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Abstract: The paper proposes the design of an enhanced cruise control system for automated
vehicles. The control strategy has three components, such as a predictive optimal control, a
robust Linear Parameter-Varying (LPV) control and an optimization-based supervisor. In the
design process of the control, primary performances (safety and speed limitation requirements)
and secondary performances (economy and traveling time criteria) are considered. These
performances are guaranteed through the different control components. The enhanced cruise
control is able to provide solution to complex cruise control scenarios with a guaranteed
performance level. The effectiveness of the method is illustrated through various simulation
examples, in which the loss of the performance level is avoided by the proposed control.
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1 Introduction and Motivation
Various safety, economy and comfort requirements against automated vehicles pose
complex decision and control challenges for research teams in the field of vehicle
control design. A possible solution to the adaptation to the environment of the vehicle
is to use increased number of information on the road and traffic through vehicle to
vehicle (V2V) and vehicle to infrastructure (V2I) communication. The information
is used in different layers of the longitudinal control in automated vehicles, such as
perception, navigation, design of the route and the speed profile [1].

In the recent years several design methodologies in the field of enhanced energy
efficient driving systems on several vehicle control tasks have been developed. An
overview about the principles of the energy efficient cruise control has been proposed
in [2]. The consideration of forthcoming terrain characteristics has been handled
by using a receding horizon control in real experiments in [3]. The work of [4] has
presented a deep learning-based eco-driving solution to electric vehicles, in which
information about the surrounding vehicles has also been incorporated. Eco-cruise
control system for automated vehicles in intersection scenarios has been implemented
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in [5]. Systematic design and analysis methods for predictive cruise control systems
with the consideration of road and traffic information have been presented in [6].

Due to various external information sources the achieved performance level of the of
automated vehicle control can depend on the quality of the communicated data [8].
The source of the information might be static datasets, e.g., terrain characteristics
or speed limit rules on the road. Nevertheless, some important information can
vary dynamically, such as variable speed limits on high-speed roads, traffic flow
information and actual motion information of the surrounding vehicles [7]. Although
these information can be important to provide energy-efficient and comfortable
motion for automated vehicles, the degradations in the communicated data, and
thus, a challenge is to build reliable architectures, which are less dependent on the
degradation of the communicated data and thus, the predefined performances can be
guaranteed.

The performances of enhanced cruise control systems can be classified based on their
priorities. There are primary performance requirements in safety-critical systems,
especially in cruise control systems, which must be guaranteed by the control during
the entire operation of the closed-loop system. Primary performances are related to
keeping safe distance, i.e. from the preceding vehicle and from the follower vehicle
in the case of a lane change maneuver. Moreover, a primary performance is to keep
vehicle speed in a bounded range of the speed limit, with which the violation of
the speed regulations or the dangerously slow motion of the vehicle in a high-speed
road can be avoided. Moreover, the performances of the cruise control systems may
have another group, the secondary performances, which are requested to consider
by the control system, e.g. comfort criteria, energy consumption minimization or
traveling time requirements. These performances are requested to maintain due to
the expectations of the users, but they can be violated in critical situations, e.g. if
a collision is predicted. The presented various performance requirements demand
increased number of information sources, especially communicated data.

The goal of the paper is to propose a design framework for enhanced cruise control
systems, with which guarantees on the primary performances are provided. In the
framework two controllers are designed. It is designed a controller based on the
robust Linear Parameter-Varying (LPV) control theory, which uses on-board sensor
information and limited number of external information. The controller is able
to provide guaranteed primary performances together with a supervisory strategy.
The minimum performance level of the enhanced cruise control on the primary
performances is equivalent to the performance level of the robust LPV control on
the primary performances. Furthermore, a predictive optimal cruise control is also
designed, in which several external information is incorporated. The proposed
predictive control system is able to maintain primary and secondary performances
effectively, but the primary performances cannot be guaranteed for all scenarios. The
design of the predictive cruise control is based on the method, which is presented
in [6]. During the cruising of the automated vehicle both controllers compute their
control signal parallel. The control intervention based on the two signals is computed
by a supervisory strategy.

The enhanced cruise control for automated vehicles is composed of the robust LPV
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control, the nonlinear predictive optimal control and the supervisor. Interconnection
between them is created by scheduling variables and known uncertainties, which are
taken part of the robust LPV control design. The motivation behind the robust LPV
formalism is flexibility, which can be achieved by the adaptation capability of the
controller through the selection of the scheduling variable.

The contribution of the paper is an enhanced cruise control system, which is able
to solve the complex cruising problem with several performances for automated
vehicles. The novelties of the proposed method are summarized as follows. First,
the proposed method provides theoretical guarantees on the performance level of
the primary performances. Second, the guaranteed performance level of the system
is less dependent on the degradation of the communicated data from the external
information sources, which can provide an improved level of safety for automated
vehicles.

The paper is organized as follows. The strategy of the nonlinear predictive optimal
control, which considers various information sources is presented in Section 2. The
robust LPV-based framework for modeling and control design is proposed in Section
3. Section 4 proposes the supervisory strategy, and than, the design of the robust LPV
controller in an iterative framework is presented in Section 5. Section 6 illustrates
the effectiveness of the proposed method. Finally, the consequences of the design
method are summarized in Conclusions.

2 Design of Predictive Cruise Control for Automated
Vehicles

The role of the section is to present the design method of the predictive cruise control
briefly. The aim of the description is to provide an overview about the formulation of
the performances and the incorporation of the external information in the predictive
control problem. A thorough discussion of the method is found in [6].

