
Acta Polytechnica Hungarica Vol. 19, No. 4, 2022

‒ 105 ‒

An Alignment-based Multi-Perspective Online

Conformance Checking Technique

Zsuzsanna Nagy, Agnes Werner-Stark

University of Pannonia, Faculty of Information Technology,

Department of Electrical Engineering and Information Systems,

Egyetem u. 10, 8200 Veszprém, Hungary

nagy.zsuzsanna@virt.uni-pannon.hu, werner.agnes@virt.uni-pannon.hu

Abstract: Conformance checking is a class of process mining techniques, which contrasts the

modeled behaviors with the observed behaviors of a process, to detect, locate and explain

the deviations between them. Even though deviations can occur anytime and in any

perspectives, currently there is no such conformance checking technique available, which is

able to take into account other perspectives than the control-flow perspective of the

investigated process when computing the conformance statistics on running, incomplete

cases. In this paper, a multi-perspective online conformance checking technique is

introduced, which aims to confront the modeled behaviors in form of a Data Petri net process

model with a stream of events as the observed behaviors. For the conformance checking, two

existing techniques were merged: a prefix-alignment-based technique, which is able to

compute conformance statistics for incomplete process executions by applying incremental

heuristic search, and an alignment-based multi-perspective conformance checking

technique, which is able to compute conformance statistics for complete process instances

while focusing on multiple perspectives.

Keywords: process mining; conformance checking; multi-perspective; prefix-alignment;

incremental heuristic search; event stream; Data Petri net

1 Introduction

In today’s information systems, a large amount of data (called event data) is

generated from the executed business processes. Process mining aims to improve

real processes by extracting knowledge from their previously recorded behavior

utilizing the available event data. There are three main areas within process mining:

process discovery, conformance checking and enhancement [1]. This paper only

focuses on conformance checking.

In conformance checking [2], the event data is confronted with a (hand-made or

discovered) process model of the same process, so the deviations between the

observed and the modeled behaviors can be detected, located and explained.

Zs. Nagy et al. An Alignment-based Multi-Perspective Online Conformance Checking Technique

‒ 106 ‒

Deviations identified using conformance checking may, for example, in an

automated manufacturing process, point at a production tool that sometimes

malfunctions (i.e., the tool does not work the same way as it is expected).

In the past years, a great variety of conformance checking techniques were

developed, however, there are still not any solutions, which allow conformance

analysis online while taking into account multiple perspectives. Existing works in

online conformance checking [15-19] focus only on the control-flow perspective

and the works in multi-perspective conformance checking [6-8] only allow a

posteriori analysis (i.e., the non-conformant behaviors are detected only after the

completion of the case). As it was highlighted in [3] too, the vast majority of the

existing conformance checking techniques take into account only the control-flow

perspective, even though taking into account other perspectives (e.g., time,

resource, or data) would be important, because deviations may not only be in the

ordering of the activities. For instance, in the case of a manufacturing process,

knowing which operation is executed is not enough to tell whether it was executed

correctly, knowing the details of the execution (e.g., used resource) is necessary,

too. For this reason, a multi-perspective view of such processes is needed.

In addition, by enabling it in an online setting, deviations can be detected (in any

perspective) in the processes’ executions as soon as they occur, so countermeasures

can immediately be initiated to reduce the possible negative effects caused by them.

Nowadays, the de facto standard technique for calculating conformance checking

statistics is the calculation of alignments [11], which provides a “closest path” for

each completed process instance through the process model [2]. The differences

pinpointed by the alignments can be interpreted by experts, so conclusions can be

drawn and actions can be made to improve future process executions.

In recent years, alignment-based online conformance checking techniques were

developed [17, 18], which can be applied to ongoing, incomplete cases as well.

The difference between the alignment calculation in online and offline settings is

that in an online setting the incompleteness of a trace is not acknowledged as

incorrect behavior, because the case can still be ongoing. For this reason, in an

online setting prefix-alignments are computed.

In our previous work [25], a rudimentary solution for the multi-perspective online

conformance checking problem was proposed, which was an extended version of

the latest online conformance checking solution at the time, the behavior pattern-

based online conformance checking technique [16]. Since then a new, a prefix-

alignment-based online conformance checking technique was developed [18],

which is an exact solution for the online conformance checking problem. In [20], it

was proven the most accurate and fastest solution among all the available online

conformance checking approaches.

In this paper, an exact solution for the multi-perspective online conformance

checking problem is proposed. The presented method returns an optimal multi-

perspective prefix-alignment between a multi-perspective process model and an

Acta Polytechnica Hungarica Vol. 19, No. 4, 2022

‒ 107 ‒

event stream. This method is a merge of two existing conformance checking

techniques: the balanced multi-perspective conformance checking (BMCC) [8] and

the prefix-alignment based online conformance checking (OCC) [18] technique.

The solution was tested on real-life processes, including a manufacturing process.

The proposed solution could be used to monitor the executions of processes with a

short lead time and a prescriptive process model. It could realize a low-cost

temporary monitoring system for immature, not yet well-developed processes until

the process reaches a well-developed stage. It could also support old processes,

where the monitoring system is not able to detect all anomalies and the system

cannot be modified (e.g., the manufacturing process examined in Section 4 of this

paper). It could be used as a supplementary solution for detecting deviations.

The remainder of this paper is structured as follows. In Section 2, the basic concepts

are presented to get a better understanding of the proposed technique. In Section 3,

the proposed technique is described in detail, then in Section 4, it is evaluated and

the results of the experiments are presented. Finally, the paper is concluded.

2 Background

This section introduces basic concepts related to the proposed technique to help to

understand how it works. The concepts are only introduced briefly, for a more

detailed description the corresponding works are referred to.

2.1 Event Stream

Most process mining algorithms expect an event log as the input for the observed

behavior, which contains a finite number of events. Every event must have a case

identifier and an activity recorded. The case identifier identifies the context in which

the activity was executed. Real-life events may contain additional information as

well, for instance, about the person or machine who executed the activity (i.e.,

resource) or the time when the activity was executed (i.e., timestamp). A trace is a

sequence of events that was executed in the same context.

In this paper, an event stream is assumed instead of an event log. The stream consists

of observable units from which related process information can be extracted. One

observable unit corresponds to one event.

Generally, an event stream is defined as an (infinite) sequence of events, where an

event is a tuple of a case identifier and an activity identifier [18]. If other

perspectives are taken into account as well, then the additional information, the

values of the event attributes can be included as a tuple within the event tuple.

Let 𝒞 denote the universe of case identifiers, 𝒜 denote the universe of activities and

𝒰 denote the universe of values. Let 𝒰𝑛 denote the universe of values of 𝑛 event

Zs. Nagy et al. An Alignment-based Multi-Perspective Online Conformance Checking Technique

‒ 108 ‒

attributes in such a way, that 𝒰𝑛 = ∏ 𝒰𝑖
𝑛
𝑖=1 is a Cartesian product, where 𝒰𝑖 ∈

ℙ(𝒰) is the universe of values of the 𝑖-th event attribute from 𝑛 event attributes.

Therefore, 𝑢𝑛 ∈ 𝒰𝑛 is an 𝑛-tuple, where 𝑢𝑛 = (𝑢1, … , 𝑢𝑛) ∈ 𝒰1 × … × 𝒰𝑛.

