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Abstract: Simulation performance prediction methods make possible the realization of 

performance improvement potentials of Parallel Discrete Event Simulation (PDES) 

methods, important in the analysis of complex systems and large-scale networks. Currently, 

high performance execution environments (emerging clusters and computing clouds) 

advance the development of quality/cost analysis capabilities of performance prediction 

methods. In this paper, for the evaluation and management of prediction correctness/cost, 

the efficacy, efficiency and effectiveness coefficients and improvement operations are 

defined for predictions. The performance coefficients and improvement operations are 

embedded in the rough-set-modeling and learning process and presented as an 

enhancement approach of the conventional Coupling Factor Method (CFM). A case study 

based on the CFM analysis of PDES of a closed queuing network model is presented. In the 

example, after rough-modeling and train-and-test analysis, the correctness/cost evaluation 

and effectiveness improvement operations are shown for series of predictions and the 

feedback connection to modeling refinement phase is demonstrated too. 

Keywords: Parallel Discrete Event Simulation; simulation performance prediction; 

quality/cost analysis; Systems Performance Criteria; Rough Set Theory; Coupling Factor 
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1 Introduction 

Over the last few years, various research efforts have been made regarding 

Parallel Discrete Event Simulation (PDES) modeling and execution methods [1, 2, 

3, 4], since parallel execution turned out to be an appropriate approach to meet 

high computing capacity requirements of Discrete Event Simulation (DES) 

analysis of complex systems and large-scale networks [5, 6]. 

In the present paper, PDES is defined as the execution of a single DES model on 

some high performance computing platform which can be clusters of 

homogeneous or heterogeneous computers and other emerging execution 

environments (cloud, grid, etc.) too. 
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Development of simulation models having high runtime performance features in a 

PDES execution environment is not an easy task even today, mainly because it is 

hard to tell the parallel execution features of a model, for example, possible 

resource capacity bottlenecks, in the development phase [7]. The simulation 

performance prediction of PDES execution can help to realize higher performance 

by providing preliminary knowledge about the behavior of the simulation model 

in the parallel execution environment [7, 8, 9, 10, 11]. The PDES performance 

prediction methods can support the performance increase throughout the whole 

modeling and simulation process including model development support, 

simulation setup and evaluation phases and taking into account different 

simulation framework specifics too [7]. 

Nowadays, emerging simulation operation forms, like on-line, real-time modeling 

and simulation and especially cloud computing with on-demand network access 

and pay-per-use feature and the developing simulation as a service (Simulation 

Software-as-a-Service) in public clouds [3, 21] put an increasing emphasis on 

quality/cost analysis capability of performance prediction methods. 

The motivation of the authors to make the research presented in the paper was the 

lack of methods which can manage together the correctness and cost of 

performance prediction for a model in parallel simulation execution environment 

and which can also provide an easy feedback to the modeling and setup phases in 

the simulation. 

The authors have developed the Enhanced Simulation Performance Prediction 

Method (ESPPM). ESPPM is enhancing the standard Coupling Factor Method 

(CFM) of PDES performance prediction [14] by a method of improvement 

allowing handle together correctness and cost in speedup predictions. The 

improvement approach based on Rough Set Theory (RST) [13] train-and-test 

analysis with embedded Systems Performance Criteria (SPC) [30] of efficacy 

(E1), efficiency (E2) and effectiveness (E3) for complex evaluation and 

quality/cost performance improvements steps. 

In this work, the authors make the following key contributions: 

 Definitions of performance improvement operations, based on definitions 

of cost measures and on definitions of performance coefficients of 

efficacy (E1), efficiency (E2) and effectiveness (E3) are described for 

single predictions and for series of predictions. 

 A case study of the work of ESPPM is introduced using the example of a 

CFM PDES performance prediction of a Closed Queuing Network 

(CQN) model. In the analysis, the RST model of CFM modeling and its 

train-and-test examination is presented, the E1, E2 and E3 rule and 

attribute dropping operations are shown and the discussion of analysis 

results of performance predictions with feedback to the CFM and RST 

model-identification and refinement phase. 



Acta Polytechnica Hungarica Vol. 13, No. 6, 2016 

 – 127 – 

The rest of paper is organized as follows: Section 2 summarizes the related work, 

estimates the simulation performance prediction methods and relevant RST 

applications. Section 3 describes the components of the new method (RST, SPC 

and CFM). Section 4 introduces prediction performance improvement operations 

based on cost and prediction performance coefficients SPC-type definitions which 

are embedded into the process of train-and-test RST analysis. In Section 4, the 

process of ESPPM algorithm is described too. Section 5 introduces an example 

case study to demonstrate the use of the new method for the prediction analysis. 

Section 6 discusses the results of analysis. Finally, the conclusions are presented. 

2 Related Work 

The related research is overviewed in following two points. 

2.1 Simulation Performance Prediction Methods 

The method introduced in [8] uses execution event-trace data of sequential and 

parallel, simulation runs, for creating the execution graph model and for the 

subsequent critical path analysis to predict parallel simulation performance. The 

method takes into account, in the prediction, the characteristics of the simulation 

hardware (with hardware parameters and mapping algorithms). The use of a wide 

variety of conservative and optimistic parallel simulation synchronization 

protocols is allowed by the method, which is an advantage. Unfortunately, the 

evaluation of prediction quality and the common evaluation with the cost of 

prediction are not treated in the method. 

As an alternative to the conservative synchronization, the time driven version of 

the statistical synchronization method (SSM-T) with its loose synchronization [18, 

19, 20] is a less well-known, but promising PDES synchronization method, that 

can be applied for the parallel simulation of certain types of systems such as 

communication networks. The increased performance can be predicted based on 

the trace of frequency of statistics exchange between segments. The frequency of 

statistics exchange can be used similarly to lookahead [15]. There is no 

performance model used in the method, thus, performance prediction requires 

time-consuming analysis of the simulation model operation. 

The method described in [7], uses a hybrid approach to define the theoretical limit 

of the execution improvement for conservative synchronization protocol. In the 

trace-based part, the method analyses only a definite part of the sequence of 

events of the simulation model; while in an analytical modeling part, for the 

calculation of the lower bound on the runtime of the parallel simulation, a 

simplified scheduling problem model and the linear programming approach of is 

applied. An important advantage of this method is the definition of the 
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performance improvement limit for a model (or model version) but the method 

does not pay attention to the quality/cost analysis of predictions. 

Paper [14] introduces the CFM (details are described in point 3.3), a simulation 

performance prediction approach, based on the coupling factor PDES 

performance model. The coupling factor helps to predict the parallelization 

potential of the simulation models and can be defined in sequential simulation 

model runs. The method is appropriate only for conservative null message-based 

algorithm. Unfortunately, CFM introduced in [14] does not predict the speedup 

value and does not support the quality/cost evaluation in predictions either. 

2.2 Rough Set-based Performance Prediction 

Paper [22] presents a rough set modeling and application runtime prediction 

method. The method is based on identifying and extracting properties defining 

runtime similarity of applications using available past data. The method does not 

include any consideration on prediction cost and on the improvement of prediction 

quality. 