The predictive cruise control can use various information sources, i.e., in this paper
four different information sources are considered to be available. First, the automated
vehicle has information from topography database, which provides altitude and
road curvature information. The road section ahead of the vehicle is divided into n
number of segments, where the lengths of the segments are selected to have constant
inclinations. Second, the vehicle has information about speed limitations on the road
segments. Since speed limitations can also depend on the actual road construction
works and variable speed limit signs in high-speed roads, it can require information
from static road map and V2I communication. Third, information about the average
traffic speed on the forthcoming road section and the state of the traffic lights expect
communication with the traffic control system. Fourth, information about the actual
speed and the positions of the surrounding vehicles can require V2V communication
and on-board sensors, e.g. radar measurements.

The performances of the predictive cruise control are formed as follows. A primary
performance of the vehicle is to keep safe distance from the preceding vehicles in the
own lane and from the follower vehicles in the case of a lane change maneuver on
the entire horizon. As an assumption, it is considered that the vehicles move in the
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same directions on the road. Moreover, motion information about the surrounding
vehicles are considered in a predefined region of interest, which leads to Np number
of preceding vehicles and N f number of follower vehicles. Formally, it leads to the
conditions

ekp+
j

∑
i=1

(
η

kp
i −ξi

)
≥ dsa f e, ∀ j ∈ {1, ...,n}, ∀kp ∈ {1, ...,Np} (1a)

ek f +
j

∑
i=1

(
ξi −η

k f
i

)
≥ dsa f e, ∀ j ∈ {1, ...,n}, ∀k f ∈ {1, ...,N f } (1b)

where kp,k f represent the indexes of the preceding and follower vehicles, ekp ,ek f are
the actual distance between vehicle kp,k f and the automated vehicle and dsa f e is the

requested safe distance. Index j represents the road segment and
j

∑
i=1

ξi is the predicted

longitudinal displacement of the automated vehicle until step j and
j

∑
i=1

η
kp
i ,

j
∑

i=1
η

k f
i

are the predicted displacements of vehicle kp and k f . Relations in (1) represent that
the predicted distance between the automated vehicle and a surrounding vehicle until
horizon j cannot be smaller then the predefined safe distance. If the relations are
guaranteed, the safe distances from all surrounding vehicles on the entire horizon are
kept.

Further primary performance of the control is keeping vehicle speed in a limited
range around reference speed vre f ,i in segment i. vre f ,i is selected based on the speed
limitation, road curvature, average traffic speed [6, 9]. The performance is formed as

ξ̇i ∈
[
vmin,i;vmax,i

]
, ∀i ∈ {1, ...,n}, (2)

where ξ̇ is the speed of the automated vehicle and vmin,i,vmax,i values are the limits
(minimum and maximum) of the speed range, in which the vehicle speed can vary.
Performance (2) guarantees keeping speed limitations. Furthermore, it guarantees the
avoidance of the dangerously slow motion of the automated vehicle. The values of
vmin,i,vmax,i are derived from the value of the speed reference vre f ,i on each segment,
e.g. −20%,+5% related to vre f ,i.

One of the most important secondary performance in the cruise control problem is to
achieve minimum control intervention on the road horizon ahead of the automated
vehicle, which leads to the criterion

n

∑
i=1

|Fl,i| → min, (3)

where Fl,i represents traction/braking force on segment i of the horizon.

Another secondary performance is to minimize traveling time of the vehicle. Since
the shortest traveling time is equivalent with the maximum speed motion of the
vehicle, it can be transformed to the speed objective as

|vmax,i − ξ̇i| → min, ∀i ∈ {1, ...,n}. (4)
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The motions of the automated vehicles can have impact on the characteristics of the
traffic flow, because the speed profiles of the automated vehicles can differ from the
speed profiles of the human-driven vehicles. This impact has increasing importance
through the increase of the traffic density and the ratio of the automated vehicles in
the traffic flow. A further secondary performance of the control is that motion of the
automated vehicles must have advantageous impact on the traffic flow. It means that
the output flow of the traffic network qout must be maximized, such as

qout → max. (5)

The relationship between qout , the speed selection strategy of the automated vehicles,
the ratio of the automated vehicles and the traffic density is characterized in [6].

Formulation of the Optimization Process
The computation of the actual control input Fl,1 is based on a predictive optimal
control strategy, which considers the previously defined performance specifications
[6]. It leads to a hierarchical optimization structure. In the low level of the structure
a solution to the secondary performance problem is found, while in the high level
the priority performance criteria are incorporated. The interconnection between the
levels is provided by a parameter R, which is interpreted below.

In the low level of the optimization, weights Q,γi, i ∈ {1, ..,n} are defined to all the
segments on the horizon. Their role is to define the importance of each segments in
the design of the current speed. Weight Q determines the tracking requirement of the
predefined actual reference speed vre f ,0, which is related to the current segment of
the vehicle. The road inclinations αi and the reference speeds on the segments of the
horizon ahead of the vehicle are considered through the weights γi. The result of the
predictive control is a reference speed λ for the vehicle, which is characterized by
the weights Q,γi, such as

λ =

√
ϑ −2s1(1−Q)(ξ̈0 +gsinα), (6)

where ξ̈0 is the longitudinal acceleration, s1 is the length of first road segment and ϑ

incorporates force and reference speed components of the forthcoming road sections:

ϑ = Qv2
re f ,0 +

n

∑
i=1

γiv2
re f ,i +

2
m

n

∑
i=1

siFdi,r

n

∑
j=i

γ j, (7)

where the known longitudinal force resistance Fdi,r contains the road inclination in
segment i.