An event, an observable unit 𝑒 = (𝑐, 𝑎, 𝑢𝑛) ∈ 𝒞 × 𝒜 × 𝒰𝑛 is a trio that describes

an event as the execution of activity 𝑎 with attribute values 𝑢𝑛 observed in the

context of a process instance identified by a case identifier 𝑐. The universe of all

possible observable units is defined as ℰ = 𝒞 × 𝒜 × 𝒰𝑛. An event stream is

defined as an infinite sequence of observable units: 𝑆 ∈ (𝒞 × 𝒜 × 𝒰𝑛)∗.

The definitions of event and event stream are based on the control-flow version of

the definition of “Event; Event Stream” in [18].

To process the event data easily, the observed units are logged separately in traces,

based on but without the values of their case identifier. Therefore, a log step 𝑠𝑙 is

recorded for each observed event, which is a tuple of an activity 𝑎 with attribute

values 𝑢𝑛 (i.e., 𝑠𝑙 = (𝑎, 𝑢𝑛)). The log steps of the same case are collected into one

trace 𝜎, so 𝜎 is a sequence of log steps recorded for the same case (i.e., 𝜎 =
〈𝑠𝑙1

, … , 𝑠𝑙𝑚
〉, where 𝑚 is the number of observed events for a case 𝑐). Furthermore,

in order to obtain the observed value of the 𝑖th attribute, a projection function 𝜋𝑖 is

used on the tuple of attribute values 𝑢𝑛. For instance, with π3 the value of the third

attribute can be extracted from 𝑢𝑛 (i.e., π3(𝑢𝑛) = 𝑢3). This function can be used on

any other tuples and sequences of tuples. For instance, π1
∗ can be used on a trace 𝜎

to extract the activities from it (i.e., π1
∗ (𝜎) = 〈𝑎1, … , 𝑎𝑚〉).

2.2 Data Petri Net (DPN)

The formalism of Data Petri net (DPN) or Petri net with data was introduced in [4]

and was later revisited in [5].

DPNs are special types of Petri nets that are used to capture the interactions of the

control-flow perspective with the other perspectives. It stores the data values in

globally defined variables, which can be updated by specified transitions through

write operations. Before the transition fires, the new data values are temporarily

stored in prime variables. In a DPN, transitions can have data-dependent guards.

A transition with a guard can fire only if its guard is satisfied. The guard is evaluated

based on the linear guard expression assigned to it, which can be any formula over

the process variables using relational and logical operators. A DPN may contain

invisible transitions as well, which only appear in the model.

The exact definitions related to DPNs can be found in [9] with examples. In this

paper, the notation of some components was changed. Therefore, a DPN is defined

by 𝑁 = (𝑃, 𝑇, 𝐹, 𝑉𝑃, 𝑉𝑑𝑜𝑚 , 𝑉𝑖𝑛 , 𝑇𝑤𝑟 , 𝑇𝑔𝑑), where 𝑃, 𝑇 and 𝐹 define a simple Petri net,

𝑉𝑃 the name of the variables, 𝑉𝑑𝑜𝑚 the domain of the variables, 𝑉𝑖𝑛 the initial value

of the variables, 𝑇𝑤𝑟 the write operations (i.e., for each transition the list of variables

it writes) and 𝑇𝑔𝑑 the guard function for each transition.

Acta Polytechnica Hungarica Vol. 19, No. 4, 2022

‒ 109 ‒

A process step 𝑠𝑝 is a valid firing of a DPN, which is a tuple of the fired transition

𝑡 and the variable assignments 𝑤 of that transition (i.e., 𝑠𝑝 = (𝑡, 𝑤)). From valid

firings of a DPN, starting from the initial state and finishing in one of the reachable

states (not necessarily in one of the final states), a firing sequence 𝜌 can be defined

(i.e., 𝜌 = 〈𝑠𝑝1
, 𝑠𝑝2

, … , 𝑠𝑝𝑚
〉, where 𝑚 is the number of fired transitions).

2.3 Alignments

Alignments were introduced in [10], then were improved in [11]. It was shown in

[12], that the performance of alignment computation greatly depends on the

adequate parametrization of the underlying search algorithm and in [13]

recommendations for parameter configurations were made too, to increase the

computation efficiency. In [14] light and efficient methods were introduced for

offline alignment computation. The online equivalent of alignment computation,

prefix-alignment computation, was introduced in [18].

(Prefix-)alignments are used to explain traces with respect to a reference process

model, so they map a trace onto an execution sequence of the process model.

The first row of an alignment represents a trace (i.e., a sequence of log steps) and

the second row represents a firing sequence of a process model (i.e., a sequence of

process steps).

To match the events with the transitions, an activity label function 𝜆𝑎𝑐𝑡 ∶ 𝑇 → 𝒜 ∪
{𝜏} is used, which maps each transition of a (Data) Petri net to an observable activity

name or 𝜏 (if the transition is invisible). Similarly, a variable label function 𝜆𝑣𝑎𝑟 ∶
𝑉𝑃 → ℕ≤𝑛

+ is used to match each process variable to an observable attribute.

Assuming the event data comes from an event stream, each variable is mapped to

the position, where the value of the corresponding attribute is located within the n-

tuple of attributes 𝑢𝑛 of an observable unit.

When only the control-flow perspective is taken into account, then there can be

three types of moves in an alignment: synchronous move, log move and model

move. When the other perspectives are taken into account as well, then there can be

two kinds of synchronous moves: correct and incorrect synchronous move. A log

move (≫, 𝑠𝑙) indicates an unexpected behavior; an activity, which should not have

been executed, but was observed (i.e., a log step without a process step). A model

move (𝑠𝑝 , ≫) indicates a missing behavior; an activity, which should have been

executed, but was not observed (i.e., a process step without a log step).

A synchronous move (𝑠𝑙 , 𝑠𝑝) indicates an expected behavior; an expected activity

was executed and was observed (i.e., a log step 𝑠𝑙 = (𝑎, 𝑢𝑛) with a process step

𝑠𝑝 = (𝑡, 𝑤), where 𝑎 = 𝜆𝑎𝑐𝑡(𝑡)). A correct synchronous move is a synchronous

move, where the expected values of the event attributes were recorded in the event

log (i.e., ∀𝑣 ∈ 𝑇𝑤𝑟(𝑡) 𝜋𝜆𝑣𝑎𝑟(𝑣)(𝑢𝑛) = 𝑤(𝑣)). In contrast, an incorrect synchronous

move is a synchronous move, where at least one unexpected value was recorded

(i.e., ∃𝑣 ∈ 𝑇𝑤𝑟(𝑡) 𝜋𝜆𝑣𝑎𝑟(𝑣)(𝑢𝑛) ≠ 𝑤(𝑣)). An alignment move with neither a log step

Zs. Nagy et al. An Alignment-based Multi-Perspective Online Conformance Checking Technique

‒ 110 ‒

and a process step (i.e., (≫, ≫)) is an illegal move. Therefore, the set of all legal

multi-perspective alignment moves can be defined as Γ = (𝐿𝑆 ∪ {≫}) × (𝑃𝑆 ∪
{≫}) \ {(≫, ≫)}, where 𝐿𝑆 is the set of all the possible log steps and 𝑃𝑆 is the set

of all the possible process steps. A multi-perspective alignment 𝛾 ∈ Γ∗ is a finite

sequence of legal alignment moves, which is constructed from a trace 𝜎 and a firing

sequence of a DPN 𝜌 with the help of the labelling functions 𝜆𝑎𝑐𝑡 and 𝜆𝑣𝑎𝑟 .