Paper [23] introduces a scheduling optimization approach for a dynamic 

remanufacturing situation with uncertain data. The proposed method is using 

linear programming and rough set evaluation and learning in an iterative process. 

Monte Carlo simulation is also involved to improve consistency of data. 

Unfortunately, complex evaluation, allowing quality/cost analysis in the learning 

process, is not included in the method. 

3 Method Components 

3.1 Rough Set Elements and the Rough Prediction Algorithm 

The RST (Rough Set Theory) is a mathematical framework suitable for modeling 

and analysis of information systems with imprecise relations, with uncertain data 

[25, 26, 27, 28, 29]. 

A rough set information system with embedded knowledge consists of two sets: 

the set of objects called the universe and the set of attributes. 

More formally, 𝐼 = (𝑈, 𝐴, 𝑓, 𝑉) denotes an information system of RST, where set 

𝑈 is the universe, 𝐴 is the set of attributes. Sets 𝑈 and 𝐴 are finite nonempty sets 

where (𝑈 = {𝑥1, 𝑥2, … , 𝑥|𝑈|} and 𝐴 = {𝑎1, 𝑎2, … , 𝑎|𝐴|}). The attributes define an 

information  function 𝑓: 𝑈 → 𝑉 for 𝑈 where the set 𝑉 is the set of values of 𝐴 

(𝑉 = 𝑉𝑎1
∪ 𝑉𝑎2

∪ … ∪ 𝑉𝑎|𝐴|
). The set 𝑉𝑎𝑖

– named also the domain of 𝑎𝑖 – contains 
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the collection of values of 𝑎𝑖 and 𝑉𝑎𝑖
= {𝑣1𝑎𝑖

, 𝑣2𝑎𝑖
, … , 𝑣

|𝑉𝑎𝑖
|
𝑎𝑖

} where |𝑉𝑎𝑖
| is the 

size of the domain of 𝑎𝑖. 

Discretization is the operation of mapping the primary values and ranges of all 

attributes to selected (possibly optimized) sets of discrete values: 𝑓𝑉′: 𝑉′ → 𝑉. The 

set 𝑉′ stands for the values of 𝑎 before discretization. 

The 𝐵-indiscernibility relation 𝐼𝑁𝐷(𝐵)for a set of attributes 𝐵 ⊆ 𝐴is defined in 

the following way: 

𝐼𝑁𝐷(𝐵) = {(𝑥𝑖 , 𝑥𝑗) ∈ 𝑈2|∀(𝑎 ∈ 𝐵)( 𝑎(𝑥𝑖) = 𝑎(𝑥𝑗))}. 

If (𝑥𝑖 , 𝑥𝑗) ∈ 𝐼𝑁𝐷(𝐵), then the objects 𝑥𝑖 and 𝑥𝑗 are indiscernible from each other 

in 𝐵 and the equivalence classes [𝑥]𝐼𝑁𝐷(𝐵) of 𝐼𝑁𝐷(𝐵) are formed by the objects 

indiscernible in 𝐵. 

Rough sets are defined by their lower approximation and upper approximation 

sets. The set 𝐵∗(𝑋) and the set 𝐵∗(𝑋) is the 𝐵-lower and 𝐵-upper approximation 

of the set 𝑋 and defined as follows: 

𝐵∗(𝑋) = ⋃ {𝑥|[𝑥]𝐼𝑁𝐷(𝐵) ⊆ 𝑋}𝑥∈𝑈  and 

𝐵∗(𝑋) = ⋃ {𝑥|[𝑥]𝐼𝑁𝐷(𝐵) ∩ 𝑋 ≠ ∅}𝑥∈𝑈 . 

The set 𝐵𝑁𝐵(𝑋) defined by the equation 𝐵𝑁𝐵(𝑋) = 𝐵∗(𝑋) ∖ 𝐵∗(𝑋) is the 𝐵-

boundary region of 𝑋. If 𝑋 is a crisp set then, 𝑋 = 𝐵∗(𝑋) thus 𝐵𝑁𝐵(𝑋) = ∅ which 

means the boundary region is empty. 

A reduct 𝑅𝐵 is the minimal subset of attributes 𝐵 that allows the same 

classification of objects of 𝑈 as the set of attributes 𝐵. This feature of a reduct 

may be described by indiscernibility function as follows: 

𝐼𝑁𝐷∀𝑥(𝑥∈𝑈)(𝑅𝐵) = 𝐼𝑁𝐷∀𝑥(𝑥∈𝑈)(𝐵), 𝐵 ⊆ 𝐴. 

In general, the information system may take the form of 𝐼 = (𝑈, 𝐴 = 𝐶 ∪ 𝐷, 𝑓, 𝑉) 

which is a decision information system (DIS). The set 𝐶 = {𝑐1 , 𝑐2 , … , 𝑐|𝐶|} 

denotes the set of condition attributes and 𝐷 is the set of decision attributes 

𝐷 = {𝑑1 , 𝑑2 , … , 𝑑|𝐷|}. The information function 𝑓: 𝑈 → 𝑉 may be expressed by 

information functions 𝑓𝐶: 𝐶 → 𝑉𝐶 and 𝑓𝐷: 𝐷 → 𝑉𝐷, where 𝑉 = 𝑉𝐶 ∪ 𝑉𝐷 (𝑉𝐶 = 𝑉𝑐1
∪

𝑉𝑐2
∪ 𝑉𝑐3

∪, … ,∪ 𝑉𝑐|𝐶|
 and 𝑉𝐷 = 𝑉𝑑1

∪ 𝑉𝑑2
∪ … ∪ 𝑉𝑑|𝐷|

) and 

𝑉𝐶 = ⋃ 𝑉𝑐𝑖

|𝐶|
𝑖=1  where 𝑉𝑐𝑖

={𝑣1𝑐𝑖
, 𝑣2𝑐𝑖

, … , 𝑣
|𝑉𝑐𝑖

|
𝑐𝑖

} and 𝑉𝐷 = ⋃ 𝑉𝑑𝑖

|𝐷|
𝑖=1 . where 

𝑉𝑑𝑖
={𝑣1𝑑𝑖

, 𝑣2𝑑𝑖
, … , 𝑣

|𝑉𝑑𝑖
|
𝑑𝑖

}. 
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In a decision table𝐼 = (𝑈, 𝐴 = 𝐶 ∪ {𝑑}, 𝑓, 𝑉) based on a DIS, 𝑑 denotes the 

distinguished decision attribute. Furthermore, a decision information system 

having the form of 𝐼 = (𝑈, 𝐶 ∪ 𝐷, 𝑓𝑉′ , 𝑓, 𝑉′, 𝑉) denotes a DIS with discretization 

information functions 𝑓𝑉𝐶
′: 𝑉𝐶

′
 

→ 𝑉𝐶and 𝑓𝑉𝐷
′ : 𝑉𝐷

′
 

→ 𝑉𝐷. 