The selection of Q,γi values are based on the secondary performance criteria. Actual
control force can be expressed in a form, which depends on Q and γi. Through the
transformation of (3) to a quadratic criterion F2

l,1 → min, the following optimization
problem is yielded(
β0(Q̄)+β1(Q̄)γ̄1 + . . .+βn(Q̄)γ̄n

)2 → min (8)
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with the constrains 0 ≤ Q̄, γ̄i ≤ 1 and Q̄+∑ γ̄i = 1. Q̄, γ̄i are the solutions of (8)
and β0(Q̄),βi(Q̄) are matrices. Objective (8) is nonlinear in Q, but for a fixed Q
value it leads to a quadratic optimization problem in γi with constraints. Secondary
performance (4) is transformed to the minimization of the difference between the
current speed and the reference speed, such as

|vre f ,0 − ξ̇0| → min . (9)

The solution of (9) is achieved by selecting the weights Q̆ = 1 and γ̆i = 0, i ∈ [1,n],
because in this case the automated vehicle tracks the actual reference speed value.
The balance between the secondary performances is created through the selection of
parameter 0 ≤ R ≤ Rmax ≤ 1, such as

Q = RQ̄+(1−R)Q̆ = 1−R(1− Q̄) (10a)
γi = Rγ̄i +(1−R)γ̆i = Rγ̄i, i ∈ {1, ..,n}. (10b)

If R is selected for a high value, the minimization of the control force of the automated
vehicle is preferred. It can lead to a reduced speed for the vehicle, which considers
the forthcoming road and traffic information in the computation of Fl1. But, if R has
a low value, the speed of the vehicle is close to vre f ,0, which means that minimum
traveling time is preferred. Thus, the selection of R has a high impact on the balance
between the performances traveling time and control force, and consequently, on
the speed profile of the automated vehicle. The value of Rmax is determined by
performance (5), which is related to the maximization of the traffic flow. The actual
value of Rmax, whose selection can result in high qout , depends on the actual traffic
density and the ratio of the automated vehicles in the traffic. The relationship is
characterized by a nonlinear function, which is based on scenario-based studies [6].

In the high level of the optimization architecture the goal is to calculate R, with
which the primary performances can be considered. The purpose of the optimization
is to maximize R, which leads to an energy-efficient motion with advantageous
impact on the traffic flow. Nevertheless, in the high level optimization the primary
performances (1)-(2) are handled as constraints of the optimization process. Thus, R
must be selected as high as possible, but the resulted speed profile must guarantee
primary performances. The resulted high-level optimization problem is

max
[0,Rmax]

R (11)

such that the constraints (1)-(2) are guaranteed. The result of the optimization on
the high-level is R, which is used in the computation of Q,γi, see (10). Furthermore,
Q,γi are applied in (6), which induces a speed tracking problem, whose result is the
actual control force Fl,1. Through the values of ξi and ξ̇i in the constraints (1)-(2),
the result of the low-level optimization has an impact on the high-level. Thus, the
maximization of R is an iterative process, until the appropriate value is achieved.

The presented optimization process can provide excellent control force for the vehicle,
which considers several performance requirements. However, it is difficult to verify
the result of the optimization through in theory due to the following limitations of
the method.
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• The control strategy requires several communicated data, whose safety and
security challenges have been presented in Section 1.

• The maintenance of several performances requires complex control structure,
which contains a hierarchical nonlinear optimization process. Moreover, the
optimization problem depends on the actual traffic scenario, e.g., the number
of constraints depends on the actual number of vehicles. Thus, it is difficult
to find a compact, offline solution of the optimization process, which can
be examined, e.g., from the aspect of the parameter sensitivity. Instead, the
method can be verified through simulations and experimental scenarios.

• Constraints (1)-(2) depend on the prediction of the preceding/follower vehicle
motion. It presupposes a vehicle motion model for the vehicles in the local
surroundings, whose difference from the real vehicle motion can degrade the
primary performance.

Therefore, the resulted nonlinear predictive optimal control strategy cannot be used
alone in the automated vehicle cruise control system. It is requested to find a
control strategy, with which the primary performances can be guaranteed, while the
advantages of the predictive cruise control can be preserved in most of the vehicle
cruising. It leads to the concept of the enhanced cruise control, as proposed in the
rest of the paper.

3 Architecture of the Enhanced Cruise Control System
The basic idea of the control strategy is to design a robust LPV controller and a
supervisory strategy, which can modify the control input of the predictive cruise
control if the primary performances are violated.

The output of the predictive cruise control is represented as

uP = F (yP) (12)

where uP = Fl1 denotes the control input of the predictive cruise control, yP vector
contains the inputs of the controller with mP elements and F represents the predictive
cruise controller itself. Moreover, the control signal uK is the output of a robust LPV
controller, such as

uK = K (ρP,yK) (13)

where K represents the robust LPV controller and yK is the vector of the measured
signals with mK elements. In (13) ρP ∈ ρP vector contains the scheduling variable of
the controller, which is derived from the following control rule.