A multi-perspective alignment move can be transformed into a control-flow

alignment move (with information loss) by omitting the attribute values 𝑢𝑛 from

the log step and the variable assignments 𝑤 from the process step. Let Γc be the set

of all legal control-flow alignment moves, then a function 𝑓𝑐: Γ → Γc can be defined,

which gives back the control-flow version of the given multi-perspective alignment

move. To transform a multi-perspective alignment 𝛾 ∈ Γ∗ into a control-flow

alignment 𝛾𝑐 ∈ Γc
∗, a function 𝑓𝑐

∗: Γ∗ → Γc
∗ can be defined.

The goal of alignment-based conformance checking is to find an optimal alignment

that minimizes the deviations between a trace and a firing sequence. Deviations are

scored according to a cost function 𝜅, which can be standard or user − defined.

The standard cost function assigns the same cost of 1 to each deviation. At multi-

perspective alignments, for each incorrect or missing variable assignment, a cost of

1 is also added.

2.6 Optimal Variable Assignment (OVA) Problem

A more detailed description of the OVA problem can be read in [9].

The OVA problem can be transformed into a Mixed-integer linear programming

(MILP) [23, 24] problem, where the constraints are built from the writing operations

and the guard functions of the transitions (which are included in the alignment).

The goal of the MILP problem is to minimize the cost of deviations between the

attribute assignments of the events and the process variable assignments required

by the DPN. Therefore, the objective function is the sum of wrong process variable

assignments and missing process variable assignments.

2.4 Synchronous Product Net (SPN)

The problem of finding an optimal alignment can be reduced to the shortest path

problem. A possible way of computing an optimal (prefix-)alignment is to find the

shortest path in the state-space of the SPN [11].

An SPN is a composition of a trace net (a Petri net constructed from the control-

flow part of a trace) and a process net, in which each transition corresponds to an

alignment move. Hence, any sequence of transitions corresponds to a (prefix-)

alignment. The search is guided by the costs which are assigned to each transition

according to the given cost function. To compute an optimal (prefix-)alignment, the

shortest path (i.e., a sequence of alignment moves with minimal total cost) is looked

Acta Polytechnica Hungarica Vol. 19, No. 4, 2022

‒ 111 ‒

for from the initial marking of the SPN to a marking where the last place of the trace

net part of the SPN is marked.

The state-space of an SPN can be used for finding an optimal multi-perspective

(prefix-)alignment as well. However, the combination of possible variable

assignments can be infinite, so to keep the search space minimal, the control-flow

copy of the DPN model (i.e., Petri net model) is preferred to be used to build the

SPN. The OVAs for an alignment move can depend on both the chosen predecessor

and successor moves, so they need to be recomputed whenever the path changes.

2.5 Incremental A* Algorithm

The incremental A* algorithm introduced in [18] is a modified version of the well-

known A* algorithm [21]. A* algorithm is suited for computing alignments on

small process models. (For large models, the symbolic technique was proven to be

more suitable [22].)

The incremental A* algorithm is an informed search algorithm that computes the

shortest path for a fixed initial and changing final state in the incremental steps.

It can be used to find an optimal prefix-alignment for an incomplete trace from an

event stream. The search space is the state-space of the previously discussed SPN.

Initially, it only contains the model moves. It is extended with log moves and

synchronous moves as new events are observed.

The brief steps of the incremental A* algorithm based on the description in [20] are

the followings: (1) A new event 𝑒 = (𝑐, 𝑏) is observed. (2) The SPN is extended for

process instance 𝑐 by the new activity 𝑏. For example, assume that the event (𝑐, 𝑎)

was previously received. When extending an SPN by a new activity, new transitions

are added representing a log move on the new activity and potential synchronous

moves. (3) The search is continued for the shortest path on the state-space of the

extended SPN from previously cached intermediate search-results, i.e., states

already explored/investigated. (4) The new prefix-alignment is returned and the

search-results are cached.

3 Proposed Technique

In this section, the proposed MOCC technique is introduced. First, an overview of

the whole proposed approach is presented, then its components are described in

more detail.

Zs. Nagy et al. An Alignment-based Multi-Perspective Online Conformance Checking Technique

‒ 112 ‒

3.1 Overview

The proposed technique is a merge of [8] and [18]. Given a DPN process model, a

stream of events and a user-defined cost function, it calculates an optimal multi-

perspective prefix-alignment each time a new event is observed for a case.

Just like in [18], the core idea of the algorithm is to utilize the previously calculated

results of exploring the state-space of an SPN. For each process instance (case), a

trace and an SPN are maintained. The trace consists of the events observed so far

and the SPN is constructed from the control-flow copy of the process model and the

trace. The trace needs to be stored since the SPN only contains the activity names.

When a new event (𝑐, 𝑎, 𝑢𝑛) is observed, the trace is extended by this new event

and the SPN is extended by activity 𝑎 (i.e., the activity identifier of the event). Next,

the search is continued with the modified incremental A* algorithm by using the

pre-filled open and closed sets from the previous search. For each state in the open

set, the possible successor states are examined: the control-flow alignment is

reconstructed and extended with the possible successor alignment moves, then

OVAs are calculated to augment the extended control-flow alignments with them.

To calculate the OVAs, the relevant variable writing operations and guard functions

of the DPN process model are needed. From the successor states, the one with

OVAs and minimal total cost (i.e., minimal alignment and variable cost) is chosen.

This way an optimal multi-perspective (prefix-)alignment can be obtained.

To decrease the calculation time, the algorithm can be extended with two things:

1) Direct Synchronizing: Similar to the direct synchronizing introduced in [20],

the idea is to skip shortest path searches in cases where the previously

calculated prefix-alignment can simply be extended by a synchronous move

that includes the newly observed event. However, in the multi-perspective

case, the shortest path search can be skipped only if the synchronous move is

correct (i.e., all variable writing is correct and the guard of the involved

transition is satisfied). If direct synchronizing is possible, the heuristic

recalculations (which involve a high calculation effort) for finding the shortest

path can be avoided, thus speeding up the prefix-alignment computation.

2) Caching OVAs: Calculating the OVAs is the most time-consuming part of the

whole algorithm, so it is critical to decrease the time spent on it in terms of the

applicability of the technique in an online setting. Assuming that the set of

possible variable assignment problems is finite (i.e., not every case has an

unique trace), by caching the problem and solution pairs, if a problem occurs

repeatedly, then the result can be fetched from the cache and the calculations

for solving the OVA problem can be skipped. The worst-case complexity of

solving the OVA problem is exponential in the number of written variables

and guards associated to transitions. However, with a good OVA cache, the

worst-case computational complexity is linear in the size of the cache.

Acta Polytechnica Hungarica Vol. 19, No. 4, 2022

‒ 113 ‒

The overview of the proposed MOCC approach can be seen in Figure 1.

Figure 1

Overview of the proposed MOCC approach

3.2 The Main Algorithm

In this section, the overall algorithm (Figure 2) is described.

