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Abstract: Skeletons are widely used shape descriptors which summarize the general form of 

binary objects. There exist numerous skeletonization techniques that produce various 

skeleton-like features for the same object. Despite of the fact, that some researchers have 

made efforts to compare skeletons and evaluate skeletonization algorithms, we propose a 

new similarity measure that is based on the concept of normalized distance maps. In 

addition, a novel method for the quantitative comparison of skeletons is also presented. The 

reported method uses a high resolution dataset containing pairs of elongated objects and 

their expected skeletons. Our method is validated with the help of generalized 

morphological skeletons driven by neighborhood sequences. Based on the proposed 

method, we compared and ranked nineteen existing 2D thinning algorithms. 

Keywords: skeleton; comparison of skeletons; generalized morphological skeleton; 

neighborhood sequences 

1 Introduction 

Skeleton is a region-based shape descriptor which represents the general form of 

objects. It plays important role in various applications in image processing and 

pattern recognition. The skeleton of a 2D continuous object can be defined as the 

set of the centers of all maximal inscribed (open) disks [1]. A disk is maximal 

inscribed if it is included in the considered object, but it is not covered by any 

other inscribed disk. 
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Skeletonization means a process for producing an approximation to the skeleton of 

a discrete/digital object. There exist various skeletonization techniques that 

produce different skeleton-like features for the same object [2]. For example 

Németh and Palágyi presented 21 new algorithms in a single paper [3]. 

Some researchers have made efforts to compare skeletons and evaluate 2D 

skeletonization algorithms [4] [5] [6] [7]. They proposed some similarity measures 

between two skeletal sets that do not take the original elongated objects into 

account. The only exception is the measure of reconstructibility [5], but it may 

view numerous sets of points as “best” skeletons of an object. This is why we 

propose some new types of similarity measures that are based on normalized 

distance maps. 

In this paper we propose a novel method, for the quantitative comparison of 

skeletons. The two key components of our method are a specific similarity 

measure for skeletons and the created gold standard image database containing 55 

pairs of reference 2D images and their expected skeletons. The proposed method 

is validated with the help of generalized morphological skeletons driven by 

comparable neighborhood sequences. According to our experiments, the reported 

method can be used for evaluating arbitrary skeletonization algorithms. 

Note that, our first attempt at this was published in a conference paper [8]. In that 

work the generalized morphological skeletons driven by neighborhood sequences 

were compared by using a small test database (containing just ten pairs of images) 

and we applied a similarity measure that ignore the original images. 

The rest of the paper is organized as follows. Section 2 provides a method for 

creating a gold standard image database for comparison of skeletons. In Section 3, 

we propose some new similarity measures to give to the distance between two 

kinds of skeletons extracted from the same object. Section 4 reports the 

generalized morphological skeletons are combined with neighborhood sequences, 

furthermore we validate the proposed method with the help of generalized 

morphological skeletons driven by comparable neighborhood sequences. Section 5 

compares 19 existing 2D thinning algorithms. Finally, we round off the paper with 

some concluding remarks. 

2 Creation of Gold Standard Images 

In this section a technique is reported for creation of gold standard images that are 

suitable for quantitative comparison of skeletons. It involves the following steps: 

1) The selection of base images 

2) The creation of reference skeletons 

3) The generation of reference images 

These steps will now be described in more detail. 
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2.1  Selection of Base Images 

We collected 55 high resolution binary images of different shapes. Here the 

selected images are called base images. Note that there are some collections of 

binary images (say the Kimia 216 dataset), but they contains rather small 

silhouettes with several thin parts. Hence all skeletonization algorithms are 

obliged to produce similar results for those images. 

2.2 Creation of Reference Skeletons 

Skeletonization algorithms need to take the following requirements into account: 

 Force the “skeleton” to retain the topology of the original image (i.e., 

skeletonization must be a topology-preserving reduction [9])  

 Force the “skeleton” to be in its geometrically correct position (i.e., in the 

“center” of the object) 

 Produce a minimal structure (i.e., the desired “width” of the “skeleton” is 

one point)  

Our aim was to create the kind of reference skeletons from the base images that 

would meet these three conditions. In order to fulfill the first requirement, we 

extracted a topologically correct raw skeleton from each base image using the 

topology-preserving thinning algorithm AK
2
 [10]. These raw skeletons may 

include some unwanted side branches. So as to satisfy the other two conditions, 

raw skeletons were corrected. This pruning process could be performed 

automatically [11], but we edited the 55 raw skeletons manually. As a result, our 

reference skeletons satisfy all of the three conditions listed above. 