The most important assumption of the proposed method is that the actual value of the
control signal u can be expressed in a linear form of uK . If the primary performances
are not violated by uP, then u = uP is selected. Thus, under the consideration that the
primary performances are not violated, the relationship between uK and uP with the
conditions is formed as

uP = ρ
∗
PuK +∆

∗
P, if ρ

∗
P ∈ ρP, ∆

∗
P ∈ ΛP, (14)
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where ρ∗
P and ∆∗

P are time-dependent weighting signals. ρ∗
P = [ρP,min;ρP,max], Λ∗

P =
[∆P,min;∆P,max] represent domains in (14), where ρP,min, ρP,max, ∆P,min, ∆P,max are
scalars. The sets of the domains are denoted by ρP, ΛP. In (14) the conditions are
guaranteed, if the primary performances are not violated. Thus, it can be find ρ∗

P, ∆∗
P

pair and u = uP. But, if ρ∗
P ̸∈ ρP or ∆∗

P ̸∈ ΛP, the variables ρ∗
P, ∆∗

P are limited with
the boundaries of ρP and ΛP during the computation of the control signal u. In this
case u can significantly differ from uP. The previous cases lead to a control strategy,
which contains all scenarios as

u = ρPuK +∆P, (15)

where

ρP = min
(

max
(
ρ
∗
P;ρP,max

)
;ρP,min

)
, (16a)

∆P = min
(

max
(
∆
∗
P;∆P,min

)
;∆P,max

)
. (16b)

Thus, the concept of providing guaranteed primary performances is based on the
bounding of ρP,∆P, the relations in (16) result in ρP ∈ ρP and ∆P ∈ ΛP. Therefore,
if it is possible to design a robust LPV control with the scheduling variable ρP,∆P
and the uncertainty ∆P ∈ ΛP, the primary performances can be guaranteed through
the appropriate selection of ρP,∆P values. In the control architecture the supervisor
is responsible for the selection of ρP,∆P values.

The architecture of the proposed enhanced cruise control strategy is shown in Figure
1. In the control process uP and uK are computed simultaneously. The role of the
supervisor is to select ρP, ∆P and to generate u based on the rule (15).

vehicle and traffic

robust LPV

predictive
yP

yK

uP

uK

u

cruise control

controller

environment

supervisor

ρP

nonlinear

Figure 1
Scheme of the enhanced cruise control strategy

In the proposed enhanced cruise control architecture the selections of ρP,∆P and
ρP,ΛP have high influence on the operation of the system. If the ranges of the
domains are selected small, uP is often saturated due to the limitations of domain
boundaries (16). But, if the ranges ρP,ΛP have insufficiently high values, the resulted
robust LPV controller can be conservative because of the increased robustness
requirements. The objective of ρP,∆P, ρP,ΛP selections is to provide u, with which
uP is approximated, while the primary performances are guaranteed. The objective
results in the maintenance of the secondary performances, when u approximates uP.
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It might be suggested to find a joint control design and supervisor design algorithm,
whose result is the selection of ρP,∆P and ρP,ΛP simultaneously and thus, the
optimization problem

min
ρP,∆P,ρP,ΛP

(u−uP)
2 (17)

is performed. However, the design of the robust LPV control is an offline process,
which requires the preliminary selection of ρP,ΛP, while the selection of ρP,∆P is
influenced by the actual control interventions. Instead of the joint design (17) an
approximation of the optimization is presented, in which the design of the robust LPV
controller with the selection of ρP,ΛP is divided from the design of the supervisor
with the selection of ρP,∆P. The objectives of both design processes are the same, i.e.
the minimization of the difference between u and uP. Although the design processes
are separated, both of them influence the achieved performance level of the enhanced
cruise control.

4 Design of the Supervisory Strategy
The purpose of the supervisor is to provide control force actuation u through the
selection of ρP,∆P, with which the primary performances during the cruising of the
vehicle are guaranteed. The selection is based on the signals uP,uK , which are the
inputs of the supervisor. The output of the supervisor u is constructed through (15),
and moreover, the resulted ρP is used in the operation of the robust LPV control.

The design of the supervisor is based on the simplified longitudinal model of the
vehicle:

mξ̈ = Fl −Fd , (18)

where m is the mass of the vehicle. The state vector is x =
[
ξ̇ ξ

]T
, where ξ

represents the longitudinal motion of the vehicle, w = Fd contains the longitudinal
disturbances and u = Fl involves the longitudinal control force. The state-space
representation of the system is formed as

ẋ = Ax+ B̂1w+ B̂2u, (19)

where x represents the state vector and A, B̂1, B̂2 are matrices in the representation of
the system.

The state-space representation of the system is reformulated using the predefined
control strategy (15), the control input of the robust LPV controller uK is used in the
expression u = ρPuK +∆P. Therefore, the state-space representation of the system
(19) is reformulated through the relationship between u and uK as

ẋ = Ax+B1wK +B2(ρP)uK , (20)

where the disturbance vector wK in the state-space representation (20) is composed
as wK =

[
w ∆P

]T and the matrices are B1 =
[
B̂1 B2

]
and B2(ρP) = B̂2ρP. Thus,

the system is transformed into a robust LPV representation.
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Specification of Conditions to Provide Guarantees on Primary
Performances
The conditions to provide primary performances through the supervisor are specified
based on the derived system formulation (20).

Performance (1) in the supervisor design process is focused on keeping safe distance
from the closest preceding vehicle and from the closest follower vehicle of another
lane, which leads to Np = 1,N f = 1. The goal of this simplification is to use less
communicated data in the computation of ρP,∆P. The selection of the closest vehicles
is performed continuously during the operation of the supervisor based on on-board
sensor measurements. If a vehicle in the region of interest of the sensors is not
found (e.g., the lane of the automated is empty ahead or behind), a virtual vehicle is
considered to be on the bound of the region.