As input, a labeled DPN reference process model 𝐿𝑁, an event stream 𝑆, a user-

defined cost function 𝜅, a user-defined variable cost function 𝜅𝑣𝑎𝑟 , and a cache that

stores the OVAs from previous runs Ω are expected. A labeled DPN consists of a

DPN with unique initial marking [𝑝𝑖] and final marking [𝑝𝑜], an activity label

function 𝜆𝑎𝑐𝑡 and a variable label function 𝜆𝑣𝑎𝑟 . Giving the cost functions are

optional; if they are not given, then the standard cost functions will be used (lines

2-5). 𝜅 is used for computing the cost of control-flow alignments and also for

calculating the heuristics (i.e., the estimated cost to reach the final marking [𝑝𝑜]).
𝜅𝑣𝑎𝑟 is used for computing the cost of the variable assignments and also for

calculating the OVAs. It is important, that 𝜅 and 𝜅𝑣𝑎𝑟 are defined separately and the

sum of them gives the cost of a multi-perspective prefix-alignment. Giving a cache

for OVAs Ω is also optional; if it is not given, then a new, initially empty cache will

be used (lines 6-7). The algorithm processes every event on the stream 𝑆 in the order

in which they are observed. Since 𝑆 is an infinite sequence, an infinite cycle is used

to iterate in it (line 9).

First, the case identifier 𝑐, the activity identifier 𝑎 and the attribute values 𝑢𝑛 are

extracted from the currently processed event (observable unit) 𝑒 (lines 10-13). Next,

if it is the first observed event of the case 𝑐, then a new SPN is constructed from the

activity 𝑎 and the control-flow part of the DPN process model 𝑁. Otherwise, the

previously constructed SPN will be extended with the activity 𝑎 (line 17). For the

Zs. Nagy et al. An Alignment-based Multi-Perspective Online Conformance Checking Technique

‒ 114 ‒

state-space of the SPN, a heuristic function ℎ is defined (line 18). If it is the first

observed event of the case (i.e., the SPN just have been constructed), then the open

set 𝑂, the cost-so-far function 𝑔, the predecessor function 𝑝, the alignment function

𝛾 and the current variable values function 𝛼 will be initialized for the SPN (lines

19-26). Afterward, an optimal multi-perspective prefix-alignment is calculated for

case 𝑐 by calling the modified incremental A* algorithm (line 27). By applying the

algorithm, an optimal multi-perspective prefix-alignment 𝛾̅, the components of the

search process (the alignment function 𝛾, the current variable values function 𝛼, the

open set 𝑂, the closed set 𝐶, the cost-so-far function 𝑔 and the predecessor function

𝑝) and the updated cache for OVAs Ω are obtained. The function 𝛾, 𝛼, 𝑔 and 𝑝

assign to already discovered states a multi-perspective prefix-alignment with

optimal variable assignments, the current variable values in that state (based on 𝛾),

the currently known cheapest cost that leads to that state (the cost of 𝛾) and the

corresponding predecessor state, respectively. The results are cached so they can be

reused when computing the next optimal multi-perspective prefix-alignment, when

a new event is observed for the given case. Afterward, the next event is processed.

Figure 2

Algorithm of the Incremental Multi-perspective Prefix-Alignment Computation

Acta Polytechnica Hungarica Vol. 19, No. 4, 2022

‒ 115 ‒

3.3 Performing the Modified Incremental A* Algorithm

In this section, the algorithm to compute multi-perspective prefix-alignments on the

basis of previously executed instances of the modified incremental A* algorithm is

presented.

Similar way as in [18], the main idea of this approach is to continue the search on

an extended search space as a new event (𝑐, 𝑎, 𝑢𝑛) is received. The algorithm is

applied using the cached open- and closed-set for case identifier 𝑐 and the cost

function 𝜅 on the corresponding extended SPN to grab the control-flow perspective.

To be able to take into account other perspectives too, the extended trace 𝜎, the

variable cost function 𝜅𝑣𝑎𝑟 and components of the DPN process model are used.

Furthermore, to shorten the calculation time, the currently known optimal multi-

perspective prefix-alignment 𝛾 and variable assignments 𝛼 are cached for each state

in each case and the OVA cache Ω is used too.

In Figure 3 the algorithmic description of the modified incremental A* approach is

presented. As input, the algorithm assumes a labeled DPN 𝐿𝑁, the current trace 𝜎,

the newly observed activity 𝑎 and its attribute values 𝑢𝑛, an SPN 𝑁𝑆, a control-flow

alignment cost function 𝜅, a variable cost function 𝜅𝑣𝑎𝑟 , a cache for OVAs Ω, the

heuristic function ℎ and the output of the previous execution of the algorithm for

the process instance in question (i.e., the alignment function 𝛾, the current variable

values function 𝛼, the open set 𝑂, the closed set 𝐶, the cost-so-far function 𝑔 and

the predecessor function 𝑝). First, the states that have not been discovered yet are

initialized (lines 3-5), then the outdated ℎ values of the states in the open set are

updated (i.e., the heuristic values are recalculated) thus the 𝑓 values are updated too

(lines 6-7). Next, the iterative search in the open set 𝑂 starts (line 8). As the first

step in the iteration, a state from the open set with the smallest 𝑓 value is picked

(line 9). If the state is a goal state (i.e., it contains a token in the last place of the

trace net part) (line 10), then the optimal multi-perspective prefix-alignment 𝛾̅ was

found, so it is returned along with the alignment function 𝛾, the current variable

assignment function 𝛼, the open set 𝑂, the closed set 𝐶, the cost-so-far function 𝑔,

the predecessor function 𝑝 and the cache for OVAs Ω (line 11). Otherwise, the

current state is moved from the open- to the closed set (lines 12-13) and it is checked

whether direct synchronizing (i.e., correct synchronous move) is possible (lines 14-

34).

First, the variable values are checked and set as primes variables (lines 18-23).

If all required variables are written and with valid values, then the algorithm moves

forward to evaluate the guard function (lines 24-26). If the guard is satisfied (i.e.,

the guard function gives back a logical true value), then direct synchronizing is

possible. If direct synchronizing is possible, then it can be executed (lines 27-34)

and the searching process can stop (because the new optimal multi-perspective

prefix-alignment 𝛾̅ was found). First, the new state 𝑚’ is added to the open set 𝑂

(line 28). Next, the optimal multi-perspective prefix-alignment 𝛾 of the previous

state 𝑚 is extended with the correct synchronous move, thus obtaining an optimal

Zs. Nagy et al. An Alignment-based Multi-Perspective Online Conformance Checking Technique

‒ 116 ‒

multi-perspective prefix-alignment for the successor state 𝑚’ (line 29). The values

of the cost-so-far function 𝑔 and the predecessor function 𝑝 of the state 𝑚’ are also

set.

Figure 3

Algorithm of the modified incremental A* algorithm

Acta Polytechnica Hungarica Vol. 19, No. 4, 2022

‒ 117 ‒

The value of the cost-so-far function 𝑔 for state 𝑚′ is the sum of the 𝑔 value of the

previous state 𝑚 and the cost of the new alignment move. Since the new move is a

correct synchronous move with zero cost, the value of 𝑔 remains the same as in the

previous state (line 30). The value of the predecessor function 𝑝 for state 𝑚′ is a

tuple of the executed transition of the SPN (i.e., the synchronous move) and the

previous state 𝑚 (line 31). The variable assignments 𝛼 are updated as well; the

written variables get the values of the prime variables (lines 32-33). Finally, the

expected values are returned (line 34).

