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Abstract:  The practice of Robot-Assisted Minimally Invasive Surgery (RAMIS) requires
extensive skills from the human surgeons due to the special input device control, such as
moving the surgical instruments, use of buttons, knobs, foot pedals and so. The global
popularity of RAMIS created the need to objectively assess surgical skills, not just for
quality assurance reasons, but for training feedback as well. Nowadays, there is still
no routine surgical skill assessment happening during RAMIS training and education in
the clinical practice. In this paper, a review of the manual and automated RAMIS skill
assessment techniques is provided, focusing on their general applicability, robustness and
clinical relevance.
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1 Introduction

Minimally Invasive Surgery (MIS) has shown to improve the outcome of spe-
cific types of surgeries, due to fact that the operator reaches the organs in interest
through small skin incisions. This results in less pain, quicker recovery time and
smaller scars on the patient. While the benefits of MIS for the patient are clear,
this technique is definitely hard to master for the clinician. To perform traditional
MIS, surgeons have to learn the handling of the specific surgical instruments, the
manipulation of the endoscopic camera (or coordination on that with the assis-
tance), they have to operate in ergonomically sub-optimal postures [1-4].

To answer these challenges, the concept of Robot-Assisted Minimally Invasive
Surgery (RAMIS) was introduced almost four decades ago. To increase ergon-
omy, robotic systems typically offer a 3D vision system, and their instruments
are easier to control than traditional MIS tools. Furthermore, due to the instru-
ments’ rescaled movements or special design, RAMIS can be more accurate than
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traditional MIS. During the relatively short history of RAMIS, da Vinci Surgical
System (Intuitive Surgical Inc., Sunnyvale, CA) emerged to be the dominating
surgical robot on the market. The da Vinci is a teleoperated system, where the
surgeon sits at a master console, and the patient-side robot copies the motions
of the surgeon within the patient. There are more than 5500 da Vinci Surgical
System in clinical practice at the moment, and around a million procedures per-
formed in the world yearly [3, 5].

While the development of RAMIS was a bold step forward in modern medicine to
help surgeons to realize MIS, it is still a complicated, evolving technique to learn.
In the early years, there has been strong criticism that the da Vinci is not provid-
ing the overall benefit, claimed [6—8]. The lack of training of robotic surgeons
had a great impact in this opinion. Intuitive and the whole research community
developed new training platforms to answer these challenges. These have be-
come the first authentic source of data to develop and validate skill assessment
methods.

In the research of RAMIS skill assessment, da Vinci Application Programming
Interface (da Vinci API, Intuitive Surgical Inc.) was the first source of surgical
data, but it was read-only and not accessible widely. With the development of the
da Vinci Research Kit (DVRK), the data collection from the da Vinci Surgical
System became available for the researchers as well [9]. More recently, Intuitive
teamed up with InTouch Health to create a safe telecommunication network for
its robot fleet deployed at US hospitals [10]. They extended the cooperation
under the concept of Internet of Medical Things [11]. With this collaboration
Intuitive is creating the technical possibility to see and assess the performance of
its robots and their users.

RAMIIS can be learned by surgeons, which process is often represented by learn-
ing curves. Learning curve is a graph, where the experience is represented graphi-
cally (e.g., time to complete compared to training times). Basically, there are two
main approaches of surgical robotics training: patient side and master console
training. Patient side training contains the patient positioning and port placement
and basic laparoscopic skills (such as creation of pneumoperitoneum, applica-
tion of clips etc.). Console training involves the handling of the master arms,
the camera and the pedals, and cognitive tasks as well. There are lots of console
training methods for RAMIS, which can provide the required practice for the
surgeon [12]:

e virtual reality simulators;

e dry lab training;

e wet lab training;

e training in the operating room with a mentor.

Each has its own advantage and disadvantage, but from the clinical applicability
point of view, the most important question is how fairly do these assess surgi-
cal skills. Nowadays, there is still no objective surgical skill assessment method
used in the operating room (OR) beyond board examination more experienced
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surgeons may provide some feedback, but rarely quantify the skills of their col-
leagues.