The prediction of the forthcoming distance dkp between the preceding vehicle and the
automated vehicle is formulated based on their accelerations. The time-dependent
function of d̈kp is based on (18) as

d̈kp(t) = η̈
kp(t)− ξ̈ (t) = η̈

kp(t)− Fl(t)
m

+
Fd(t)

m
. (21)

Through the integration of (21) the forthcoming speed difference in time T can be
derived as

ḋkp(T ) =
T∫

0

d̈kp(t)dt =
T∫

0

(
η̈

kp(t)− Fl(t)
m

+
Fd(t)

m

)
dt (22)

The integration requires knowledge about the functions η̈kp(t) and Fd(t). But, it
can be difficult to predict the forthcoming acceleration command of the preceding
vehicle and the forthcoming road disturbances. In case of a safe control strategy,
these functions are substituted by constant values, which are resulted by worst-case
scenarios. It is considered that amin ≤ η̈kp(t)+ Fd(t)

m , where amin represents the worst
case scenario, when the preceding vehicle has maximum deceleration and the road
disturbance has minimum value. The value of amin is a design parameter, which can
be selected based on preliminary experimental results. Using amin, (22) is computed
as

ḋkp(T ) = aminT − Fl

m
T + ḋkp(0) = aminT − Fl

m
T + η̇

kp(0)− ξ̇ (0), (23)

where ḋkp(0) = η̇(0)− ξ̇ (0) is the speed difference at time t = 0 and Fl(t) is assumed
to be constant between 0 and T . The predicted distance between the vehicles is
resulted by the integration of (23), such as

dkp(T ) =
aminT 2

2
− FlT 2

2m
+ η̇

kp(0)T − ξ̇ (0)T + ekp , (24)

where ekp is the measured distance between the preceding vehicle and the automated
vehicle in time T = 0. The prediction in (24) requires measurement of the actual
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distance ekp and the relative speed between the automated vehicle and the preceding
vehicle η̇kp(0)− ξ̇ (0), which can be performed through on-board sensors, e.g., radar.

Similarly, the predicted distance between the automated vehicle and the follower
vehicle k f can be derived from the second derivative of the distance between them as
d̈k f (t) = ξ̈ (t)− η̈

k f (t). The worst-case scenario is characterized by the acceleration
amax through the expression η̈

k f (t) + Fd(t)
m ≤ amax, which leads to the predicted

distance

dk f (T ) =
FlT 2

2m
− amaxT 2

2
+ ξ̇ (0)T − η̇

k f (0)T + e fp . (25)

The formulation of the primary performances, which means that safe distances from
the preceding vehicle and the follower vehicle must be kept, are written as inequalities

aminT 2

2
− FlT 2

2m
+ η̇

kp(0)T − ξ̇ (0)T + ekp ≥ dsa f e, (26a)

FlT 2

2m
− amaxT 2

2
+ ξ̇ (0)T − η̇

k f (0)T + e fp ≥ dsa f e. (26b)

Since u = Fl and u = ρPuK +∆P (15), the inequalities (26) are rewritten as

aminT 2

2
− (ρPuK +∆P)T 2

2m
+ η̇

kp(0)T − ξ̇ (0)T + ekp ≥ dsa f e, (27a)

−amaxT 2

2
+
(ρPuK +∆P)T 2

2m
+ ξ̇ (0)T − η̇

k f (0)T + e fp ≥ dsa f e. (27b)

Thus, it is necessary to select ρP,∆P for given uK to guarantee the inequalities (27),
with which the primary performance of keeping safe distance is guaranteed.

Performance of keeping vehicle speed in a given speed range (2) is also based on the
simplified motion model of the vehicle (18). The predicted speed of the vehicle in T
is resulted through the integration of the acceleration ξ̈ as

ξ̇ (T ) =
T∫

0

(
Fl

m
− Fd

m

)
dt. (28)

Similarly to the derived conditions of keeping safe distance, the worst-case scenario
is considered as |Fd | ≤ Fd,max, where Fd,max is considered to be the upper bound of the
unknown disturbance. If Fd > 0, which means that the disturbance has accelerating
effect, (28) is transformed as FlT

m +
Fd,maxT

m + ξ̇ (0), where ξ̇ (0) is the actual speed of
the automated vehicle and Fl is considered to be constant. If Fd < 0, (28) results in
FlT
m − Fd,maxT

m + ξ̇ (0), which means that Fd decelerates the vehicle. The condition for
keeping vehicle speed in the given range

[
vmin,0;vmax,0

]
is formed as

(ρPuK +∆P)T
m

+
Fd,maxT

m
+ ξ̇ (0)≤ vmax,0, (29a)

(ρPuK +∆P)T
m

−
Fd,maxT

m
+ ξ̇ (0)≥ vmin,0, (29b)

in which relations u = Fl is transformed to ρPuK +∆P (15). Thus, it is necessary to
select ρP,∆P, with which conditions in (29) together with (27) are guaranteed.
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Optimization in the Supervisor Strategy
The selection strategy of ρP and ∆P is based on the optimization, which is presented
in (17). In the supervisory process ρP,∆P are selected during the operation of the
enhanced cruise control system.