Note that method for generating reference skeletons from the base images is not 

significant, since any topologically correct skeletonization algorithms would do. 

2.3 Generation of Reference Images 

It must not be assumed that a reference skeleton is the expected skeleton of the 

corresponding base image. Hence we constructed reference images to replace base 

images. 

The first step is to calculate (error free) Euclidean distance maps from the white 

(i.e., non-object) points of base images, where each element p has a value that 

gives the Euclidean distance to the nearest white point [12] [13]. The Euclidean 

distance map is defined as follows:  

𝐷𝑀𝑤𝐵𝐼(𝑝) = min𝑞∈𝑤𝐵𝐼 𝑑𝐸 (𝑝, 𝑞), (1) 

where wBI and 𝑑𝐸(𝑝, 𝑞) denote the set of white points in base image BI and the 

Euclidean distance between points p and q, respectively. Note that DMwBI  is stored 

in an array of floating point numbers. 
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Figure 1 
Creating a pair of reference skeleton and reference image. A 115×90 base image of an elephant (a); its 

raw skeleton (b); Euclidean distance map calculated from the white points of the base image (c); 

reference skeleton (d); the reference image (here we used the raw skeleton) (e); the difference image 
(i.e., “base image” XOR “reference image”) (f). 

The set of object points RI in the reference image is generated as follows: 

𝑅𝐼 =  ⋃ ∆𝐸(𝑝, 𝐷𝑀𝑤𝐵𝐼(𝑝))𝑝∈𝑅𝑆  (2) 

where RS is the set of skeletal points in the corresponding reference skeleton, 

DMwBI is the Euclidean distance map calculated from the white points in the base 

image BI, and ∆E(p,r) denotes the “best” discrete approximation to the Euclidean 

disk of radius r∈ℝ centred at point p∈ℤ2
, that is, 

∆𝐸(𝑝, 𝑟) = {𝑞 | 𝑞 ∈ ℤ
2, 𝑑𝐸(𝑝, 𝑞) ≤ 𝑟} (3) 

In other words, the generated reference image RI is the union of disks that are 

centred at skeletal points in RS and the radii of these disks are determined by using 

the Euclidean distance map DMwBI . 

Figure 1 provides an illustrative example of creating a pair of reference skeleton 

and reference image. One may say that the procedure of reference skeleton 

construction introduces a strong bias. These reference skeletons are subjective 

indeed. That is why we do not consider reference skeletons as expected ones of 

the base images. Reference images paired with reference skeletons differ from the 

corresponding base images (see Figure 1f). We assumed that the reference 

skeleton RS is the expected discrete skeleton of the reference image RI. Note that 

it is not guaranteed, that for each p∈RS, disk ∆E(p,DMwBI(p)), is a maximal 

inscribed one in RI, but we insist that reference skeletons satisfy all the three 

conditions for skeletonization methods. 

All of the 55 pairs of reference images and reference skeletons, are available at 
https://www.inf.u-szeged.hu/~gnemeth/compskel/ 
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3 Similarity Measures for Skeletons 

3.1 Existing Similarity Measures 

If we have a gold standard (i.e., reference skeleton images associated with 

reference images of elongated objects), then measuring the goodness of skeletons 

produced by an algorithm seems to be a fairly simple task. Numerous measures 

have been proposed to define the similarity/distance between two sets of points [4] 

[5] [6].  

Let us consider the frequently applied Hausdorff distance between two (arbitrary) 

sets of points P and Q, which may be defined as follows [14]: 

𝐻(𝑃, 𝑄) = max{ max𝑝∈𝑃min𝑞∈𝑄 𝑑𝐸(𝑝, 𝑞),  max𝑞∈𝑄min𝑝∈𝑃 𝑑𝐸(𝑝, 𝑞) }, =

max { max𝑝∈𝑃 𝐷𝑀𝑄(𝑝) ,max𝑞∈𝑄 𝐷𝑀𝑃(𝑞) } (4) 

where DMP(q) denotes the value of the Euclidean distance map calculated from 

the set of points P at position q. 

In our first attempt, we sought to make a comparison of the skeleton S (extracted 

from a reference image) with the corresponding reference skeleton RS using the 

similarity measure H(S,RS), but it did not work. Just one salient point (like an 

endpoint of an unwanted line segment) in S may determine H(S,RS), hence it is 

not a fair assessment of a method. 