The classification may also be described by a set decision rules 

𝑆 = {𝑠1, 𝑠2, … , 𝑠|𝑆|} in the form of implication 𝑠𝑘 = (𝜑𝑘

 
⇒ 𝜅𝑘), (𝑠𝑘 ∈ 𝑆), where 

𝜑𝑘 and 𝜅𝑘 are logical expressions of the condition and decision attributes 

respectively. The formulas 𝜑𝑘 and 𝜅𝑘 may also be quoted as LHS (Left Hand Side) 

and RHS (Right Hand Side) part of the rule. A decision rule 𝑠𝑘 may be evaluated 

by its 𝑀𝑎𝑡𝑐ℎ𝑈(𝑠𝑘) and 𝑆𝑢𝑝𝑝𝑈(𝑠𝑘) values, where 𝑀𝑎𝑡𝑐ℎ𝑈(𝑠𝑘) is the number of 

objects in 𝑈 the attribute values of which satisfy 𝜑𝑘 (matching with the LHS part 

of 𝑠𝑘), and 𝑆𝑢𝑝𝑝𝑈(𝑠𝑘) denotes the number of objects in decision table the 

attribute values of which satisfy both 𝜑𝑘 and 𝜅𝑘 (matching with both the LHS and 

RHS parts of 𝑠𝑘). 

 

Figure 1 

The Traditional Rough Set Theory (TRST) analysis algorithm for performance prediction 

Figure 1 shows the process of the rough prediction algorithm. The essence of the 

algorithm is the random split of the universe into train and test partitions, 

generation a set of classification rules using the train partition and then generation 

classification predictions for the test partition using the generated rules. 

3.2 Systems Performance Criteria 

Efficacy (E1), efficiency (E2) and effectiveness (E3) are Systems Performance 

Criteria (SPC) [11, 30, 31]. E1, E2 and E3 coefficients are in a hierarchy-like 

relationship with each other. On the longer term, the performance of a system is 

checked by the effectiveness criterion, the efficacy criterion shows whether the 

performance is suitable at all, and the efficiency criterion characterizes the relation 

of the required output and the resources used to produce the output. 

 

Generating the set of classification rules : 

Predicting classification of 𝑈𝑡𝑒𝑠𝑡  according to 𝑆𝑡𝑟𝑎𝑖𝑛  
: 

Decision Information System : 

Decision table (selecting a single decision attribute) :

Splitting the universe : 

𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛  
: 𝑈𝑡𝑒𝑠𝑡 × 𝑆𝑡𝑟𝑎𝑖𝑛 →  {𝑉𝑑  , 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑} 

  

𝑓
𝑅𝑁𝐷𝑠𝑝𝑙𝑖𝑡

: 𝑈 → (𝑈
𝑡𝑟𝑎𝑖𝑛

∪ 𝑈𝑡𝑒𝑠𝑡) 
 
 

𝑓
𝑟𝑢𝑙𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

: 𝑈𝑡𝑟𝑎𝑖𝑛 × 𝐺 → 𝑆𝑡𝑟𝑎𝑖𝑛
 
 

Selection the reduct and rule generation method 𝐺 

𝐼 = (𝑈, 𝐴 = 𝐶 ∪ {𝑑 }, 𝑓 , 𝑉 ), 𝑑 ∈ 𝐷 

𝐼 = (𝑈, 𝐴 = 𝐶 ∪ {𝑑 }, 𝑓 , 𝑉 ) 
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3.3 The Coupling Factor Method 

Based on some theoretical considerations about the connectedness of PDES model 

segments, paper [14] describes a practical simulation performance prediction 

approach the Coupling Factor Method (CFM). The method – using results of 

sequential simulation runs – predicts the parallelization potential of simulation 

models with conservative null message-based synchronization algorithm. The 

CFM performance model can be described by the formula: 

𝜆 =  𝐿 ∗ 𝐸 𝜏 ∗ 𝑃⁄   

where 𝐿 is the lookahead value characterizing the simulation model [𝑠𝑖𝑚𝑠𝑒𝑐] [6], 

𝐸 is the event density generated by the model [𝑒𝑣𝑒𝑛𝑡 𝑠𝑖𝑚𝑠𝑒𝑐⁄ ], 𝜏 is the latency of 

messages between logical processes (LPs) of the simulation model during the 

execution [𝑠𝑒𝑐], and  𝑃 is the event processing hardware performance 

[𝑒𝑣𝑒𝑛𝑡 𝑠𝑒𝑐⁄ ]. In this performance model, parameters 𝐿 and 𝐸characterize the 

simulation model itself, parameters 𝜏 and 𝑃 describe the execution environment. 

The performance model involves only four parameters for the performance 

prediction calculations that can be measured in simple sequential simulation runs. 

According to the method, the PDES speedup value cannot be predicted, but the 

high value of 𝜆 (𝜆value is a couple of time 100 or higher [15]) shows the good 

potential for simulation model parallelization. For a separate process, the 𝜆𝑁 

parallelization potential of a process is only a part of the whole potential: 

𝜆𝑁 =  𝜆 𝑁𝐿𝑃⁄  

where 𝑁𝐿𝑃 the number of LPs [15]. (The four parameters of CFM formulates 

requirement on the simulation model and on how the parallelization potential can 

be exploited.) 

The method has been validated by a series of simulation investigations for 

homogeneous and heterogeneous clusters of computers [15, 16, 17]. Example 

applications for telecommunication systems and for cloud computing systems 

have been introduced too in [16] and [32]. 

4 The Prediction Performance Enhancement 

4.1 Defining Prediction Performance Coefficients 

In a TRST simulation performance analysis, in a decision table 𝐼 = (𝑈, 𝐴 = 𝐶 ∪
{𝑑}, 𝑓, 𝑉) the objects of the universe 𝑈 are computer simulation experiments. Set 

of attributes (𝐴) consists of independent (𝐶) and dependent {𝑑} variables that are 

taken into account in performance evaluation and in classification prediction. 
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The classification of experiments in 𝑈𝑡𝑒𝑠𝑡(𝑖) (𝑈 = 𝑈𝑡𝑟𝑎𝑖𝑛(𝑖)  ∪  𝑈𝑡𝑒𝑠𝑡(𝑖)) is predicted 

by 𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑖): 𝑈𝑡𝑒𝑠𝑡(𝑖) × 𝑆𝑡𝑟𝑎𝑖𝑛(𝑖) → {𝑉𝑑  , 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑}, (𝑖 = 1,2, … , n), using the 

set of rules 𝑆𝑡𝑟𝑎𝑖𝑛(𝑖) = {𝑠1, 𝑠2, … , 𝑠|𝑆𝑡𝑟𝑎𝑖𝑛(𝑖)|} , 𝑠𝑘 = 𝜑𝑘

 
⇒ 𝜅𝑘 that are generated 

according to function 𝑓𝑡𝑟𝑎𝑖𝑛: 𝑈𝑡𝑒𝑠𝑡 × 𝐺 → 𝑆𝑡𝑟𝑎𝑖𝑛  in TRST. 