If direct synchronizing is not possible, the search process continues by investigating

the successor states of the current state 𝑚 (only the ones that are not an element of

the closed set 𝐶) (lines 35-47). For each successor state 𝑚′, the respective control-

flow alignment 𝛾𝑐 is obtained by extending the control-flow version of the multi-

perspective prefix-alignment with OVAs 𝛾 of the previous state 𝑚 with the

alignment move that represents the SPN transition that leads from state 𝑚 to 𝑚’
(line 37). Next, the multi-perspective version with OVAs of the prefix-alignment is

calculated (line 38) with the 𝑜𝑏𝑡𝑀𝑃𝑃𝐴 function. The function expects a labeled

DPN 𝐿𝑁, a trace 𝜎, a control-flow alignment 𝛾𝑐, a control-flow cost function 𝜅, a

variable cost function 𝜅𝑣𝑎𝑟 and the cache for OVAs Ω as input. If an OVA exists

for 𝛾𝑐, it returns a multi-perspective prefix-alignment 𝛾′ (the control-flow prefix-

alignment 𝛾𝑐 augmented with OVAs), the cost of the alignment 𝑔′, the current

variable values 𝛼′ for state 𝑚’ and the updated cache for OVAs Ω. If no OVA exists

for 𝛾𝑐, it returns an empty sequence. A state is added to the open set 𝑂 only if there

exists at least one valid multi-perspective prefix-alignment for it (i.e., 𝛾′ is not an

empty sequence) (line 39), since the successor states of a state with no valid multi-

perspective alignments have no valid multi-perspective alignments either. If the

alignment is valid and there is a more expensive path for the same state 𝑚′ in the

open set 𝑂, then the more expensive path is removed (lines 40-41). To be more

exact, the state is removed from the open set, then added again, thus the two cases

(1) the state was not investigated before and (2) the state was investigated before,

but a cheaper path was found can be handled with one code. Therefore, if state 𝑚′
is not an element of the open set 𝑂, then it is added and the values of alignment

function 𝛾, the cost-so-far function 𝑔, the function 𝑓, the predecessor function 𝑝

and the current variable values function 𝛼 are set for state 𝑚’ (lines 42-48).

3.4 Obtaining a Multi-Perspective Prefix-Alignment

In this section, the algorithm to obtain a multi-perspective prefix-alignment with

OVAs is presented. There can be multiple OVAs for a control-flow prefix-

alignment and the algorithm chooses only one for it. In case there is no OVAs for

the given prefix-alignment, then an empty sequence is returned instead to indicate

this problem.

In Figure 4 the algorithmic description of obtaining a multi-perspective prefix-

alignment with OVAs is presented. As input, the algorithm assumes a labeled DPN

𝐿𝑁, the current trace 𝜎, a control-flow prefix-alignment 𝛾𝑐, a control-flow cost

Zs. Nagy et al. An Alignment-based Multi-Perspective Online Conformance Checking Technique

‒ 118 ‒

function 𝜅, a variable cost function 𝜅𝑣𝑎𝑟 and a cache for OVAs Ω. As output, it

returns a multi-perspective prefix-alignment with OVAs 𝛾, the cost-so-far 𝑔, the

current variable assignment 𝛼, and the (updated) cache for OVAs Ω.

In the first main step of the algorithm, the identifiers of the OVA problem, the

control-flow model steps 𝜌 (i.e., the sequence of the fired transitions of 𝐿𝑁

according to the control-flow alignment 𝛾𝑐) and the variable writings 𝑤𝜎 (according

to the current trace 𝜎) are generated (lines 2-16). The reason why 𝜌 and 𝑤𝜎 are used

as the OVA problem identifiers is that every OVA problem is uniquely defined by

the guard functions and the variable values written by the fired transitions. Since

every transition can have at most one guard function, it is enough to cache only the

fired transitions and the observed written values for each variable at each transition

firing. The process of obtaining 𝜌 and 𝑤𝜎 is done by iterating in the control-flow

alignment 𝛾𝑐 with the indexes 𝑖 and 𝑗. These indexes identify the sequence number

of the log step and process step within the currently examined alignment move,

respectively. First, the necessary objects are initialized: the control-flow model

steps 𝜌 (line 2), the variable writings 𝑤𝜎 (line 3) and the indexes 𝑖 and 𝑗 (lines 4-5).

Next, the iteration starts in 𝛾𝑐 (line 6). If the current alignment move involves a log

step (line 7), then index 𝑖 is increased by one, thus obtaining the index of the current

log step (line 8). Likewise, if the current alignment move involves a process step

(line 9), then the index 𝑗 is increased by one, thus obtaining the index of the current

process step (line 10). Furthermore, the sequence of the control-flow model steps 𝜌

is extended with transition 𝑡 of the current alignment move (line 11), then the

algorithm checks whether the transition has variable writing operations assigned to

it and whether the current alignment move is synchronous (line 12). If the transition

has variable writing operations and is within a synchronous alignment move, then

for each written variable 𝜐 the written value 𝑢 is extracted from the current trace 𝜎

(lines 13-14). If the written value 𝑢 is in the domain of the variable 𝑣 (line 15), then

in the 𝑗-th process step the value 𝑢 is assigned to variable 𝑣 within 𝑤𝜎 (line 16).

In the second main step of the algorithm, the solution for the OVA problem is

obtained (lines 17-23). If the OVA problem was solved before (i.e., the OVA

problem identifiers are in the domain of the cache for OVAs Ω) (line 18), then the

solution 𝜔 (i.e., the OVAs) is loaded from the OVA cache Ω by using the problem

identifiers that were generated in the previous steps, the control-flow model steps 𝜌

and the variable writings 𝑤𝜎 (line 19). If the OVA problem was not solved before,

then from the given input, the OVA problem is created as a MILP problem with the

𝑐𝑟𝑒𝑎𝑡𝑒𝑂𝑉𝐴𝑃 function (line 21). This function returns the components of the MILP

problem: the variables 𝑉𝐴𝑅, the constraints 𝐶𝑆𝑇𝑅 and the objective function 𝑂𝐵𝐽.

Afterward, it is solved with the 𝑠𝑜𝑙𝑣𝑒𝑂𝑉𝐴𝑃 function (line 22). Within this function,

the algorithm calls an arbitrary MILP solver to solve the problem, and then returns

the variable assignments of the optimal solution (i.e., a function 𝜔 that assigns the

optimal value to each variable in 𝑉𝐴𝑅 at each process step). The obtained result 𝜔

is added to the cache of OVAs 𝛺 as a solution to the OVA problem that is defined

by 𝜌 and 𝑤𝜎 (line 23). If the problem has no optimal solution, then 𝜔 stays an empty

Acta Polytechnica Hungarica Vol. 19, No. 4, 2022

‒ 119 ‒

set (line 24) and the algorithm returns an empty sequence as 𝛾 to indicate that no

OVA exists for the control-flow alignment 𝛾𝑐. Furthermore, it returns 0 as 𝑔, an

empty set as 𝛼, and the unchanged cache of OVAs 𝛺, just to have the same number

of outputs as in the other cases (line 25).