The objective of the supervisor is to provide a control input u, which is as close as
possible to uP:(
u−uP

)2 → min. (30)

Through (30) the control force intervention of the enhanced cruise control system
approximates the output signal of the predictive cruise control. Moreover, during the
selection of ρP,∆P the criteria of (27) and (29) must be guaranteed and the constraints
ρP ∈ ρP, ∆P ∈ ΛP must also be satisfied.

The objective (30) using (15) is rearranged to a quadratic form as

(u−uP)
2 =

[
ρP
∆P

]T [u2
K uK

uK 1

][
ρP
∆P

]
+

[
−2uPuK
−2uP

]T [
ρP
∆P

]
+u2

P

=

[
ρP
∆P

]T

β

[
ρP
∆P

]
+ω

T
[

ρP
∆P

]
+u2

P, (31)

in which u2
P is independent from ρP,∆P and thus, it can be eliminated during the

minimization process (30).

The strategy of the supervisor is to compute ρP,∆P during the operation of the cruise
control. In each step the following constrained optimization problem must be solved,
which is yielded from (31) and the constraints (27), (29) together with the bounds on
ρP,∆P:

min
ρL,∆L

[
ρP
∆P

]T

β

[
ρP
∆P

]
+ω

T
[

ρP
∆P

]
, subject to (32a)

− (ρPuK +∆P)T 2

2m
+

aminT 2

2
+ η̇

kp(0)T − ξ̇ (0)T + ekp ≥ dsa f e, (32b)

(ρPuK +∆P)T 2

2m
− amaxT 2

2
+ ξ̇ (0)T − η̇

k f (0)T + e fp ≥ dsa f e, (32c)

(ρPuK +∆P)T
m

+
Fd,maxT

m
+ ξ̇ (0)≤ vmax,0 +S, (32d)

(ρPuK +∆P)T
m

−
Fd,maxT

m
+ ξ̇ (0)≥ vmin,0 −S, (32e)

ρP ∈ ρP, ∆P ∈ ΛP. (32f)

In (32d)-(32e) S is a slack variable. The role of S is to set a hierarchy in the constraints
and to ensure that the optimization problem returns a feasible solution [10]. For
example, if the automated vehicle must be stopped to avoid the collision with a
preceding vehicle and vmin,0 > 0, the constraint (32e) cannot be guaranteed. It leads
to the infeasibility of the optimization problem of (32). It must be avoided by setting
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S to a high value. Since the avoidance of the collision has higher priority than
keeping the speed is the predefined range, the following process must be performed
for the selection of S. S = 0 is selected as a default value. If (32) has feasible
solutions ρP,∆P, control input u = ρPuK +∆P is computed. If (32) is not feasible
with S = 0, S is selected for a high value to guarantee the feasibility. Then, (32) with
the new value of S is solved. The resulted ρP,∆P are applied to provide control input
u = ρPuK +∆P.

5 Design of the Robust LPV-based Cruise Control
System

The aim of the robust LPV control is to provide uK control input signal for the
supervisor. The robust LPV control has importance in the situations, when the output
of the predictive cruise control can violate the primary performances. Nevertheless,
in most of the operation of the enhanced cruise control, uP might be acceptable.
Therefore, uK has importance mainly in critical situations, and in these scenarios
the maintenance of the secondary performances has low priority. Consequently,
it is enough to use the simplified control-oriented model (18) for the robust LPV
control design, with which the objective of the main functionality in cruise control,
such as speed tracking can be specified as z1 = vre f ,0 − ξ̇ , |z1| → min. Moreover,
the minimization of the control input uK must be considered as an objective of the
robust control design: z2 = uK , |z2| → min. The consideration of uK has the role
to guarantee the quantification of z1 through the balance between the objectives.
Furthermore, through z2 the insufficiently high longitudinal control force is avoided.
The objectives z1,z2 are composed in a vector of objectives, such as zK =

[
z1 z2

]T .
Using the state-space formulation of the system (20), zK is formed as zK = C1x+
D11wK +D12uK , where wK is extended as wK =

[
Fd ∆P vre f ,0

]T , C1,D11,D12 are
matrices.

The measurement equation for the robust LPV control design is formed as yK =
vre f ,0 − ξ̇ =C2x+D21wK , where C2,D21 are matrices. If N p = 0, vre f ,0 is get from
static map database of speed limits and the camera-based traffic sign recognition
system of the vehicle. If N p > 0, the speed information of database and the speed
information of the recognition system are limited by radar measurement about η̇ p.
Thus, in the robust LPV control low number of external information is incorporated
and most of the information is based on own sensors.

Finally, the plant for the robust LPV control design is formed as follows:

ẋ = Ax+B1wK +B2(ρP)uK , (33a)
zK =C1x+D11wK +D12uK , (33b)
yK =C2x+D21wK , (33c)

in which ρP is the scheduling variable of the system.