In the following the E1, E2 and E3 SPC will be defined in the form of prediction 

performance coefficients: efficacy (E1) to measure prediction correctness, 

efficiency (E2) to assess correctness-to-cost relationship and effectiveness (E3) to 

take into account E1 and E2 for series of predictions. To calculate cost 

relationships cost of experiments, attributes, rules and predictions will be defined 

using the consumed computation time. 

For the improvement of prediction performance, attribute and rule dropping 

operations are defined. 

Definition 1. Efficacy (E1) of a prediction 

𝐸1𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 is calculated according to formula 

𝐸1𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =
∑ 𝑝(𝑥𝑙)

|𝑈𝑡𝑒𝑠𝑡|

𝑙=1

|𝑈𝑡𝑒𝑠𝑡|
 

where 𝑝(𝑥𝑙) (prediction correctness) is equal to 

𝑝(𝑥𝑙) =  {
1, |〈𝑑(𝑥𝑙)𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑〉 =  〈𝑑(𝑥𝑙)𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑〉

0|𝑜𝑡ℎ𝑒𝑟𝑣𝑖𝑠𝑒
 and where𝑑(𝑥𝑙)𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is 

𝑑(𝑥𝑙)𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = {
𝑣𝑑 , 〈𝜅𝑘〉 = 𝑣𝑑, 𝑣𝑑 ∈ 𝑉𝑑|(𝑀𝑎𝑡𝑐ℎ𝑈𝑡𝑒𝑠𝑡

(𝑠𝑘) = 1 

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 |𝑜𝑡ℎ𝑒𝑟𝑣𝑖𝑠𝑒
 and 

(𝑠𝑘 ∈ 𝑆𝑡𝑟𝑎𝑖𝑛), 〈𝑑(𝑠𝑘)𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑〉 = 𝑣𝑑(𝑥𝑙,𝑠𝑘)
. 

The interval of 𝐸1 coefficient is 0 ≤ 𝐸1 ≤ 1. If  𝐸1𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ≥ 𝐸1𝑙𝑖𝑚𝑖𝑡 is true 

then the prediction is efficacious. The 𝐸1𝑙𝑖𝑚𝑖𝑡  denotes the lower limit of efficacy 

and the inequality 𝐸1𝑙𝑖𝑚𝑖𝑡 > 0.5 should be satisfied that is the efficacy of 

prediction is required to be better than random guess. 

Definition 2. Cost of experiments, attributes, rules and predictions 

For a decision table 𝐼 = (𝑈, 𝐴 = 𝐶 ∪ {𝑑}, 𝑓, 𝑉) supposing that a homogeneous 

cluster of computers with equal cores is examined and supposing that all the cores 

are continuously working during the execution time, the cost of a simulation 

experiment 𝑥𝑙(𝑥𝑙 ∈ 𝑈) is defined as: 𝐾(𝑥𝑙) = 𝑁𝑐𝑜𝑟𝑒𝑠 ∗ 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 [𝑠𝑒𝑐]. 

Cost of a rule 𝑠𝑘 is calculated as 𝐾(𝑠𝑘) = ∑ 𝐾(𝑥𝑙|𝑆𝑢𝑝𝑝(𝑠𝑘)) = 1) 
|𝑈|
𝑙=1 [𝑠𝑒𝑐]. 

Cost of a prediction 𝐾(𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) is defined as 𝐾(𝑆𝑡𝑟𝑎𝑖𝑛) = ∑ 𝐾(𝑠𝑘)
|𝑆𝑡𝑟𝑎𝑖𝑛|

𝑘=1
[𝑠𝑒𝑐], 

(𝑠𝑘 ∈ 𝑆𝑡𝑟𝑎𝑖𝑛). 
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Definition 3. Efficiency (E2) of a prediction 

𝐸2𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝐸1𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐾𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛  [ 1

𝑠𝑒𝑐
]⁄  

Definition 4. Effectiveness (E3) of a series of predictions 

𝐸3𝑠𝑒𝑟𝑖𝑒𝑠 = 𝐸3(𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) = 𝐸2𝑛|𝐸1𝑛 where 

𝐸1𝑛 =
1

𝑛
∑ 𝐸1(𝑖)

𝑛
𝑖=1  and 𝐸2𝑛 =

1

𝑛
∑ 𝐸1(𝑖)

𝑛
𝑖=1

1

𝑛
∑ 𝐾(𝑛

𝑖=1 𝑆𝑡𝑟𝑎𝑖𝑛(𝑖)) [ 1

𝑠𝑒𝑐
]⁄  

and where 𝑖 denotes the 𝑖-th prediction and 𝑛 is the number of predictions in the 

series( 𝑛 ≥ 2). For 𝑛 = 1  𝐸3𝑠𝑒𝑟𝑖𝑒𝑠 is undefined and for 𝐸1𝑛 < 𝐸𝑙𝑖𝑚𝑖𝑡   𝐸3𝑠𝑒𝑟𝑖𝑒𝑠 is 

not effective. 

Definition 5. Rule and attribute dropping 

Dropping of a rule 𝑠𝑘 and dropping of an attribute 𝑐𝑗 for the pair (𝑆𝑡𝑟𝑎𝑖𝑛 , 𝑈𝑡𝑒𝑠𝑡) are 

the replacement operations 𝑆𝑡𝑟𝑎𝑖𝑛 ∶= 𝑆𝑡𝑟𝑎𝑖𝑛 ∖ {𝑠𝑘} and 𝐶 ∶= 𝐶 ∖ {𝑐𝑗} respectively. 

4.2 The Enhanced Simulation Performance Prediction Method 

Figure 2 shows the process diagram of the Enhanced Simulation Performance 

Prediction Method (ESPPM). 

The ESPPM process can be described as follows: 

 The ESPPM input data are produced both in sequential (CFM parameter 

measurements) and parallel simulation model runs (PDES, CFM 

parameter measurements, runtime measurements for cost calculations are 

executed and other relevant (or possibly relevant) simulation modeling 

hardware and software environmental data are collected. 

 The rough model is made for performance prediction (objects and 

attributes of DISs before and after discretization). 

 The TRST train-and-test method is used in interactive manner for 

generation of predictions 

 The E1, E2 and E3 coefficients (built in the TRST cycle) are used for 

evaluation and attribute and rule dropping operations are applied for 

improvement of correctness and cost of predictions. 

 The method supports setting up feedback to identification and refinement 

phase of the simulation performance prediction models. 

The method can be implemented by using the OMNet++ [12] and the Rosetta 

System [13] free software for DES modeling and RST examinations respectively. 
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Figure 2 

The process of the Enhanced Simulation Performance Prediction Method (ESPPM) 

5 Prediction Performance Analysis Case Study 

5.1 Simulation Performance Evaluation Example 

The example analysis of the CFM approach described in [15] investigates the 

simulation runs of a CQN model with various configurations in a homogeneous 

cluster execution environment with different number of processors. 