Figure 4

Algorithm of obtaining a Multi-Perspective Prefix-Alignment with OVAs

In the third main step of the algorithm, a multi-perspective prefix-alignment 𝛾 is

generated from the control-flow prefix-alignment 𝛾𝑐 while the cost-so-far 𝑔 and the

current variable assignments 𝛼 are also calculated (lines 26-46). First, the

Zs. Nagy et al. An Alignment-based Multi-Perspective Online Conformance Checking Technique

‒ 120 ‒

components of the procedure are initialized. The multi-perspective prefix-alignment

𝛾 is initialized as an empty sequence (line 26). The cost-so-far of the control-flow

alignments 𝑔𝑐, the cost-so-far of the variables assignments 𝑔𝑣𝑎𝑟 , and the indexes 𝑖
and 𝑗 (to iterate in the control-flow prefix-alignment 𝛾𝑐 and the current trace 𝜎,

respectively) are initialized as 0 (line 27). The current variable assignments 𝛼 is

initialized by assigning to each variable their initial value (lines 28-29). Next, the

iteration starts in the control-flow alignment 𝛾𝑐 (line 30) to augment each alignment

move with the attribute values (if it involves a log step) (lines 32-35) and the OVAs

(if it involves a process step) (lines 36-43), to obtain a multi-perspective alignment

move. If the alignment move involves a process step with variable writings, the new

values (the OVAs for that alignment move) overwrite the previous values in 𝛼 (line

41), thus at the end of the iteration, the current variable assignments are obtained.

In addition, to calculate 𝑔 later, the cost of the variable assignment is added to 𝑔𝑣𝑎𝑟

(line 42). Furthermore, in each iteration step, the cost of the control-flow alignment

move is added to 𝑔𝑐 (line 44), thus at the end of the iteration, the cost-so-far of

multi-perspective prefix-alignment 𝑔 is obtained as the sum of 𝑔𝑣𝑎𝑟 and 𝑔𝑐 (line

46). Similarly, in each iteration step, 𝛾 is extended with the obtained multi-

perspective alignment move (line 45), thus at the end of the iteration, the multi-

perspective prefix-alignment is obtained. After the iteration finishes, the necessary

objects (𝛾, 𝑔, and 𝛼) are obtained, hence they are returned along with the updated

𝛺 (line 47).

In the presented algorithmic description only the 𝜔 is cached to minimize the length

of the description, but 𝑔𝑣𝑎𝑟 and 𝛼 could be stored in the cache of OVAs 𝛺 as well.

This is the reason why the value of 𝑔 is stored separately in 𝑔𝑐 and 𝑔𝑣𝑎𝑟 . If 𝑔𝑣𝑎𝑟

and 𝛼 are cached too and the OVA problem was solved before, then only the multi-

perspective prefix-alignment 𝛾 needs to be generated. Consequently, the algorithm

of it is very similar to the third main step of the presented algorithm, except that 𝛼

and 𝑔𝑣𝑎𝑟 are not calculated (since they are obtained from the cache).

The algorithmic description of creating an OVA problem as a MILP problem is

presented [9].

4 Real Dataset Evaluation

The proposed approach (hereinafter MOCC) was implemented in Python 3.7 as an

extension to version 1.5.2.2 of PM4Py [26] (PM for Py) and tested in version 3.3.6

of Spyder development environment. PM4Py is a process mining package for

Python, where most of the process mining algorithms are implemented. To solve

the MILP problem for the OVA problem, Google OR-Tools [27] was used.

The tests were performed on a laptop PC, with Windows 10 operation system,

equipped with an Intel(R) Core(TM) i5-3320M, 2.60 GHz 2-core CPU and 8 GB of

RAM.

Acta Polytechnica Hungarica Vol. 19, No. 4, 2022

‒ 121 ‒

The source code of the incremental A* algorithm [28] was modified, then got

integrated into the above-mentioned version of PM4Py. Moreover, program codes

were implemented, which allow importing DPN process model from PNML file

and which can generate and solve a MILP problem to find the OVAs for the given

variable writings and guard functions.

The implemented MOCC solution was tested on real-life datasets of three real

processes: a manufacturing process, a road traffic fine management process [30]

and a hospital billing process [31]. All the three datasets were processed and divided

into two kinds of event logs: one with only good process executions (i.e., all the

traces fit completely the process model) and one with only wrong process

executions (i.e., neither of the traces fit completely the process model).

The MOCC solution and the BMCC solution [8] were applied to the fine

management process and the billing process to compare the resulting alignments of

the two methods with each other. Since the MOCC calculates multi-perspective

prefix-alignments and the BMCC multi-perspective alignments, some differences

are expected between the results. It is important, that both processes were examined

before with the BMCC solution in [9], because this way it is known what results

should be obtained for the given inputs by applying the method. The BMCC

solution was applied as the “Conformance Checking of DPN” plugin from the

“DataAwareReplayer” package in ProM 6.9 [29].

The MOCC solution and the OCC solution [18] were applied on the manufacturing

process, to measure and then compare their computation time with each other for

the same input. In contrast to the other two processes, the manufacturing process

has a short lead time (few minutes at most), thus it is very important how fast the

output of the MOCC solution can be obtained (i.e., how fast the deviations from the

process model can be detected).

4.1 The Process Models

The DPN process models were created with the help of “Create DPN (Text language

based)” plugin in ProM 6.9 then exported into a PNML files. Only one small change

was made in the output files: an initial value was added to each variable.

The DPN process models of the fine management process and the billing process

were created based on the models that are presented in [9]. For this reason, they are

not included in this paper. The created DPN process model of the manufacturing

process is shown on Figure 5. It can be seen that it is quite complex process, since it

has 7 process variables, 25 variable writing operations and 12 complex guard

functions. For a detailed description of the process, see our previous work [32].

Zs. Nagy et al. An Alignment-based Multi-Perspective Online Conformance Checking Technique

‒ 122 ‒

Transition Guard expression

ts1o rotary_table′ = "M" ∧ nest′ ≥ 1 ∧ nest′ ≤ 8

ts2o, ts3o, … , ts6o (qib = 1 ∧ error_code = 0) ∨ (qib = 0 ∧ qib′ = 0 ∧ error_code ≠ 0)

ts7o
(

(qib = 1 ∧ rotary_table′ = "S" ∧ nest′ ≥ 1 ∧ nest′ ≤ 4)

∨ (qib = 0 ∧ rotary_table = "M" ∧ nest′ ≥ 1 ∧ nest′ ≤ 8)
) ∧

((qib = 1 ∧ error_code = 0) ∨ (qib = 0 ∧ qib′ = 0 ∧ error_code ≠ 0))

ts8o

(rotary_table′ = "M" ∧ nest′ ≥ 1 ∧ nest′ ≤ 8) ∧
(tray_row′ > 0 ∧ tray_column′ > 0) ∧

((qib = 1 ∧ error_code = 0) ∨ (qib = 0 ∧ qib′ = 0 ∧ error_code ≠ 0))

terr
error_code′ ≥ station ∗ 100 + 1 ∧
error_code′ < station ∗ 100 + 100 ∧ qib = 0

tdrp station = 7 ∧ qib = 0 ∧ error_code < 700

ttko station = 8 ∧ qib = 0 ∧ error_code > 700

tsnk station = 8 ∧ qib = 1 ∧ error_code = 0

Figure 5

DPN process model of the examined process

4.2 Experiment Setup

The implemented solution was tested on the following kind of event logs for each

process:

1) One, which only contains traces that perfectly fit the model (hereinafter good

traces). This means the fitness values for all traces are exactly 1 and the total

cost of their optimal multi-perspective alignments are 0.