It may be important to evaluate surgical skills for quality assurance reasons, when
that becomes part of the hospital’s quality management system. More commonly,
only the proof of participation at theoretical and practical training is required. Ar-
guably, objective feedback could assist trainees and practicing surgeons as well
in improving their skills along the carrier. The fundamental challenge with skill
assessment is that traditionally, the patient outcome used to be the only objec-
tive metric, and given the amazing variety and individual characteristic of each
procedure, it has been really hard to derive distinguishing skill parameters. The
subjective evaluation provided by other experts did not make it easy to com-
pare results and metrics, therefore more generally agreed, standardized evalua-
tion practices and training platforms had to be developed. A good example for
this is the Fundamentals of Laparoscopic Surgery (FLS), a training and assess-
ment method developed by the Society of American Gastrointestinal and Endo-
scopic Surgeons (SAGES) in 1997, and widely adapted: it measures the manual
skills and dexterity of an MIS surgeon, and provides a comparable scoring [13].
A similar metric for RAMIS surgeons recently introduced, called Fundamentals
of Robotic Surgery (FRS) [14].

In general, to understand the notions of ’skill’ and ’skill assessment’, let us con-
sider the Dreyfus model [15]. The Dreyfus model refers to the evolution of the
learning process, and it describes the typical features of the expertise levels at var-
ious phases (Fig. 1). For example, a novice (in general) can only follow simple
instructions, but an expert can well react to previously unseen situations. In the
literature, we can find other skill models, such as the classic Rasmussen model,
which was created for modeling skill-, rule-, and knowledge-based performance
levels [16]. An other approach for modeling skills is recently created by Azari et
al., which is specifically made for surgical skills (Fig.2) [17]. RAMIS provides a
unique platform to measure parameters which can help us in defining these skill
levels objectively, since it makes low level motion data and spatial information
available. Now, the problem is to find the proper parameters and algorithms that
define the surgical skills [18].

In this paper, we review the main approaches to RAMIS skill assessment from
manual to fully automated, focusing on the platforms aiming to achieve wider
acceptance. Beyond the technical RAMIS skill assessment, we collect the ex-
isting approaches to non-technical RAMIS skill assessment as well. The main
techniques employed are presented in every cited case, along with the estimated
impact of them.

2 Methods

To find relevant publications in the field of manual and automated skill assess-
ment in RAMIS, we used PubMed and Google Scholar databases. The last search
performed on December in 2018. This paper is mainly focusing on automated ap-
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Dreyfus model of skill acquisition. It defines 5 expertise levels and shows the differences
between their qualities [19]
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Figure 2
Quantified performance model for surgical skill performance. The model describes the
terms of ’skill’: experience, excellence, ability and aptitude [17]

proaches, thus training systems and manual techniques are only introduced. To
find relevant publications for manual techniques, we used the keywords ’surgical
robotics’ and *manual skill assessment’ or *manual skill evaluation’. From the
identified publications, we chose 23 based on the relevance and citation index.
In the case of virtual reality simulators, we use the keywords ’surgical robotics’
and ’virtual reality’ and ’training’ or ’simulator’. We chose 8 publications to
introduce this topic. To find publications for automated approaches and data
collection, we used the keywords ’surgical robotics’ and *automated’ and ’skill
assessment’ or ’skill evaluation’, or in case of data collection ’surgical robotics’
and ’data collection’. We found 47 relevant publications, and the automated tech-
niques are summarized in Table 1. The table has the following columns:
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e ’Aim’: summarizes the goals of the cited paper;

e ’Input data’: used type of data for the skill assessment; algorithm
e ’Data collection’: sensor type, data collector device;

e ’Training task’: suturing, knot-tying, etc.;

e ’"Technique’: used algorithms;

and the year of the publication with the reference. Finally, we introduce non-
technical skill assessment techniques. For this, we used 12 relevant publications
based on the keywords ’surgical robotics’ and ’non-technical skill’, or *physio-
logical symptoms’ and ’stress’.