Lee, Lam, and Suen [5] proposed a sophisticated similarity measure between two 

skeletons P and Q which is defined by the following Formula (5): 

𝐶(𝑃, 𝑄) = (
1

#(𝑃)
∑

1

𝐷𝑀𝑄(𝑝)
2+1𝑝∈𝑃 +

1

#(𝑄)
∑

1

𝐷𝑀𝑃(𝑞)
2+1𝑞∈𝑄 ) / 2 (5) 

where #(P) denotes the number of points in set P. 

Similarly to the Hausdorff distance and others proposed in some studies [4] [5] 

[6], measure C does not take into account the original (elongated) object. Hence 

we do not regard these similarity measures as acceptable for evaluating skeletons. 

Skeletons should be treated as special kinds of sets of points. 

Lee, Lam, and Suen [5] proposed an additional measure that takes the original 

object into account. This measure of reconstructibility is defined by the formula 

𝛼(𝑆, 𝐼) =
#(⋃ ∆𝐸(𝑝,𝐷𝑀𝑤𝐼(𝑝))𝑝∈𝑆 )

#(𝐼)
 (6) 

where S is a “skeleton” of object I. The measure takes values from the interval 

[0,1], since ⋃ ∆𝐸(𝑝, 𝐷𝑀𝑤𝐼(𝑝))𝑝∈𝑆 ⊆ 𝐼. They say that: α(S,I)=1 means that S is 

identical to the “best” skeleton of image I. Unfortunately, this is not always the 

case. There is no guarantee that an Euclidean disk included in I and centred at 

𝑝 ∈ 𝑆 with radius ∆𝐸(𝑝, 𝐷𝑀𝑤𝐼(𝑝)) will be a maximal inscribed one. One can 

construct various sets of point S⊆I such that ⋃ ∆𝐸(𝑝, 𝐷𝑀𝑤𝐼(𝑝))𝑝∈𝑆 = 𝐼. In 
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addition, it is not hard to see that α(I,I)=1 (for any object I), but an elongated 

object may not be treated as the “best” skeleton of itself. 

Note that Couprie and Bertrand [15] also proposed some measures (i.e., 

spuriousness factor, reconstruction error, thickness factor) between 3D curve-

skeletons, however these measures can be calculated in a complex way 

furthermore do not consider the thickness of different parts of objects. In addition, 

their approach does not yield a fully automated method. 

Sobieczki et. al. [16] [17] also investigated some similarity measures to compare 

3D mesh-contraction-based curve-skeletonization algorithms. Unfortunately, they 

assumed mesh representation, hence their method cannot be applied for pixel-

based images. 

Some shape matching algorithms are based on skeletal graphs. Skeletal graphs are 

derived from 3D curve-skeletons or 2D centerlines in which endpoints and 

junction points represents the set of nodes/vertices, and there is an edge between 

two nodes if the corresponding pixels/voxels are connected by a skeletal path. 

These methods consider pruned skeletons (i.e., some unwanted branches are 

removed [11]), and they are based on some time consuming graph matching 

methods [18] [19] [20] [21] [22]. Unfortunately, the similarity measures that are 

used in graph matching methods are not skeleton-specific ones, they assume 

general sets of points, and do not take the original object into consideration. 

Note that chamfer matching [23] [24] could also yield a similarity measure, where 

the query and the target contours are the two skeletons to be compared. 

Unfortunately, the original object would be also ignored, and chamfer distances 

are to approximate the Euclidean metric with integers (or rational numbers). 

Despite the wealth of previously proposed similarity measures, we looked for new 

ones. It should be mentioned that in our previous paper [8], we applied five kinds 

of similarity measures which also ignored the original objects. 

