, Box 2] where index in the summation formula is 

from 10. Another typewriting error is in the derivation of expectation step [5, page 

49, equation (6)] where 
2

x  should be used instead of 
1

x . 

6 Analytical Solution of The EM Algorithm 

The EM algorithm can be further analyzed by employing the symbolic expressions 

derived using CAS. Instead of the numeric analysis, a closed form expressions can 

be derived. This can help us to gain insight into how some system works and 

understand the properties of the algorithm. 
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6.1 Finding Closed Form Solution 

Firstly, we generate an equation that describes iterated computing of parameter p , 

knowing the initial value 

 

Command RSolve can be used to derive a closed form expression for p  in terms 

of the iteration step k  and other parameters kept as symbols 

 

In the specific case, when numeric values of some parameters are known, the 

closed form expression can be in terms of k , only 

 

The numeric values of p  in each iteration step can be displayed in table format 

 

Closed form expression can be used to find out the exact value after infinite 

number of iteration 
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Any of the parameters from the general solution can be changed to compute 

another set of values, such as for any value of n  and specified exact value for p  

(named pTrue) 

 

Since we already have a limit value as closed form solution in terms of n , the 

exact values can be computed for a range of different n  

 

Those results can be illustrated as it is shown in Fig. 1. The probability can be 

from the range 0.45 to 0.55, depending on n . Regardless of the fact that initial 

value of p  is 1/2, named pTrue in the code, the computed value of is from the 

range 0.45 to 0.55 as exact result of the algorithm after infinite number of 

iterations. The exact value 5.0p  can be obtained for a large number of objects, 

or as a mean value for several n . 
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Figure 1 

Estimate value of p in terms of the number of observed objects n 

6.2 Finding Number of Iterations k 

Usually, the errors in iterated algorithms are estimated. Since we already have the 

exact value after infinite number of iterations, and the current value at any 

iteration, the error can be expressed in closed form 

 

In addition, we specify the acceptable error as ba 2/1 , where b  is the number of 

accurate bits. Solving the equation when error is equal to required number of bits, 

we can determine b  in terms of the iteration index k  

 

 

For tree different number of iteration, it follows that 4 iterations are sufficient for 

8 bits, 
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Figure 2 shows the number of accurate bits is liner function of number of 

iterations 

 

 

Figure 2 

Number of exact bits of estimated p vs. number iterations k 

Instead of number of accurate bits, we can set number of accurate decimal digits 

 

Solving the equation when error is equal to required number of accurate decimal 

digits, we can determine minimal number of iterations 

 

 

The minimal number of iterations is a function of digits 

 

For a 6-digit precision, the minimal number of iterations is 9 
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Recalling the table with results, we can see that the 9
th

 iteration has 6-digit 

precision. 

This result can be used for fixed number of iterations instead of while loop. This is 

more suitable for numeric algorithms, especially when cash instructions can 

improve the speed of computing (no branch at the end of set of instructions). 

In a similar way, by increasing n , the maximal number can be determined for the 

required precision. For n  from 20 to 10000, 9
th

 iteration are sufficient for 6-digit 

precision. 

Conclusions 

In this paper, we analyze EM (Expectation-Maximization) algorithm using a new 

approach and method named symbolic processing. We present a straightforward 

systematic procedure for automatically derivation of expressions starting from the 

basic knowledge of the phenomena, automatic derivation of the code, processing 

with the code and reevaluate the numeric results from published papers. Even 

more, a closed form solution can be derived, and symbolic optimization may be 

performed. The presented procedure can be used as template for symbolic 

processing instead of the classic numeric processing and manual derivations of 

new advanced challenging algorithms. We introduce an original approach to 

analyzing a popular and frequently cited tutorial paper on Expectation-

Maximization (EM) algorithm, but with a number of typewriting errors. We prove 

that a more elegant and accurate solution can be obtained by using symbolic 

processing. Also, we provide better solutions for the exact values of the unknown 

parameters of probability. 
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