The control design is based on the resulted control-oriented model (33). Scaling of
wK and providing a balance between the elements of zK require a weighting strategy
in the control design method. The closed-loop interconnection structure is presented
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in Figure (2). The interconnection structure contains several weighting functions. The

G(ρP )

K(ρP )

Wz,1

Wz,2

Wn

Wref,0

Wd

z1

z2

n

Fd

uK

ξ̇

vref,0

W∆P

∆P

ρP

Figure 2
Closed-loop interconnection structure for robust LPV control design

weight Wn is related to the sensor characteristics on the velocity error measurement,
where n represent sensor noise. Wd scales the longitudinal disturbance force Fd .
The bound of Fd has also role in the supervisor design. Weight Wd is characterized
as Wd =

Fd,max
Tds+1 , where Td is a tuning parameter, which represents the dynamics of

Fd variation. Similarly, W∆P scales the uncertainty ∆P. This weight is selected in

the form of W∆P =
max(|∆P,min|;|∆P,max|)

T∆2s2+T∆1s+1 , where T∆2,T∆1 are design parameters, which
represent the dynamics of the signal. The role of weight Wre f ,0 is to scale the
reference signal vre f ,0. It is considered as a constant parameter with the supreme of
vmax,0.

Wz,1,Wz,2 are the weights on the control performances, which provide a balance
between them. Weight Wz,1 has important role from the aspect of the minimum
performance level of the cruise control, because it scales the tracking error vre f ,0 − ξ̇ .
The form of the weight is Wz,1 =

ev
Tzs+1 , where Tz is a design parameter and ev is the

expected maximum tracking error. The selected form guarantees that the tracking
error is ev in steady state. The selection of ev must guarantee that ev ≤ vmax,0 − vre f ,0
and ev ≤ vre f ,0 − vmin,0 to avoid the degradation of performance (2). Weight Wz,2
scales the control input uK . Its value is selected as a constant parameter, which
represents the supreme of |uK |.

The quadratic robust LPV problem is to choose the parameter-varying controller
K (ρP,yK) in such a way that the resulting closed-loop system is quadratically stable
and the induced L2 norm from the disturbance wK to the objectives zK is less than
the value γ [11, 12]. The minimization task is the following:

inf
K (ρP,yK)

sup
ρP∈ρP

sup
∥wK∥2 ̸= 0,

wK ∈ L2

∥zK∥2
∥wK∥2

. (34)

The existence of a controller that solves the quadratic robust LPV problem can be
expressed as the feasibility of a set of LMIs, which can be solved numerically. Finally,
the state-space representation of the robust LPV control K (ρP,yK) is constructed
[11, 13], which leads to the control input uK . The input signal uK is incorporated in
the computation of u together with the selection of ρP, ∆P. The control strategy results
in that the minimum performance level of the closed-loop system is determined by
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K (ρP,yK). The computation of the robust LPV controller through the Matlab tool
of [17] can be efficiently performed. Moreover, in the application-oriented papers
[18, 19] further details on the computation and implementation of the robust LPV
control can be found.

The optimization problem (34) shows that the resulting controller depends on the
domains ρP,ΛP, which demonstrates that the selection process of ρP,ΛP and the
robust LPV design are not independent from each other. During the control design it
is necessary to find a balance in the selection of the domain, which is based on an
iteration process.

The goal of the iteration is to find domains ρP,ΛP, with which u approximates uP
(17). It provides that the enhanced cruise control system operates with uP as most as
possible, without the violation of primary performances. The following optimization
is based on scenarios, which are performed in each steps of the iterations:

min
ρP,min,ρP,max
∆P,min,∆P,max

N

∑
j=1

(
u( j)−uP( j)

)2
= min

ρP,min,ρP,max
∆P,min,∆P,max

N

∑
j=1

(
ρP( j)uK( j)+∆P( j)−uP( j)

)2
,

(35)

where j expresses the time step and N is the length of a given scenario.

The solution of the optimization problem (35) begins with domains with high ranges,
which are reduced through the following iteration process.

1. The domain of the scheduling variable ρP = [ρP,min;ρP,max] and the domain of
the uncertainty ΛP = [∆P,min;∆P,max] are selected high in the first step, which
can result in a conservative robust LPV controller.

2. The robust LPV control with the selected domains is designed using (34).

3. The closed-loop system with the incorporation of the designed K (ρP,yK) and
the domains ρP, ΛP are analyzed through various scenarios. It yields in the
signals λ and ξ̇ , from which the cost in (35) for the scenario is calculated.

4. Due to the results of the scenarios the boundaries are modified to reduce the
cost function of the optimization problem (35). The setting of the variables in
the optimization can be performed through e.g., simplex search or trust region
reflective methods, see [14, 15].

5. The robust LPV design, the scenarios and the evaluation (see steps 2-4) are
performed until the cost (35) is higher than ε , where ε > 0 is a previously
selected parameter.

The results of the entire iteration process are the robust LPV controller K (ρP,yK)
and the domains ρP, ΛP.

6 Illustration of the Enhanced Cruise Control Strategy
The effectiveness of the enhanced cruise control method is demonstrated in simulation
examples. Two simulations are presented, which focus on the avoidance of primary
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performance degradation in various scenarios.

6.1 Cruising on a Congested Highway
In the first simulation example the automated vehicle travels on a section of the hilly
Hungarian M1 highway, which interconnects the capital cities Budapest and Vienna.
In the example there is an accident on the highway (see 5000m segment point in
Figure 3(a)), which results in a congestion. The traffic control system provides
information about the reduction of the traffic speed between 3500m−5000m, see
Figure 3(a).