In Figure 3, the number of tandem queues in the CQN model is 24 (𝑄1,…,24), the 

number of simple queues in a tandem queue is 50 (𝑞1,…,50). The switching between 

tandem queues is performed by switches (𝑠𝑤1,…,24) according to uniform 

probability distribution. The delay of switching between tandem queues (shown 

by 2D arrow shapes, in Figure 3) will model the lookahead (𝐿). The lookahead 

delay is the delay of a job before entering the next tandem queue and it is defined 

by the 𝐿 value. 

TRST
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Figure 3 

CQN model for PDES performance simulation 

The starting number of jobs in every simple queue is 2 jobs, thus the number of 

jobs in CQN is 2400 and this value remains constant. Jobs have exponential inter-

arrival time and exponential service time distributions with FCFS service 

discipline. The expected value for both the arrival and service time distributions is 

10𝑠𝑖𝑚𝑠𝑒𝑐. The delay on links between simple queues is 1𝑠𝑖𝑚𝑠𝑒𝑐. 

The software environment of simulation runs includes: Linux (Debian) operating 

system, MPI, NFS, OMNet++ network simulator. The hardware environment of 

simulation runs is a homogeneous cluster of 12 two-core host PCs. The 

communication latency of messages – measured by the OpenMPI PingPong 

benchmark and used as 𝜏 value – over MPI between the host PCs of the cluster is 

25𝜇𝑠𝑒𝑐. 

To calculate coupling factor 𝜆 the values of𝐸 and 𝑃 variableswere measured in 

sequential simulation runs on one core of a host PC (𝑁𝑐𝑜𝑟𝑒𝑠=1) with 𝐿 =0.1, 1, 10, 

100 and 1000 𝑠𝑖𝑚𝑠𝑒𝑐 of lookahead values. The result of sequential simulation 

runs is summarized in Table 1 [15]. 

Table1 

Coupling factor determination by sequential simulations 

The PDES experiments were executed using equal number of cores and LPs: 

𝑁𝐿𝑃 = 2, 4, 6, 8, 12 and 24 (𝑁𝑐𝑜𝑟𝑒𝑠 = 𝑁𝐿𝑃). The relative speedup results measured 

in PDES executions are summarized in Table 2. 

The simulated virtual time both for sequential and PDES runs was 864000𝑠𝑖𝑚𝑠𝑒𝑐. 

The total number of execution runs for sequential simulation and for PDES were 

55 and 330 respectively (11 runs with the same setup of an experiment). 

q1 Q2

Q24
...

...q2

q2 q50

Q1...q2q1

q1

q50

q50

..
.

sw1

sw2

sw24

L [simsec] 0.1 1 10 100 1000 

Execution time [sec] 524.18 521.36 523.09 516.54 415.73 

P [ev sec⁄ ] 263502 264868 263465 261132 247653 

E [ev simsec⁄ ] 159.86 159.83 159.51 156.12 119.16 

Coupling factor λ 2.43 24.14 242.17 2391.39 19246.76 
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Table 2 

PDES relative speedup performance at different Ncores and L values 

L [simsec] 0.1 1 10 100 1000 

Ncores=2 0.43 0.78 0.85 0.99 0.99 

Ncores=4 0.06 0.48 0.83 0.92 0.94 

Ncores=6 0.03 0.28 0.76 0.91 0.94 

Ncores=8 0.02 0.18 0.66 0.89 0.95 

Ncores=12 0.01 0.09 0.48 0.86 0.94 

Ncores=24 0.00 0.02 0.18 0.63 0.87 

The speedup is defined as a proportion of the sequential and the PDES execution 

time of the simulation. The relative speedup is calculated as the proportion 

between the speedup values and the number cores used to achieve the speedup. 

5.2 RST Modeling and Analysis 

The RST model of simulation performance prediction is presented in the form of 

decision information systems and decision tables: 

𝐼 = (𝑈, 𝐶 ∪ 𝐷, 𝑓𝑉′, 𝑓, 𝑉′, 𝑉), 𝐼 = (𝑈, 𝐴 = 𝐶 ∪ 𝐷, 𝑓, 𝑉), 

𝐼 = (𝑈, 𝐴 = 𝐶 ∪ {𝑑}, 𝑓, 𝑉, ), 𝑑 ∈ 𝐷. 

An extended but relevant list of elements of 𝑈, 𝐶  and 𝐷 sets are described below. 

The simulation experiments are the objects of the universe 𝑈 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥30} 

where 𝑥𝑖 denotes the object of the universe with index 𝑖. 

An extended set of condition attributes may be defined as follows 

𝐶 =  { 𝑃, 𝐸, 𝐿(𝑐04), 𝜆(𝑐01), 𝜆𝑁 , 𝑁𝐿𝑃 , 𝑁𝑐𝑜𝑟𝑒𝑠(𝑐03), 𝜏, 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒,  } ∪ 

{𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 𝑤𝑖𝑡ℎ 𝑛𝑢𝑙𝑙 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚}  ∪ 

{ 𝑄, 𝑞, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑏𝑠 𝑖𝑛 𝐶𝑄𝑁, 𝑖𝑛𝑡𝑒𝑟 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒,  

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒, 𝐹𝐶𝐹𝑆 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑑𝑖𝑠𝑐𝑖𝑝𝑙𝑖𝑛𝑒, 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑎𝑛𝑑𝑒𝑚𝑠, 

𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑖𝑚𝑝𝑙𝑒 𝑞𝑢𝑒𝑢𝑒𝑠  } ∪ 

{ 𝑂𝑀𝑁𝑒𝑡 + +, 𝑀𝑃𝐼, 𝐿𝑖𝑛𝑢𝑥 𝐷𝑒𝑏𝑖𝑎𝑛 }. 

The set of decision attributes under consideration can be set as 

𝐷 = {𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑝𝑒𝑒𝑑𝑢𝑝(𝑑01), 𝑠𝑝𝑒𝑒𝑑𝑢𝑝(𝑐02, 𝑑02), 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠}. 

(The variables in brackets (for example, 𝑐04) shows the variables selected for the 

analysis.) 
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5.2.1 Generating Predictions and Costs 

For the prediction performance analysis the following decision table after 

discretization and appropriate coding is used: 

𝐼 𝑑01
= (𝑈, 𝐴 = 𝐶 ∪ { 𝑑01}, 𝑓, 𝑉), 𝑈 = {𝑥1, 𝑥2, … , 𝑥30}, 𝐶 = {𝑐01, 𝑐02, 𝑐03, 𝑐04}, 

𝑉𝑐01
= {𝑙, 𝑚, ℎ, 𝑠, 𝑒}, 𝑉𝑐02

= {𝑎, 𝑛}, 𝑉𝑐03
= {2,4,6,8,12,24}, 

𝑉𝑐04
= {𝑓(𝑣𝑐04

′ = 0.1), 𝑔, ℎ, 𝑜, 𝑡(𝑣𝑐04
′ = 1000)}, 𝑉𝑑01

= {𝐿(0 ≤ 𝑣𝑑01

′ < 0.6), 𝐻}. 