2) One, which only contains traces that do not fit the model (hereinafter bad

traces). This means the fitness values for all traces are less than 1 and the

total cost of their optimal multi-perspective alignments are greater than 0.

The number of cases and events varies within the event logs. For the manufacturing

process, for every trace in both files, multiple cases were included. (Different cases

can have the same trace.) This way 67 cases with fitting traces and 85 cases with

unfitting traces were collected. For the other two processes, since they have too

many kinds of traces, only the 10 most common traces were taken into account and

5 cases for each were collected in both files (i.e., 50-50 cases in total).

Acta Polytechnica Hungarica Vol. 19, No. 4, 2022

‒ 123 ‒

The OCC solution was applied on the control-flow copy of the DPN process model

(i.e., simple Petri net) of the manufacturing process. The computation time of both

solutions was compared with each other. It is expected that the MOCC solution is

slower, but still relatively fast (e.g., less than 1 second per case).

The MOCC solution is expected to give the same results as the BMCC solution for

the same input, except for the incomplete traces. In an online setting incomplete

traces are not seen as wrong behaviors, because the process still can be ongoing.

4.3 Result Analysis

Both the OCC and the MOCC methods were executed 10 times for both event logs

of the manufacturing process.

Table 1

Statistics of the execution times of OCC and MOCC for the different event data (in seconds)

 Good traces Bad traces

OCC MOCC OCC MOCC

Sum (s) 17.0545 3.5478 21.6476 595.3002

Mean (s) 0.2545 0.0530 0.2547 7.0035

Std. deviation (s) 0.0353 0.0193 0.0977 6.9647

Minimum (s) 0.1999 0.0430 0.0220 0.0160

Maximum (s) 0.3178 0.1999 0.4087 29.5627

The statistics of the average execution times in seconds are summarized in Table 1

for both good traces and bad traces. Unexpectedly, for good traces, the MOCC

solution was faster than the OCC solution. This is due to that MOCC allows direct

synchronizing, thus fewer states are examined during the search process compared

to the OCC. In contrast, for bad traces, the MOCC solution was much slower. This

is due to that less direct synchronizing could be made and calculations for finding

OVAs had to be executed. As it could be seen in Table 1 too, the execution time per

case for bad traces at MOCC was quite varied. This is due to that OVA cache

decreased the execution time for traces with repetitive OVA problem.

Based on the output of the MOCC solution, the most common wrong behaviors of

the manufacturing process are related to how and when does a product get removed

from the assembly line. In the case of a finished product, the written values to the

tray_row and the tray_column variables should be greater than 0, representing that

the product was placed on a tray. Otherwise, in the output prefix-alignment, the

transition and event for Station 8 operations appear in form of an incorrect

synchronous move, which can be interpreted as the product being discarded. In the

case of an unfinished faulty product, the last recorded event should be for Station 7

operations, representing that the product was discarded at Station 7. If there are any

following events recorded, they appear in form of log moves in the output prefix-

alignment, which can be interpreted as the product was not discarded at Station 7.

Zs. Nagy et al. An Alignment-based Multi-Perspective Online Conformance Checking Technique

‒ 124 ‒

However, if the last recorded event is for a previous station, the whole trace appears

as an unfinished good execution in the output prefix-alignment, even if it should be

interpreted as the product was discarded at a wrong station.

It must be noted that good behaviors could be wrongly recorded as wrong behaviors.

For this reason, whenever the above-mentioned cases occur in real life, it should be

checked by the machine operator whether the source of the problem is the tool that

replaces the product, the sensor that provides information, or the software that

records the data. It is also a possibility that the source of the problem is the

occurrence of a not modeled event (e.g., the machine operator removed a product

from the assembly line).

Both the MOCC and the BMCC methods were executed for the road traffic fine

management process and the hospital billing process. As it was expected, it gave

nearly the same results for the completed traces as the BMCC solution, but in an

online environment. There were differences in whether a log step is followed by a

process step or a process step is followed by a log step. However, this difference is

insignificant, since it has no effect on the total cost of the alignment. Furthermore,

in the case of MOCC, the invisible transitions at the end of the process model were

not executed. This is due to that it thinks that the process instance is still ongoing.

In summary, the MOCC solution met the expectations for accuracy as a multi-

perspective solution. On completed traces and process models without invisible

transitions at the end, the same multi-perspective alignments can be obtained with

it as with the BMCC solution, but faster. Furthermore, since the MOCC solution

can process incomplete traces too, it can give information about the conformance

of process instances that are still running. The MOCC solution (due to its multi-

perspective view on the process) can detect most of the wrong behaviors, but (due

to its online view on the process) it does not know when a process execution ends.

However, this problem can easily be fixed by using a time limit. If no new events

are observed for a case within the set time limit, the process instance is

automatically declared as finished, or the system asks for confirmation. The former

strategy could be used for cases where the last event is a transition that directly leads

to a finished state in the process model, and the latter strategy could be used for the

other cases.

Conclusions

In this paper, a prefix-alignment based MOCC solution, was developed to support

the real-time monitoring of event data, from various angles. A modified version of

the incremental A* algorithm was developed, that solves OVA problems, to find an

optimal multi-perspective prefix-alignment for the running, unfinished cases. To

decrease execution times, direct synchronizing and using a cache for OVA problems

was added to the algorithm. The MOCC solution was implemented and tested with

multiple real-life processes. The results show that it can meet the expectations of

both online and multi-perspective (prefix-)alignment calculation methods.

Acta Polytechnica Hungarica Vol. 19, No. 4, 2022

‒ 125 ‒

Therefore, with the correct settings, it can be used to monitor real-life processes that

have a short lead time and a prescriptive process model.

In the future, the solution will be improved upon, to further decrease its execution

time, for traces that do not completely fit the model.

Acknowledgement

The research is part of project TKP2020-NKA-10 that has been implemented with

the support provided from the National Research, Development and Innovation

Fund of Hungary, financed under the Thematic Excellence Programme no. 2020-

4.1.1.-TKP2020 (National Challenges Subprogramme) funding scheme.

The authors acknowledge financial support also from the Slovenian–Hungarian

bilateral project “Optimization and fault forecasting in port logistics processes using

artificial intelligence, process mining and operations research”, grant 2019-2.1.11-

TÉT-2020-00113, and from the National Research, Development and Innovation

Office–NKFIH under the grant SNN 129364.

References

[1] W. M. P. van der Aalst. Process mining: discovery, conformance and

enhancement of business processes, Vol. 2, Heidelberg: Springer, 2011,

doi:10.1007/978-3-642-19345-3

[2] J. Carmona, B. van Dongen, A. Solti, and M. Weidlich. Conformance

checking. Cham: Springer, 2018, doi:10.1007/978-3-319-99414-7

[3] S. Dunzer, M. Stierle, M. Matzner, and S. Baier. Conformance checking: a

state-of-the-art literature review. In: Proceedings of the 11th International

Conference on Subject-Oriented Business Process Management, 2019, pp.