3 Manual assessment

In the case of manual RAMIS skill assessment, just like with traditional MIS, a
team of expert surgeons in the OR (or post-operatively) evaluates the execution
of the intervention based on their knowledge, the specific OR workflow and the
expected outcome. This approach is easy to implement, yet very costly (in terms
of human resource effort). It may be accurate averaged over multiple reviewers,
but each individual assessment is quite subjective across boards, and it may be
heavily distorted by personal opinions and influenced by the level of expertise of
that particular domain. The types of objective manual surgical skill evaluation
in the case of RAMIS are generic, procedure-specific and error-based [20]. The
simplest approach is the error-based manual assessment, because it only requires
a typical error detection during the procedures. Procedure specific techniques
examine the skills what needed in specific interventions. Generic manual skill
assessment is the most complex approach; it evaluate the global skills of the
surgeons.

A typical approach of manual RAMIS skill assessment is not to quantify the over-
all skills, just to evaluate particular skills needed in specific procedures, or only
measure the errors made during the execution. In many cases, procedure-specific
assessment is required, where the assessment metric is created for a specific sur-
gical procedure (such as cholecystectomy, radical prostatectomy, etc.). Prosta-
tectomy Assessment and Competence Evaluation (PACE) scoring is created for
robot-assisted radical prostatectomy skill assessment. PACE metric includes the
following evaluation points [21]:

e bladder drop;

e preparation of the prostate;

bladder neck dissection;
e dissection of the seminal vesicles;

e preparation of the neuro-vascular bundle;
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e apical dissection, anastomosis.

Cystectomy Assessment and Surgical Evaluation (CASE) is for robot-assisted
radical cystectomy procedures. CASE evaluates the skills based on eight main
domains [22]:

e pelvic lymph node dissection;

e development of the peri-ureteral space;
e lateral pelvic space;

e anterior rectal space;

e control of the vascular pedicle;

e anterior vesical space;

e control of the dorsal venous complex;
e apical dissection.

In the case of PACE and CASE, surgical proficiency was represented in every
domain on a 5-point Likert scale, where 1 means the lowest and 5 means the
highest performance (the score meaning is defined in every domain, such as in-
juries). Beyond these two specific methods, we can find further scoring metrics
for other interventions in the literature [23, 24].

For the above scoring methods refer to the execution of the procedure. In most of
the cases, any damage caused reflects the skills of the surgeons retrospectively:
such as blood loss, tissue damage, etc. Generic Error Rating Tool (GERT) is a
framework to measure technical errors during MIS; it was specifically created for
gynecologic laparoscopy [25]. The validation tests showed promising results for
the usability of GERT for objective skill assessment (its correlation to OSATS
was examined) [26].

Generic manual assessment techniques evaluate the skills, based on the whole
procedure/training technique, considering several points of the surgery, but not
considering a specific technique. Global Evaluative Assessment of Robotic Skills
(GEARS) was particularly created for robotic surgery, where expert surgeons
assess the operator’s robotic surgical skills manually. GEARS metric involves
the assessment of the followings [12]:

e depth perception (from overshooting target to accurate directions to the
right plane);

e bimanual dexterity (one from hand usage to using both hands in a comple-
mentary way);

e efficiency (from inefficient efforts to fluid and efficient progression);
e force sensitivity (from injuring nearby structures to negligible injuries);

e robotic control skills (based on camera and hand positions).
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The surgical experts score the performance on a five scale score system. GEARS
is a well-studied metric: we can find validity tests and comparisons with GEARS
in the literature [12, 27-37]. The original paper of GEARS showed results for the
clinical usability (the experts’ scores were significantly higher than novice sur-
geons’ based on 29 subjects), and later publications provided construct validity
as well.