(For the later analysis, some values are shown before coding too (for 

example, 𝑣𝑐04
′ = 0.1)) 

The examination is performed in a form of TRST train-and-test analysis. For the 

train-and-test examination, based on our previous results presented in [24], the 

Rosetta System [13] is used with G=Johnson’s RSES (Rough Set Exploration 

System) reduct and rule generation method and with the subsequent classification 

of objects. The algorithm of examination is as follows: 

Input: 𝐼 𝑑01
, simulation runtime and configuration data, TRST configuration setup 

data: (𝑈 = 𝑈𝑡𝑟𝑎𝑖𝑛(𝑖) ∪ 𝑈𝑡𝑒𝑠𝑡(𝑖)) ∧ ((𝑈𝑡𝑟𝑎𝑖𝑛(𝑖) ∩ 𝑈𝑡𝑒𝑠𝑡(𝑖)) = ∅) ∧ (|𝑈𝑡𝑟𝑎𝑖𝑛(𝑖)| |𝑈|⁄  =

=
15

30
) ∧ ( 𝑅𝑁𝐷𝑠𝑒𝑒𝑑 = 𝑖) ∧ (𝐺 = 𝐽𝑜ℎ𝑛𝑠𝑜𝑛′𝑠 𝑅𝑆𝐸𝑆)  

Output: approximation of classification prediction data, and SPC evaluation 

begin 

for i=1 to 8 for each prediction case do  

//prediction cases = 0, 3, 4, 

  compute TRST 

  //for the series of computation use the same (𝑈𝑡𝑟𝑎𝑖𝑛(𝑖), 𝑈𝑡𝑒𝑠𝑡(𝑖)) 

  //pairs (𝑖 = 1,2, … ,8) 

 return  classification prediction rules and classification prediction data,  

  E1, E2 and E3 evaluation data 

end 

Table 3 shows the costs of simulation experiments 𝐾(𝑥𝑖) (𝑥𝑖 ∈ 𝑈, 𝑖 = 1,2, … ,30).  

Table 3 

Cost of PDES simulation experiments K(xi) [ks] 

Ncores 
L=0.1simsec L=1simsec L=10simsec L=100simsec L=1000simsec 

xi K(xi) xi K(xi) xi K(xi) xi K(xi) xi K(xi) 

Ncores=2 x01 209.60 x07 22.73 x13 28.56 x19 0.82 x25 0.48 

Ncores=4 x02 52.40 x08 56.88 x14 10.92 x20 0.60 x26 0.44 

Ncores=6 x03 24.66 x09 28.72 x15 0.79 x21 0.58 x27 0.44 

Ncores=8 x04 16.55 x10 18.48 x16 0.69 x22 0.56 x28 0.44 

Ncores=12 x05 8.73 x11 10.84 x17 0.63 x23 0.56 x29 0.44 

Ncores=24 x06 1.23 x12 0.67 x18 0.62 x24 0.58 x30 0.42 
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In Table 4, values of cost of rules 𝐾(𝑠𝑗) are shown in order of their occurrence in 

predictions (𝑠𝑗 ∈ ⋃ 𝑆𝑡𝑟𝑎𝑖𝑛(𝑖)
8
𝑖=1 , 𝑗 = 1,2, … ,24). 

Table 4 

Cost of rules K(sj) [ks] 

sj s1 s2 s3 s4 s5 s6 s7 s8 

K(sj) 313.17 3.70 2.67 2.87 1.85 2.90 0.79 2.29 

sj s9 s10 s11 s12 s13 s14 s15 s16 

K(sj) 1.63 1.09 0.69 22.74 0.67 1.81 34.90 1.30 

sj s17 s18 s19 s20 s21 s22 s23 s24 

K(sj) 0.79 0.63 2.87 1.09 1.10 1.70 6.68 5.68 

In Table 5, costs of predictions 𝐾(𝑆𝑡𝑟𝑎𝑖𝑛(𝑖)) are shown together with the number 

of prediction rules |𝑆𝑡𝑟𝑎𝑖𝑛(𝑖)| in the prediction (𝑖 = 1,2, … ,8). 

Table 5 

Cost of predictions K(Strain(i)) [ks] and number of rules in Strain(i) 

Prediction(i) 1 2 3 4 5 6 7 8 

K(Strain(i)) 331.85 322.97 351.79 357.85 329.67 364.82 336.05 357.99 

|Strain(i)| 9 7 10 8 10 10 7 6 

In the following points, based on simulation results and on RST modeling and 

train-and-test examination data, cases of single predictions and series of 

predictions, with and without dropping, are analyzed using prediction 

performance coefficients. The basic series of predictions (prediction case 0) is 

introduced in point 5.2.2. All the other prediction analysis examples (prediction 

case 1-5) introduced in the analysis are derived from prediction case 0. The 

efficacy minimum requirement for all prediction cases is 𝐸1𝑙𝑖𝑚𝑖𝑡 ≥ 60%. 

5.2.2 Predictions with Full Set of Attributes and Rules 

Prediction case 0: ∀𝑖=1
8 𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑖) ∶= 𝑆𝑡𝑟𝑎𝑖𝑛(𝑖) 

Cost data and rule set sizes for the series of predictions are shown in Table 3, 4 

and 5. The effectiveness coefficient of prediction series is 

𝐸3𝑠𝑒𝑟𝑖𝑒𝑠 = 𝐸3(𝑆𝑡𝑟𝑎𝑖𝑛) = 𝐸28|𝐸18 where 

𝐸28 =
1

8
∑ 𝐸1𝑖

8
𝑖=1

1

8
∑ 𝐾8

𝑖=1 (𝑆𝑡𝑟𝑎𝑖𝑛(𝑖)) = 77% 344.12𝑘𝑠⁄ =⁄ 0.224%

𝑘𝑠
 , and 

𝐸18 =
1

8
∑ 𝐸1(𝑆𝑡𝑟𝑎𝑖𝑛(𝑖))8

𝑖=1 = 77% > (𝐸1𝑙𝑖𝑚𝑖𝑡 = 60%). 

5.2.3 Dropping in Single Predictions: Efficacy and Efficiency Analysis 

Prediction case 1: dropping 𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(1) ∶= 𝑆𝑡𝑟𝑎𝑖𝑛(1) ∖ {𝑠3} 
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Set of prediction rules 𝑆𝑡𝑟𝑎𝑖𝑛(1) consists of nine rules (𝑆𝑡𝑟𝑎𝑖𝑛(1) = {𝑠1, 𝑠2, … , 𝑠9}). 

The limit 𝐸1𝑙𝑖𝑚𝑖𝑡 ≥ 0.6 has been accepted, thus the rule 𝑠3 = (𝑐04(𝑡)
 

⇒ 𝑑01(𝐻)), 

(𝑠3 ∈ 𝑆𝑡𝑟𝑎𝑖𝑛(1)) can be dropped efficaciously since the effect of dropping on 𝐸1 is 

(((∑ 𝑝(𝑥𝑙)
15=|𝑈𝑡𝑒𝑠𝑡(1)|

𝑙=1 )
𝑆𝑡𝑟𝑎𝑖𝑛(1)

= 11) − (|𝑀𝑎𝑡𝑐ℎ𝑈𝑡𝑒𝑠𝑡(1)
(𝑠3)| = 2) = 9)  ≥

 (𝐸1𝑙𝑖𝑚𝑖𝑡 ∗ |𝑈𝑡𝑒𝑠𝑡(1)| = 0.6 ∗ 15 = 9). 