4:1-10, doi:10.1145/3329007.3329014

[4] N. Sidorova, C. Stahl, and N. Trčka. Soundness verification for conceptual

workflow nets with data: Early detection of errors with the most precision

possible. In: Information Systems, 2011, 36(7), pp. 1026-1043,

doi:10.1016/j.is.2011.04.004

[5] M. De Leoni, and W. M. P. van der Aalst. Data-aware process mining:

discovering decisions in processes using alignments. In: Proceedings of the

28th annual ACM symposium on applied computing, 2013, pp. 1454-1461,

doi:10.1145/2480362.2480633

[6] M. De Leoni, W. M. P. van Der Aalst, and B. F. van Dongen. Data-and

resource-aware conformance checking of business processes. In:

International Conference on Business Information Systems, Springer, Berlin,

Heidelberg, 2012, pp. 48-59, doi:10.1007/978-3-642-30359-3_5

[7] M. De Leoni, and W. M. P. van der Aalst. Aligning event logs and process

models for multi-perspective conformance checking: An approach based on

integer linear programming. In: Business Process Management. Springer,

Berlin, Heidelberg, 2013, pp. 113-129, doi:10.1007/978-3-642-40176-3_10

Zs. Nagy et al. An Alignment-based Multi-Perspective Online Conformance Checking Technique

‒ 126 ‒

[8] F. Mannhardt, M. De Leoni, H. A. Reijers, and W. M. P. van der Aalst.

Balanced multi-perspective checking of process conformance. In:

Computing 98.4, 2016, pp. 407-437, doi: 10.1007/s00607-015-0441-1

[9] F. Mannhardt. Multi-perspective Process Mining. Eindhoven: Technische

Universiteit Eindhoven, Doctoral Thesis, SIKS disertation series, Vol. 2018-

02, 2018

[10] A. Adriansyah, B. F. van Dongen, and W. M. P. van der Aalst. Conformance

checking using cost-based fitness analysis. In: 2011 IEEE 15th International

Enterprise Distributed Object Computing Conference IEEE, 2011, pp. 55-

64, doi:10.1109/EDOC.2011.12

[11] A. Adriansyah. Aligning observed and modeled behavior. Doctor of

Philosophy, Department of Mathematics and Computer Science, Eindhoven,

2014, doi:10.6100/IR770080

[12] S. J. van Zelst, A. Bolt, and B. F. van Dongen. Tuning Alignment

Computation: An Experimental Evaluation. In: Proceedings of ATAED

2017, 2017, pp. 1-15

[13] S. J. van Zelst, A. Bolt, and B. F. van Dongen. Computing alignments of

event data and process models. In: Transactions on Petri Nets and Other

Models of Concurrency XIII. Springer, Berlin, Heidelberg, 2018, pp. 1-26,

doi: 10.1007/978-3-662-58381-4_1

[14] F. Taymouri. Light methods for conformance checking of business

processes. Tesi doctoral, UPC, Departament de Ciències de la Computació,

2018

[15] A. Burattin, and J. Carmona. A framework for online conformance checking.

In: International Conference on Business Process Management. Springer,

Cham, 2017, pp. 165-177, doi:10.1007/978-3-319-74030-0_12

[16] A. Burattin, S. J. van Zelst, A. Armas-Cervantes, B. F. van Dongen, and J.

Carmona. Online conformance checking using behavioural patterns.

International Conference on Business Process Management. Springer, Cham,

2018, pp. 250-267, doi:10.1007/978-3-319-98648-7_15

[17] S. J. van Zelst, A. Bolt, M. Hassani, B. F. van Dongen, and W. M. P. van der

Aalst. Online conformance checking: relating event streams to process

models using prefix-alignments. In: International Journal of Data Science

and Analytics 8.3, 2019, pp. 269-284, doi:10.1007/s41060-017-0078-6

[18] D. Schuster, and S. J. van Zelst. Online Process Monitoring Using

Incremental State-Space Expansion: An Exact Algorithm. arXiv preprint

arXiv:2002.05945, 2020, doi: 10.1007/978-3-030-58666-9_9

[19] W. L. J. Lee, A. Burattin, J. Munoz-Gama, and M. Sepúlveda, Orientation

and conformance: A HMM-based approach to online conformance checking.

In: Information Systems, 101674, 2020, doi:10.1016/j.is.2020.101674

Acta Polytechnica Hungarica Vol. 19, No. 4, 2022

‒ 127 ‒

[20] D. Schuster, and G. J. Kolhof. Scalable Online Conformance Checking

Using Incremental Prefix-Alignment Computation. arXiv preprint

arXiv:2101.00958, 2020

[21] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic

determination of minimum cost paths. In: IEEE transactions on Systems

Science and Cybernetics, 4(2), 1968, pp. 100-107, doi:

10.1109/TSSC.1968.300136

[22] V. Bloemen, J. van de Pol, and W. M. P. van der Aalst. Symbolically aligning

observed and modelled behaviour. In: 2018 18th International Conference on

Application of Concurrency to System Design (ACSD), IEEE, 2018, pp. 50-

59, doi:10.1109/ACSD.2018.00008

[23] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons,

New York, 1998

[24] S. P. Bradley, A. C. Hax, and T. L. Magnanti. Applied Mathematical

Programming. Addison-Wesley, 1977

[25] Z. Nagy and Á. Werner-Stark. A Multi-perspective Online Conformance

Checking Technique. In: 2020 6th International Conference on Information

Management (ICIM), IEEE, 2020, pp. 172-176, doi:10.1109/ICIM49319.

2020.244693

[26] S. van Zelst. PM4Py – Process Mining for Python. Date of last access:

2020.11.30. https://pm4py.fit.fraunhofer.de/

[27] Google Inc. OR-Tools - Google Optimization Tools. Date of last access:

2020.11.30. https://developers.google.com/optimization/

[28] D. Schuster, and S. van Zelst. GitHub - fit-daniel-schuster /

online_process_monitoring_using_incremental_state-space_expansion_an_

exact_algorithm. Date of last access: 2020.11.30.

https://github.com/fit-daniel-schuster/online_process_monitoring_using_

incremental_state-space_expansion_an_exact_algorithm

[29] ProM Tools. ProM 6.9. Date of last access: 2021.06.15.

http://www.promtools.org/doku.php?id=prom69

[30] M. de Leoni, and F. Mannhardt. Road Traffic Fine Management Process.

4TU.ResearchData, Dataset, 2015, https://doi.org/10.4121/uuid:270fd440-

1057-4fb9-89a9-b699b47990f5

[31] F. Mannhardt. Hospital Billing - Event Log. Eindhoven University of

Technology, Dataset, 2017, https://doi.org/10.4121/uuid:76c46b83-c930-

4798-a1c9-4be94dfeb741

[32] Z. Nagy, A. Werner-Stark, and T. Dulai. Using Process Mining in Real-Time

to Reduce the Number of Faulty Products. In: European Conference on

Advances in Databases and Information Systems. Springer, Cham, 2019, pp.

89-104, doi: 10.1007/978-3-030-28730-6_6

https://pm4py.fit.fraunhofer.de/
https://developers.google.com/optimization/
https://github.com/fit-daniel-schuster/online_process_monitoring_using_incremental_state-space_expansion_an_exact_algorithm
https://github.com/fit-daniel-schuster/online_process_monitoring_using_incremental_state-space_expansion_an_exact_algorithm
http://www.promtools.org/doku.php?id=prom69
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741