There exist several modifications to the basic scoring skill assessment techniques.
Takeshita et al. specified GEARS for endoluminal surgical platforms, called
’Global Evaluative Assessment of Robotic Skills in Endoscopy’ (GEARS-E)
[38]. GEARS-E is similar to GEARS, it measures depth perception, bimanual
dexterity, efficiency, tissue handling, autonomy and endoscope control, but it was
created for Master and Slave Transluminal Endoscopic Robot (MASTER) surg-
eries. GEARS-E is not yet widespread because it was developed in 2018, but the
pilot study showed correlations to surgical expertise when using the MASTER.

Objective Structured Assessment of Technical Skills (OSATS) was originally
created for evaluating traditional MIS skills along with FLS in 1997. OSATS
involves the following evaluation points [39, 40]:

e respect for tissue (used forces, caused damage);
e time and motion (efficiency of time and motion);
e instrument handling (movements fluidity);

e knowledge of instruments (types and names);

o flow of operations (stops frequency);

e use of assistants (proper strategy);

e knowledge of specific procedure (familiarity of the aspect of the opera-
tion).

OSATS has an adaptation to robotic surgery: the Robotic Objective Structured
Assessments of Technical Skills (R-OSATS) [41, 42]. R-OSATS metric evalu-
ate the skills of the surgeon based on the depth perception/accuracy, force/tissue
handling, dexterity and efficiency. R-OSATS was tested typically with gynecol-
ogy students, it has construct validity, and in the tests, both the interrater and
intrarater reliability were high [43].

4 Virtual Reality simulators

While Virtual Reality (VR) surgical robot simulators primarily support training,
they can also be a great tool to measure surgical skills objectively in a well-
defined environment, since all motions, contacts, errors, etc. can be computed
in the VR environment. A typical RAMIS simulator involves a master side con-
struction and the virtual surgical task simulation. The master side is responsible
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for to study the usage of a teleoperation system (master arm handling, foot ped-
als, etc.), and to test the ergonomy. The simulation of the surgical task in case
of a surgical robot simulator has to looking life-like and be clinically relevant.
During the training, the VR simulators often estimate the skills based on manual
skill assessment techniques (such as OSATS), but in an automated way.

Since the da Vinci dominating the global market, VR simulators are also focus-
ing on da Vinci surgery. There are more than 2000 da Vinci simulators at the
customer sites around the globe [44]. At the moment, there are six commer-
cially available da Vinci surgical robot simulators: the da Vinci Skills Simulator
(dVSS, Intuitive Surgical Inc.), dV-Trainer (Mimic Technologies Inc., Seattle,
WA), Robotic Surgery Simulator (RoSS, Simulated Surgical Sciences LLC, Buf-
falo, NY), SEP Robot (SimSurgery, Norway), Robotix Mentor (3D systems (for-
merly Symbionix), Israel) and the Actacon Robotic Surgery Training Console
(BBZ Srl, University of Verona [45]). A novel surgical simulation program is
the SimNow by da Vinci (Intuitive Surgical Inc.) [46]. SimNow involves surgi-
cal training using virtual instruments, guided and freehand procedure simulations
and tracking skills and optimizing learning with management tools. In this sec-
tion, the three most common types of VR simulators are reviewed: the DVSS,
the dV-Trainer and the RoSS (Fig. 3).

DVSS can be attached to an actual da Vinci (da Vinci Xi, X or Si), with the main
benefit that the surgeon can train on the actual robotic hardware, yet, it poses
logistical problems, since while a trainee uses the simulator, the robot cannot be
used for surgery. The dVSS contains the following surgical training categories
[47]:

e EndoWrist manipulation;
e camera and clutching;

e energy and dissection;

e needle control;

e needle driving;

e suturing;

e additional games.

The dVSS is measures the skills based on the economy of motion, time to com-
plete, instrument collisions, master workspace range, critical errors, instruments
out of view, excessive force applied, missed targets drops, misapplied energy
time. The simulator costs about $85000-585000 (the extra $500000 is for the
console) [47-52].