Decision rule 𝑠1 = (𝑐04(𝑓)
 

⇒ 𝑑01(𝐿)), (𝑠1 ∈ 𝑆𝑡𝑟𝑎𝑖𝑛(1)) cannot be dropped 

efficaciously because 

(((∑ 𝑝(𝑥𝑙)
15=|𝑈𝑡𝑒𝑠𝑡(1)|

𝑙=1 )
𝑆𝑡𝑟𝑎𝑖𝑛(1)

= 11) − (|𝑀𝑎𝑡𝑐ℎ𝑈𝑡𝑒𝑠𝑡(1)
(𝑠1)| = 3) = 8)  ≱

 (𝐸1𝑙𝑖𝑚𝑖𝑡 ∗ |𝑈𝑡𝑒𝑠𝑡(1)| = 0.6 ∗ 15 = 9). 

Cost of rule 𝑠3 is 𝐾(𝑠3) = 2.67𝑘𝑠 thus after dropping 𝑠3  𝐾(𝑆𝑡𝑟𝑎𝑖𝑛(1) ∖ {𝑠3}) =

329.18𝑘𝑠. The efficacy and efficiency coefficients after dropping are 

𝐸1(𝑆𝑡𝑟𝑎𝑖𝑛(1) ∖ {𝑠3}) = 60%, 𝐸2(𝑆𝑡𝑟𝑎𝑖𝑛(1) ∖ {𝑠3}) = 0.182%

𝑘𝑠
 respectively. 

Comparing 𝐸2𝑙𝑖𝑚𝑖𝑡 = 𝐸1𝑙𝑖𝑚𝑖𝑡
1

8
∑ 𝐾8

𝑖=1 (𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)⁄  for both before and after 

dropping cases, the next inequality has been got: 𝐸2𝑙𝑖𝑚𝑖𝑡(𝑆𝑡𝑟𝑎𝑖𝑛(1)) = 0.181%

𝑘𝑠
< 

< 𝐸2𝑙𝑖𝑚𝑖𝑡(𝑆𝑡𝑟𝑎𝑖𝑛(1) ∖ {𝑠3}) = 0.182%

𝑘𝑠
, that is 𝑆𝑡𝑟𝑎𝑖𝑛(1) is worse in effectiveness. 

Prediction case 2: dropping 𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(1) ∶= 𝐶 ∖ {𝑐03} 

Extending the previous case, the attribute 𝑐03 may be dropped efficaciously if the 

following set of sufficient conditions can be satisfied: 

∃𝑆𝐸𝐹(1) (𝑆𝑡𝑟𝑎𝑖𝑛(1) = (𝑆𝐸𝐹(1) ∪ 𝑆𝐹𝐸(1))) ∧ ({𝑐03} ∉ 𝐶𝑆𝐸𝐹(1)
) ∧ 𝐸1(𝑆𝐸𝐹(1))  ≥  

≥ 𝐸1𝑙𝑖𝑚𝑖𝑡 , where set 𝐶𝑆𝐸𝐹(1)
 denotes the set of condition attributes used by rules 

of set 𝑆𝐸𝐹(1). The partitioning 𝑆𝑡𝑟𝑎𝑖𝑛(1) = (𝑆𝐸𝐹(1) = {𝑠1, 𝑠2, 𝑠3})  ∪ 𝑆𝐹𝐸(1) =

{𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8, 𝑠9}, satisfies the conditions since 𝐸1(𝑆EF(1)) = 60 % = 𝐸1𝑙𝑖𝑚𝑖𝑡  

and  (𝐶𝑆𝐹𝐸(1)
∖ 𝐶𝑆𝐸𝐹(1)

) = {𝑐03, 𝑐04} ∖ {𝑐04} = {𝑐03}. 

The cost of prediction after dropping 𝑐03 is 𝐾(𝑆𝑡𝑟𝑎𝑖𝑛(1)∖{𝑐03}) = 𝐾(𝑆𝐸𝐹(1)) = 

= 319.54𝑘𝑠, thus the efficiency got is 𝐸2(𝑆𝑡𝑟𝑎𝑖𝑛(1)∖{𝑐03}) = 0.188%

𝑘𝑠
 . 

5.2.4 Dropping in Series of Predictions: Effectiveness Analysis 

Prediction case 3: dropping ∀𝑖=1
8 𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑖) ∶= 𝑆𝑡𝑟𝑎𝑖𝑛(𝑖) ∖ {𝑠1} 

The  effectiveness after dropping the rule 𝑠1 is 
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𝐸3𝑠𝑒𝑟𝑖𝑒𝑠 = 𝐸3(𝑆𝑡𝑟𝑎𝑖𝑛 ∖ {𝑠1}) = 𝐸28|𝐸18 where 

𝐸28 =
1

8
∑ 𝐸1(𝑖)

8
𝑖=1

1

8
∑ 𝐾8

𝑖=1 (𝑆𝑡𝑟𝑎𝑖𝑛(𝑖) ∖ {𝑠1})⁄ = 1.680%

𝑘𝑠
 , and 

𝐸18 =
1

8
∑ 𝐸1(𝑆𝑡𝑟𝑎𝑖𝑛(𝑖) ∖ {𝑠1})8

𝑖=1 = 52%. 

In this case, dropping 𝑠1 is highly efficient (since 𝐾(𝑆𝑡𝑟𝑎𝑖𝑛) = 344.12𝑘𝑠 

and 𝐾(𝑠1) = 313.17𝑘𝑠 ) but the dropping is not efficacious because 52% <
𝐸1𝑙𝑖𝑚𝑖𝑡 = 60% and thus the dropping is not effective too. 

Prediction case 4: dropping  ∀𝑖=1
8 𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑖) ∶= {𝑠1, 𝑠2, 𝑠3} 

For the case of this rule dropping effectiveness is 

𝐸3𝑠𝑒𝑟𝑖𝑒𝑠 = 𝐸3({𝑠1, 𝑠2, 𝑠3}) = 𝐸28|𝐸18 where 

𝐸28 =
1

8
∑ 𝐸1𝑖

8
𝑖=1

1

8
∑ 𝐾8

𝑖=1 (𝑆𝑡𝑟𝑎𝑖𝑛(𝑖) = {𝑠1, 𝑠2, 𝑠3}) =⁄ 0.194%

𝑘𝑠
 , and 

𝐸18 =
1

8
∑ 𝐸1(𝑆𝑡𝑟𝑎𝑖𝑛(𝑖) = {𝑠1, 𝑠2, 𝑠3})8

𝑖=1 = 62% > (𝐸1𝑙𝑖𝑚𝑖𝑡 = 60%). 

