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Abstract:Let lH  and  lV  denote the number of layers reserved for horizontal (vertical) wire 
segments in the multilayer dogleg-free Manhattan model. [d/lH] is a lower bound for the 
minimum width for routing a channel of density d  where [x]  denotes the upper integer part 
of  x. A greedy interval packing algorithm realizes every channel routing problem with 
width [d/(lV-1)] in linear time if  lV≥2.  

In case  lV=lH+1  the resulting width is  [d/lH], hence it is best possible. 

The second author has shown that in case  lV=lH=k>1, it is NP-complete to decide whether 
a channel routing problem can be solved with width [d/k] in the dogleg-free 2k-layer 
Manhattan model. 

Here we turn to  the remaining case. In the special case  lV=1  and  lH=2 we show its 
relation to the NP-complete problem for the usual 2-layers Manhattan model and we point 
out a relation of the routing problem to a 2-processor job sheduling problem. 

Keywords:VLSI, detailed routing,channel routing, Manhattan model, multilayer routing.  

1 Basic Definitions 

A channel is a rectangular grid of rows and columns. 

 n denotes the length of the channel (number of the columns), 
 w denotes the width of the channel, the width of a certain routing  
   (number of the rows).  
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The rows of the routing will be called tracks. 

The principal direction of the channel will be called horizontal, this means, the 
pins of the devices of the electric equipment are placed on the Northern and 
Southern boundaries of the channel. These pins are called terminals (or nodes) and 
the important task of the routing: to interconnect some terminals by wires. A 
subset of terminals to be interconnected will be called a net. In the examples 
terminals of the same net are denoted by the same number. 

If  Xi,l and Xi,r  denote the X-coordinates of the leftmost and the rightmost terminal 
of net Ni then the interval [Xi,l , Xi,r] will be called the interval of the net Ni  If a 
net has only two opposite terminals then the interval reduces to a single point. 
Such a net is called trivial like N5 in Figure 1. 

A routing is dogleg-free if the realization of each nontrivial net contains a single 
horizontal wire segment only. (For example net N1 of Figure 1 is dogleg-free, N3 
has a dogleg.) The congestion of a vertical line is the number of nets, whose 
intervals intersect the line. The maximum congestion is called the density of the 
channel routing problem and is denoted by d. 

channel 

terminals 
          1      2     1   2 3      4      2      5 North 

          

w=3         

         

         

         2       3     4   1 2      3      3      5 South 

  interval of net N1 

n=8 

Figure 1 

Let l denote the number of layers in the routing, and we consider the „Manhattan 
model”. The „usual” Manhattan model has two layers for the routing, one layer for 
the horizontal and one layer for the vertical wire segments. The multilayer 
Manhattan model has l layers, let lH denote the number of layers reserved for 
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horizontal and lV denote the number of layers reserved for vertical wire segments. 
Consecutive layers in the Manhattan model may contain wire segments of 
different direction only. 

A gridpoint, where the wire turns from horizontal to vertical direction (or vice 
versa), and the wire must leave a layer for another adjacent one is called via. In 
case l=2 one layer is reserved for horizontal, and one for vertical wire segments. If 
l is even, the number of horizontal and vertical layers are equal. If l is odd, the 
number of horizontal and vertical layers are different. For example in case l=3 we 
can distinguish between HVH and VHV models. In general for any odd number l 
one has two types of l -layer- Manhattan models. 

In the multilayer Manhattan model we have a lower bound for the minimum width 
for routing a channel of density d: [d/lH], where [x] denotes the upper integer part 
of x. We also have an upper bound for lV≥2: a greedy interval packing algorithm 
gives a solution with width  [d/(lV -1)] in linear time. It is the best possible if  
lV =lH +1 . 

2 Gallai’s Algorithm 

First let us suppose that all the terminals of the nets are on the Northern boundary 
of the channel. This case is the so called single row routing problem [10]. In this 
case the intervals of the nets can be packed into d horizontal lines, so called tracks, 
by a greedy interval packing algorithm: 

   1   2  3  2 4 1 3 4 
         

         

         

n=8  d=3=w 

Figure 2 

Let us consider the list L of the interval of the nets. 

Step 1 If the list L is empty, stop. Otherwise consider the interval with 
minimum left end coordinate, place it to a new track, denote its right 
end coordinate by X; and delete the interval from L. 