The dV-Trainer emulates the da Vinci master console, thus it operates separated
from the actual da Vinci robot. It contains additional training exercises to the
dVSS [47]:

e troubleshooting;
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e Research Training Network (virtual reality exercises to match physical de-
vices in use by the research training network);

e Maestro AR (augmented reality; exercises that allow 3D interactions).

The dV-Trainer assesses skill with a very similar metric to the dVSS. In newer
dV-Trainer versions, an alternative scoring system is available, called ’Profi-
ciency Based System’, which based on expert surgeon data, and the interpre-
tation of the data is different, furthermore the user can customize the protocol.
The dV-Trainer costs about $96000.

RoSS (as the dV-Trainer) is a stand-alone da Vinci simulator involving numerous
modules:

e orientation module;

motor skills module;

basic surgical skills module;

intermediate surgical skills module;

blunt dissection and vessel dissection;
e hands-on surgical training module.

RoSS assesses the skills of the surgeon based on the camera usage, the number
of left and right tool grasps, the distance while the left and right tool was out of
view, the number of errors (collision or drop), the time to complete the task, the
collisions of tools and tissue damage. RoSS costs about $126000.

In the literature, most papers dealing with surgical robot simulators are focused
on the curriculum and the technical layout, yet, in this paper, the skill assessment
and scoring part is crucial.

5 Automated assessment

Surgical robotics provides a unique platform to evaluate surgical skills automat-
ically. RAMIS automated skill assessment does not need additional sensors to
examine the surgeon’s movements, camera handling, focusing on the image etc.,
because these events/errors/movements can be recorded straight with the robotic
system. Automated assessment can be a powerful tool to evaluate surgical skills
due to its objectivity, furthermore it does not require human resources, however,
in some cases, it can be hard to implement these.

Two main types of automated skill assessment methods can be recognizable in
the literature: global information-based and language model-based skill assess-
ment. Global information-based automated skill assessment means that the sur-
gical skill is evaulated based on the whole procedure, based on the data of the
endolscopic video, kinematic data, or other additional sensor data. The other
approach is to evaluate skills on the subtask level, called language-model based
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Figure 3
Virtual reality simulators for the da Vinci Surgical System [47, 53, 54]. A) da Vinci
Skills Simulator, b) dV-Trainer, c) Robotic Surgery Simulator, d) Robotix Mentor, ) SEP
Robot, f) Actaeon Robotic Surgery Training Console

skill assessment. Here, the first challenge is to recognize the surgical subtasks
(often called ’surgemes’), then create a model for the procedure, and compare
the models for skill assessment. Global skill assessment is easier to implement
compared to language model-based techniques, but language models can be more
accurate, and they are closer to the natural training (an expert will teach to the
novice what was wrong on the subtask level, such as the way to hold the needle
in a suturing task).

5.1 Data collection for automated assessment

The development of automated RAMIS skill assessment methods requires solu-
tions for surgical data collection. The data - which correlates the surgical skills
- can be kinematic, video or additional sensor-based (e.g. force sensor). It is not
trivial to access even to training data from RAMIS platforms. The da Vinci has a
read-only research API (da Vinci Application Programmer’s Interface, Intuitive
Surgical Inc.), but it is only accessible to a very few chosen groups. The da Vinci
API provides a robust motion data set and it can streams the motion vectors, in-
cluding joint angles, Cartesian position and velocity, gripper angle, joint velocity
and torque data from the master side of the da Vinci, furthermore events such as
instrument changes [55].

To collect kinematic and sensory data from the da Vinci for research usage, the
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Figure 4
JIGSAWS surgical tasks: knot-tying, suturing and needle passing (captured from the
video dataset)

da Vinci Research Kit (DVRK) is a more accessible tool. The DVRK (developed
by a consortium led by Johns Hopkins University and Worcester Polytechnic In-
stitute) is a research platform containing a set of open source software and hard-
ware elements, providing complete read and write access to the first generation
da Vinci [9]. DVRK is programmable via Robot Operating System (ROS) open
source library [56]. The DVRK community is relatively small, but growing with
only 35 DVRK sites [57].