Prediction case 5: dropping ∀𝑖=1
8 𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑖) = 𝑆𝑡𝑟𝑎𝑖𝑛(𝑖)|𝐶 ∶=𝐶 ∖ {𝑐03} 

Attribute 𝑐03 could be dropped efficaciously for the series of predictions 

(continuing the analysis of prediction case 2) since the sufficient set of conditions, 

⋁ ∃𝑆𝐸𝐹(𝑖)
8
𝑖=1 (𝑆𝑡𝑟𝑎𝑖𝑛(i) = (𝑆𝐸𝐹(𝑖) ∪ 𝑆𝐹𝐸(𝑖))) ∧ ({𝑐03} ∉ 𝐶𝑆𝐸𝐹(𝑖)

)) ∧   

∧ ((
1

8
∑ 𝐸1(𝑆𝐸𝐹(𝑖))8

𝑖=1 ) ≥ 𝐸1𝑙𝑖𝑚𝑖𝑡), can be satisfied by simply taking 

⋁ 𝑆𝐸𝐹(𝑖)
8
𝑖=1 = {𝑠1, 𝑠2, 𝑠3} for this case too. Thus, the effectiveness evaluation gives 

the same numbers as for prediction case 4: 

𝐸3𝑠𝑒𝑟𝑖𝑒𝑠 = 𝐸3(𝑆𝐸𝐹|𝐶 ∖ {𝑐03}) = 𝐸28|𝐸18 where 

𝐸28 =
1

8
∑ 𝐸1𝑖

8
𝑖=1

1

8
∑ 𝐾8

𝑖=1 (𝑆𝑡𝑟𝑎𝑖𝑛(𝑖) = 𝑆𝐸𝐹(𝑖)) =⁄ 0.194
%

𝑘𝑠
 , and 

𝐸18 =
1

8
∑ 𝐸1(𝑆𝐸𝐹(𝑖))8

𝑖=1 = 62% > (𝐸1𝑙𝑖𝑚𝑖𝑡 = 60%). 

6 Comparison and Discussion of Predictions 

Figure 4 compares three series of predictions 𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑆𝑡𝑟𝑎𝑖𝑛  (case 0), 

𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = {𝑠1, 𝑠2, 𝑠3} (case 4) and 𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑆𝑡𝑟𝑎𝑖𝑛 ∖ {𝑠1} (case 3). The 

diagram shows 𝐸1 and 𝐸2 coefficients for every single prediction and shows 𝐸2 

and 𝐸1 values of 𝐸3 for the series of predictions too. To make the comparison of 

predictions easier, the efficiency coefficients are calculated such that 

 𝐾(𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = {𝑠1, 𝑠2, 𝑠3}) = 319.54𝑘𝑠 = 100%. 
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For the single predictions of  𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑆𝑡𝑟𝑎𝑖𝑛  , the relation ∀𝑖=1
8 𝐸1(𝑖)(𝐸1(𝑖) ≥

≥ 𝐸1𝑙𝑖𝑚𝑖𝑡) is hold, and the relative efficiency of the series 𝐸2 is 72% (𝐸1= 77%). 

 

Figure 4 

E1, E2 and E3 evaluation of predictions and droppings 

For  𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =  {𝑠1, 𝑠2, 𝑠3}, the relation ∀𝑖=1
8 𝐸1(𝑖)(𝐸1(𝑖) > 50%) is true for 

every single prediction. Efficacy of series is 𝐸1 = 62%, with a relative efficiency 

of 𝐸2 = 62% too. If 𝐸1 = 60% = 𝐸1𝑙𝑖𝑚𝑖𝑡  has been accepted then   𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =

 {𝑠1, 𝑠2, 𝑠3} performs better: 𝐸2({𝑠1, 𝑠2, 𝑠3}) =60% and 𝐸2(𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑆𝑡𝑟𝑎𝑖𝑛) = 

=56%. 

Dropping 𝑠1 (𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑆𝑡𝑟𝑎𝑖𝑛 ∖ {𝑠1}) leads to a significant decrease of 𝐸1 

(77% → 52%), and results in an ineffective series of predictions. All the single 

predictions of 𝐸2(𝑆𝑡𝑟𝑎𝑖𝑛 ∖ {𝑠1}) are in the range between 235% and 1956%. The 

efficiency of the series 𝐸2(𝑆𝑡𝑟𝑎𝑖𝑛 ∖ {𝑠1}) is 537%. The rule with the highest cost 

𝑠1 has significant influence on efficacy and dominating influence on efficiency of 

predictions. (Rule 𝑠1 is included in  𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = {𝑠1, 𝑠2, 𝑠3} and its proportion in 

the cost of the whole set is 98% (Table 4).) 

This evaluation indicates the need for the feedback to model identification phase. 

The 𝑠1 rule has the form  𝑠1 = (𝑐04(𝑓 )
 

⇒ 𝑑01(𝐿)) where 𝑐01(𝑓) = 𝑣′
𝑐04

= 0.1 

and 𝑑01(𝐿) =  𝑣′
𝑑01

< 0.6 . The relation 𝑆𝑢𝑝𝑝(𝑠1) = 1 is true for the 
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𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑 = 0.1 column in Table 2. The cost of the rule 𝐾(𝑠1) = ∑ 𝐾(𝑥𝑙)
6
𝑙=1 =

313.17𝑘𝑠 is the sum of costs of 6 experiments of the universe 𝑥01 − 𝑥06 in Table 

3. It means that if objects 𝑥01 − 𝑥06 are excluded from the model, then there is no 

need for the high cost  𝑠1 rule. 

This modification of the model allows decreasing prediction costs without losing 

the prediction power in ranges with higher potential speed increases. 

Conclusions 

In past years, numerous simulation performance prediction methods have been 

developed that support simulation model development for PDES, since PDES 

execution can significantly decrease model runtime and developing simulation 

models with high PDES runtime features have remained challenging tasks. The 

emerging execution platforms with on-demand access and charge-per-use services 

bring into focus, the importance of cost/quality evaluation in performance 

predictions. Here, we have defined prediction performance improvement 

operations, based on the system of performance coefficients of efficacy (E1), 

efficiency (E2), effectiveness (E3), characterizing prediction correctness, 

evaluating correctness to cost relationship and describing correctness cost 

behavior for a series of predictions, respectively. We included the evaluation and 

improvement steps in a traditional RST train-and-test algorithm and added it to a 

classic CFM to form an integrated prediction method. We presented the work of 

the improved prediction method on a case study of a Closed Queuing Network 

(CQN) model PDES CFM analysis. In the analysis of the CFM RST model and 

results of the train-and-test examination, we presented the use of E1, E2 and E3 

coefficients for rule and attribute dropping operations and the feedback to the 

CFM and RST model-identification phase was shown. For the case study 

implementation, the OMNet++ DES framework and the Rosetta Rough Set 

Software System were used. Future research is planned to focus on the 

effectiveness evaluation of simulation model output data, preprocessing for rough 

modeling and on the application of the method, for methods other than CFM. 
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