The automated vehicle incorporates the traffic speed information in its enhanced
cruise control strategy through vre f ,i (see Section 2). Since the automated vehicle has
1000m prediction horizon in the example, the information about the reduced traffic
speed is considered from 2500m. It results in the reduction of the vehicle speed (see
Figure 3(b)), with which an energy-efficient motion can be achieved through the
approaching to the accident [7]. Moreover, there is a preceding vehicle ahead of the
automated vehicle, which stops at 3800m, when the congestion is reached, see its
speed profile in Figure 3(b). The goal of the enhanced cruise control is to provide
minimum control force in the cruising, while the safe distance dsa f e = 20m from the
preceding vehicle is guaranteed, especially at the stop of the preceding vehicle. The
distance between the vehicles is illustrated in Figure 3(c). It can be seen that the
safety distance 20m is guaranteed in the given example. The control signal u and
the values of ρP,∆P are illustrated in Figure 3(d)-(f). At the end of the simulation,
when the distance is reduced, ρP is set to zero and ∆P is also reduced. It results in
the tracking of the preceding vehicle speed (close to zero) through the control input
of the robust LPV control.

(a) Altitude of the road sec-
tion

0 1000 2000 3000 4000
0

20

40

60

80

100

120

Position (m)

S
pe

ed
 (

km
/h

)

 

 

automated vehicle
preceding vehicle

(b) Vehicle speed

0 1000 2000 3000 4000
10

20

30

40

50

60

70

Position (m)

η 0−
ξ 0 (

m
)

(c) Distance of vehicles

0 1000 2000 3000 4000
−1.5

−1

−0.5

0

0.5

1
x 10

4

Position (m)

u 
(N

)

(d) Control signal u

0 1000 2000 3000 4000
1

2

3

4

5

6

Position (m)

ρ P

(e) Scheduling variable ρP

0 1000 2000 3000 4000
−20000

−15000

−10000

−5000

0

5000

Position (m)

∆ P
 (

N
)

(f) Uncertainty ∆P

Figure 3
Simulations of lane change scenario
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6.2 Overtaking Scenario with Degradation
in the Communication

The second simulation example presents a lane change scenario, in which the vehicle
in the inner lane of a two-lane road overtakes a slower vehicle. There is also
a preceding vehicle in the inner lane, which has higher speed, compared to the
automated vehicle. In this situation the automated vehicle cannot change lane due to
the overtaken vehicle, which is in the outer lane. Moreover, the vehicles in the inner
lane also cannot be forced to reduce their speed, which means that the automated
vehicle must be accelerated. The goal of the cruise control is to minimize the control
force of the automated vehicle, while the safe distance between the vehicles is
guaranteed.
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Simulations in overtaking scenario

In the example three scenarios are illustrated. In all scenarios the automated vehicle
has information about the longitudinal acceleration, the speed and the position of
the preceding vehicle through V2V communication, which is used in the predicted
cruise control system to compute R, see (11). In ScenarioA the time delay related to
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the communication is 0.05s, which is considered to be the nominal time delay value,
while in ScenarioB and in ScenarioC the V2V communication has a degradation
in the time delay, which is increased to 0.5s. In ScenarioA and in ScenarioB the
automated vehicle uses the presented predictive cruise control (u ≡ uP), while in
ScenarioC the enhanced cruise control structure is in the loop, which also uses
onboard distance measurement about the distance between the vehicles. The purpose
of the simulation examples is to illustrate that the proposed enhanced cruise control
method is able to guarantee the safe distance, even if the V2V communication delay
is degraded.

Figure 4(a) shows vehicle speed and Figure 4(b) illustrates the distance between
the vehicles in each scenarios. In ScenarioA the predictive cruise control is able to
guarantee the safe distance 20m, which is resulted by the increase of its speed to
100km/h. The increase of the speed is resulted by the reduction of R (Figure 4(c)),
which is computed based on the reduction of the predicted distances, see e.g., section
0 . . .200m of ScenarioA in Figure 4(d). It induces sharp increase in uP, see Figure
4(e). Thus, the predicted cruise control is able to guarantee the safe distance, if the
signals in the communication have low time delay value.

If time delay is increased, the predictions of the distances in ScenarioB significantly
differ from the predictions in ScenarioA, see Figure 4(d). Due to the increased time
delay the preceding vehicle is predicted to have significantly smaller acceleration,
which means that the automated vehicle focuses on the minimization of the control
force. The increased R (Figure 4(c)) leads to reduced uP (Figure 4(e)), which results
in reduced speed profile (Figure 4(a)). Consequently, the safe distance between the
vehicles is not kept (Figure 4(b)), which can force the preceding vehicle to unwanted
braking intervention.

The resulted speed profile in ScenarioC is illustrated in Figure 4(a). Since the
supervisor uses the onboard measurement about the distance between the vehicles,
the reduction in ξ0 −η0 is perceived. It leads to the reduction of ρP and ∆P, with
which the tracking of vre f ,0 is highlighted. The resulted control signal u of ScenarioC
(Figure 4(f)) is close to the uP of ScenarioA, which results in keeping safe distance
(Figure 4(b)). Thus, the enhanced cruise control system is able to guarantee safe
distance, even if the time delay in the communication is significantly increased.

Conclusions
The proposed enhanced cruise control strategy is able to provide guarantees on the
specified primary performances for automated vehicles. The consequence of the
proposed method is that in most of the cruise control operation, requirements against
the secondary performances (e.g., energy-efficient motion of the automated vehicle)
can be maintained, while the primary performances are guaranteed in the entire
operation of the control. The effectiveness of the control strategy is illustrated by
simulation scenarios.

The proposed enhanced cruise control strategy is independent from the internal
structure of the predictive optimal cruise control. Therefore, the future challenge
of the method is its application to provide guarantees for further cruise control
algorithms, e.g., learning-based cruise control methods.
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