While most of the da Vinci’s have remote access and data storing enabled, due
to legal and liability causes, clinical datasets are not available widely. In this
case, annotated databases can provide input to RAMIS skill evaluation research.
JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) (developed by
the LCSR lab at Hopkins and Intuitive) is an annotated database for surgical skill
assessment, collected over training sessions [58]. JIGSAWS contains kinematic
data (Cartesian positions, orientations, velocities, angular velocities and gripper
angle of the manipulators) and stereoscopic video data captured during dry lab
training (suturing, knot-tying and needle-passing). The dataset recorded on a da
Vinci involving surgeons with different expertise level (based on a manual eval-
uation technique). Beyond the manual skill annotations, JIGSAWS also includes
annotations about the gestures (’surgemes’).

Another approach is to capture surgical data with an additional data collecting
device. A novel approach for da Vinci data collection, the dVLogger was devel-
oped in 2018 by Intuitive Surgical Inc. The dVLogger directly captures surgeons
motion data on the da Vinci Surgical System. DVLogger can be easily connected
to the da Vinci’s vision tower with ethernet connection, and it records the data at
50 Hz. DVLogger provides the following informations from the da Vinci [59]:

e kinematic data (such as instrument travel time, path length, velocity);

e system events (frequency of master controller clutch use, camera move-
ments, third arm swap, energy use);

e endoscopic video data.

DVLogger can be a powerful tool in surgical skill assessment studies, due to its
easy usage enables the data collection for everyone, during live surgeries as well,
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however, it is a novel recording device, thus it is not well-known widely yet.

SurgTrak (created by the University of Minnesota and University of Washington)
is an additional hardware and software set which can be used for the da Vinci as
well [60, 61]. With SurgTrak, the endoscopic data can be captured from the DVI
output of the da Vinci master side with an Epiphan DVI2USB device. The sur-
gical instruments’ position and orientation can be recorded with a 3D Guidance
trakSTAR magnetic tracking system. Furthermore, grasper and wrist position is
achievable with SurgTrak.

The above data collection techniques are useful for capturing kinematic and video
data, but in some cases other devices/sensors are needed to evaluate surgical skills
with specific algorithms. Force sensors are often used in the field of surgical
skill assessment. It is possible to estimate the used forces during the training
based on the motor currents, but due to the construction of the da Vinci, it can
be very noisy. A more popular approach is when an additional force sensor is
used, such as developed in U. Pennsylvania in [62]. In this case, accelerometers
were placed on the da Vinci arms (which measured instrument vibrations), and
a training board with a force sensor, which measured the forces during different
types of training. They showed correlation between the measured data and the
skill level.

5.2 Global information-based skill assessment

One approach for automated RAMIS skill assessment is to examine the whole
procedure based on kinematic/video/additional sensor data. These methods are
easier to implement than language model-based techniques, because they do not
require the segmentation of the whole procedure (see details below). While
global information-based methods are not sensitive to the performance quality of
specific gestures, they can be as effective as language model-based techniques.
There is an obvious correlation between the surgical skills and the kinematic data
(Fig. 5), thus this is the most well-studied area in global information-based skill
assessment [63—72], but we can find video, additional sensor-based [62, 73, 74],
and the comparisons of several inputs [55, 75] automated techniques as well.
Global information-based skill assessment is not as deeply studied as language
model-based methods, in general.

For the global methods, the classification of the input data is needed. We can find
a great summary of these in [68] (Fig. 6). The raw data (which can be any kind
of data: endoscopic image, force, kinematic, etc — in the figure you can find a
specific example for kinematic-data based assessment) have to be processed with
some kind of feature extraction technique, and in some cases, dimensionality
reduction is needed as well. The processed data can be classified, and the skill
can be predicted based on the extracted features from the data.