Step 2 Consider those intervals whose left end coordinate is greater than X. If 
there are none, go to step 1. Otherwise choose the one with minimum 
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left end coordinate, place it to the actual track, denote its right end 
coordinate by X, delete this interval from L and go to step 2. 

Based on Tibor Gallai’s research in the fifties [7], this algorithm gives the 
following classical result: 

Theorem  

− Every single row routing problem can be solved in linear time in the 2-
layer Manhattan model. 

− The resulting width equals the density, hence it is the best possible. 

− The routing is dogleg-free, and the width could not be reduced if doglegs 
were permitted. 

If we return to the general channel routing  problem, the lower bound w≥d clearly 
remains valid in the 2-layer model, and in general, w≥[d/lH ] is valid for every 
solution, where d is the density and lH  is the number of horizontal layers. 

But the statements of Theorem do not remain true. Let us show some examples. 

 
1. 3a is unsolvable in the 2-layer dogleg-free Manhattan model, but it has a 

solution in VHV model (see 3b ), and it is solvable in the 2-layer Manhattan 
model, if doglegs are permitted (see 3c). 
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2. We have a solution in Figure 4a with width 5, and the same channel-routing 

problem has a solution with width 3, if doglegs are permitted (see 4b). 

It is interesting to consider what can we say in general about channel-routing in 
the dogleg-free multilayer Manhattan model. 

1. Every channel routing problem can be solved in linear time in the 
(VHVH....V) type Manhattan model, and the resulting width is [d/lH], hence it 
is the best possible. The proof in the VHV case comes from the above 
theorem [3] and the generalization for more layers is obvious [1], [2], [6]. 

2. In case  lV=lH=k it is NP complete to decide whether a channel routing 
problem can be solved with width [d/k] in the dogleg-free 2k-layer Manhattan 
model. (The case k=1 has been well known for many years [8], [12], the more 
recent result [11] refers to the case k>1.)  

Now we are going to study the remaining case. 

3 The Case lV=1 and lH=2 

In this case we have a trivial lower bound, but only some trivial upper bounds can 
be formulated. In fact, the dogleg-free realizability of a channel routing problem in 
this model is equivalent to that in the 2-layer Manhattan model and actual width 
requirements in then two models are closely related, as shown by the following 
observations [11]: 
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Lemma 1 

If a channel routing problem can be solved with width w in the dogleg-free way in 
the HVH model – using one vertical and two horizontal layers – , then it has a 
dogleg-free solution with width at most 2w in the „usual” Manhattan model (using 
one vertical and one horizontal layer). 

 

 

 – 94 –



Acta Polytechnica Hungarica Vol. 1, No. 2, 2004 

Proof: Let us consider  Figure 5a. This is a channel routing with length 8, with 
width 3 in HVH Manhattan model. Let us proceed from North to South and realize 
the lines of the two horizontal layers in an alternating way (see Figure 5b) leading 
to two tracks of the two layer routing from each track of the original HVH routing. 
No conflict can arise, since we have a single vertical layer anyhow. This procedure 
transforms any HVH model into a „usual” 2-layer Manhattan solution [4]. 

Lemma 2 

If a channel routing problem can be solved with width w in the dogleg-free 2-layer 
Manhattan model, it has a dogleg-free solution in the HVH model with width w’, 
where w’ satisfies w/2 ≤ w’ ≤w . 

The proof is obvious.  

It is very important to see, however, that the transformation from HVH to „usual” 
Manhattan model cannot always be inverted. If a channel routing problem has a 
solution with width w, it does not always have a solution in HVH model with 
width w/2. 
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For example, Figure 6a and 6c show two further solutions of the same channel 
routing problem as in Figure 5b, also with width 6. However these solutions 
cannot be „folded back” like in Figure 5a (see 6b and 6d). More precisely, these 
solutions can be inverted to the HVH solution only with width 4 and not with 
width 3. (In fact, one can enumerate that the actual problem can be routed in 40 
different ways with width 6 in the usual Manhattan model and only 8 of them can 
be transformed back to the HVH model with width 3). 

Let a dogleg-free channel-routing with width w in the usual Manhattan model and 
w' satisfies w/2 ≤ w’ ≤w. The problem of transforming the routing into a HVH 
routing with width w' (if it is possible at all) can be formulated as a 2-processor 
job scheduling problem [5]. 
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