In [68], we can find a motion-based automated skill assessment. Their input
was the JIGSAWS dataset. They used 4 types of kinematic holistic features:
sequential motion texture, discrete Fourier transform, discrete cosine transform
and approximate entropy. After the feature extraction and dimensionality reduc-
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Figure 5
Robot trajectories in case of a novice and an expert surgeon during robot-assisted radical
prostatectomy (red: dominant instrument, green: non-dominant instrument, black:

camera) [59]
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Figure 6
Flowdiagram for automated surgical skill assessment [68]

tion, they classified the data and predicted the skill score. The skill scoring was
performed with a weighted holistic feature combination technique, which means
that different prediction models were used to produce a final skill score. With this
method a modified-OSATS score and a Global Rating Score was estimated. The
results showed more accuracy than Hidden Markov Model-based solutions [68].
For more approaches, see Table 1.

5.3 Language model-based skill assessment

A surgical procedure model can be built with different motion granularity. A sur-
gical procedure (such as Laparoscopic cholecystectomy) is built from tasks (e.g.,
exposing Calot’s triangle), which is built from subtasks (e.g., blunt dissection),
which is built from surgemes (grasp), which is built from dexemes (motion prim-
itives) (Fig. 7). Global skill assessment methods approach the skill evaluation
from the highest procedure/task level, thus not adverting the fact that surgical
tasks are built from several, sometimes very different surgemes. These surgemes
are not equally easy or complicated to execute, and even if a clinician believed
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Figure 7
A surgical procedure built from different levels [101]. Language model-based RAMIS
skill assessment techniques typically evaluate the skills on the surgeme level.

to have intermediate skills based on a global skill assessment technique, he/she
can be excellent/poor in just one, but very important surgeme and vice versa.
Language model-based surgical skill assessment aims to assess surgical skills on
the surgeme level, thus it requires three main steps: task segmentation, gesture
recognition and gesture-based skill assessment. This approach has the further
advantage that with the models defined, we can study the transitions between the
surgemes, and benchmark those as well. This approach has been considered to
be a cornerstone of the emerging field of Surgical Data Science (SDS) [76].

It was the Hopkins group who first proposed surgeme-based skill assessment [77],
discrete Hidden Markov Models (HMM) were built for task and for surgeme
level as well to assess skill. In the practice, skill evaluation was based on a
model built from annotated data (known expertise level), and this model tested
against the new user. To create a model for user motions, they had to identi-
fied the surgemes with feature extraction, dimensionality reduction and classifier
representation techniques. After that, the two models were compared. To train
the discrete HMMs they used vector quantization. Their method worked with
100% accuracy using task level models and known gesture segmentation, at 95%
with task level models and unknown gesture segmentation, and at 100% with the
surgeme level models in correctly identifying the skill level.

The input of language model-based skill assessment methods can be kinematic
data [77-86], video data [87] or both [88-92]. In the literature, we can find
surgical activity/workflow segmentation as well [93—100]. For the details of the
state-of-the-art see Table 1.

6 Non-technical surgical skill assessment

Surgical robotic interventions can put extra cognitive load on the surgeon, espe-
cially in the case of risky, high-complexity tasks, or in emergency. Furthermore,
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surgical robotic operations require teamwork, thus excellent communication and
problem solving skills are needed from the surgeon (and from all of the oper-
ators as well). For all the above reasons, non-technical surgical skills are also
important in case of surgical robotics, however, it is not a well-studied area.
Non-technical skills involves cognitive skills (such as decision making, memory,
reaction time) and social skills (such as communication skills, working ability in
a team and as a leader) [20, 102].

The NASA Task Load Index (NASA-TLX) was not originally created for surgery,
but has been used in this field successfully [102]. NASA-TLX is a subjective
scoring tool, including questions about mental, physical and temporal demand,
furthermore performance, effort and frustration [20], with the advantage to quan-
tify subjective parameters, and making them comparable to other experiments.
To conform to the needs of surgical skill assessment, Surgery Task Load Index
(SURG-TLX) was derived from NASA-TLX, but this technique is not yet used
for robotic surgery, just for traditional MIS [103]. SURG-TLX examines the im-
pact of different types of stress (such as task complexity, situational stress, dis-
tractions) in case of surgeons. Non-technical Skills for Surgeons (NOTSS) was
created specifically for non-technical surgical skill assessment. NOTSS metric
includes the examination of situation awareness, decision making, task manage-
ment, communication and teamwork, and leadership [104]. NOTSS was recently
used in surgical robotics non-technical skill assessment as well [105].

The Interpersonal and Cognitive Assessment for Robotic Surgery (ICARS) was
the first objective method for RAMIS non-technical skill assessment. For ICARS,
28 non-technical behaviours were identified by expert surgeons based on the Del-
phi method [102, 106]. In the ICARS metrics, there are four main types of non-
technical skills: checklist and equipment, interpersonal, cognitive and resource
skills.

Nowadays, there are not any kind of automated skill assessment method for non-
technical skills. Electroencephalography (EEG) could be employed to estimate
non-technical skills during RAMIS, but due to the complexity of an EEG, it is not
a well-known method for surgical skill assessment [102]. There are some limited
studies in this field [107]. Guru et al. used EEG signals (nine-channel EEG
recording with a neuro-headset) for cognitive skill assessment during RAMIS
training. They placed the sensor on the frontal, central, parietal and occipital
regions. The statistical analysis showed that with cognitive metrics, there were
significant differences between the groups for the basic, intermediate and expert
skills based on the data of 10 surgeons.

On the other hand, there are several methods aimed at measuring physiologi-
cal signals, which can refer to the stress level, however, these are not used in
RAMIIS widely yet. Stress directly influences the performance of a surgeon, thus
the measurement of the sress level can be a tool for non-techninal surgical skill
assessment [108]. In the literature, we can find examples to stress-related signals
of the human body: skin temperature [109, 110], temperature of the nose [111],
heart rate, skin conductance, blood pressure, respiratory period [112] etc. In case
of surgical performance, tremor is the most studied physiological signal, but it
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did not refer to the stress level in all cases [113].

7 Conclusion

Surgical skill assessment is an essential component to improve the level of train-
ing, and for providing quality assurance in primary care. Robotic surgery pro-
vides a unique platform to evaluate surgical skills objectively, since it inherently
collects a wide range data. Nowadays, in the clinical practice, there is no rou-
tinely employed objective skill evaluation method. In the literature of Robot-
Assisted Minimally Invasive Surgery, there are two main approaches for techni-
cal skill assessment: manual and automated. There are several validated manual
evaluation methods, such as GEARS and R-OSATS, which are relatively easy
to implement, but require an expert panel, prone to subjective bias. Automated
RAMIIS skill assessment is also a heavily studied area: there are global and lan-
guage model-based methods. These are harder to implement, but in the near
future, these can become an extremely powerful tool to objectively evaluate sur-
gical skills, until we see a gradual takeover of robotic execution [114]. With
the help of surgical robotics, data can be easily captured with automated tools.
The input can range from kinematic data produced by the motion of the surgeon
(which is the most studied approach), to endoscopic video data and force signals,
etc. Automated methods can predict skills score without using human resources,
and permit personalized skill training. With the novel training techniques, we
hypothesize significantly improved surgical performance, therefore better patient
outcome in the clinical practice.
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Table 1
Automated surgical skill assessment techniques in RAMIS. Used abbreviations: HMM: Hidden Markov Model, LDA: Linear Discriminant Analysis, GMM: Gaussian
Mixture Model, PCA: Principal Component Analysis, SVM: Support Vector Machines, LDS: Linear Dynamical System, NN: Neural Network.
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