3.2 Distance Map Normalization 

From the results of our experiments, we came to realize that not every skeletal 

point is equally important (i.e., positioning error of a certain size in a “thin” part is 

much more serious than the same error in a “thick” segment). This is why we 

propose a normalized distance map which is defined as: 

𝐷𝑀𝑆,𝑤𝐼 = 𝐷𝑀𝑆/(𝐷𝑀𝑆 + 𝐷𝑀𝑤𝐼) (7) 

where S is a set of skeletal points that is extracted from the image I by a 

skeletonization algorithm. (Note that “/” and “+” merely denote the point-by-point 

division and addition of two arrays of floating point numbers which have the same 

size, respectively.) Figure (2) shows normalized distance maps for five kinds of 

skeletons (see Section 4).  
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𝐷𝑀𝑅𝑆,𝑤𝑅𝐼 

 

𝐷𝑀𝑆𝑆(𝑅𝐼,<1>),𝑤𝑅𝐼 

 

𝐷𝑀𝑆𝑆(𝑅𝐼,<2>),𝑤𝑅𝐼 

 

𝐷𝑀𝑆𝑆(𝑅𝐼,<1,2>),𝑤𝑅𝐼 

 

𝐷𝑀𝑆𝑆(𝑅𝐼,𝒜𝑜𝑝𝑡),𝑤𝑅𝐼 

Figure 2 

A reference image RI (see Fig. 1e); the corresponding normalized distance maps of its reference 
skeleton RS (see Fig. 1d) and the four kinds of skeletons shown in Fig. 5 

It can readily be seen that the following three properties hold: 

 0 ≤ 𝐷𝑀𝑆,𝑤𝐼(𝑝) ≤ 1 for each point p∈wI 

 𝐷𝑀𝑆,𝑤𝐼(𝑝) = 0 if and only if p∈S 

 𝐷𝑀𝑆,𝑤𝐼(𝑝) = 1 if and only if p∈wI 

3.3 A New Similarity Measure Based on Normalized Distance 

Maps 

Let us consider the following measure between a skeleton S of image I and a 

normalized distance map 𝐷𝑀𝑆,𝑤𝐼: 

𝐷𝑎𝑣𝑔(𝑆, 𝐷𝑀𝑆,𝑤𝐼) =
1

#(𝑆)
∑ 𝐷𝑀𝑆,𝑤𝐼(𝑝)𝑝∈𝑆  (8) 

We are now ready to introduce a new similarity measure that is recommended for 

comparing two skeletons: 

𝐴𝐴𝐼(𝑆1, 𝑆2) = (𝐷𝑎𝑣𝑔(𝑆1, 𝐷𝑀𝑆2,𝑤𝐼
) + 𝐷𝑎𝑣𝑔(𝑆2, 𝐷𝑀𝑆1,𝑤𝐼

)) /2  (9) 

where S1 and S2 are two skeletal sets of points that are extracted from the same 

image I (S1,S2⊆I). In addition the following three properties hold for the similarity 

measure AA (for any S1, S2, and I): 

 0 ≤ 𝐴𝐴𝐼(𝑆1, 𝑆2) ≤ 1 

 𝐴𝐴𝐼(𝑆1, 𝑆2) = 𝐴𝐴𝐼(𝑆2, 𝑆1) 
 𝐴𝐴𝐼(𝑆1, 𝑆1) = 0 
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We should stress here, that the smaller value means a better similarity between the 

two skeletons in question. 

3.4 Goodness of Similarity Measures 

Consider two skeletonization techniques T1 and T2 that produce skeletal sets of 

points T1(I) and T2(I) for image I. Suppose that it is known that T1 is better than T2 

(i.e., T1 can produce more reliable skeletons than T2). Let (RI,RS) be a pair of 

reference image and its reference skeleton. 

We say that the similarity measure SM is reasonable for (RI,RS) if 

𝑆𝑀𝑅𝐼(𝑇1(𝑅𝐼), 𝑅𝑆) ≤  𝑆𝑀𝑅𝐼(𝑇2(𝑅𝐼), 𝑅𝑆)  (10) 

The purpose of our experiments was to show that the proposed similarity 

measures is reasonable. The question is: How to find such comparable 

skeletonization techniques T1 and T2? 

4 Validation 

4.1 Comparable Skeletons 

In this section a new family of skeletons called sequence skeletons are introduced. 

These skeletons are not competitive with others produced by some existing 

skeletonization algorithms but we can validate our comparison method with the 

help of them. 

Mathematical morphology, developed by Matheron and Serra [25], is a powerful 

tool for image processing and image analysis. Its operators can extract relevant 

topological and geometrical information from images by using structuring 

elements (i.e., geometric templates to probe some properties of interest) of various 

shapes and sizes. We use the fundamental concepts and notions of mathematical 

morphology as reviewed by Gonzalez and Woods [26]. 

4.1.1 Neighborhood Sequences and their Disks 

The aim of this subsection is twofold. First, notions and results related to 

neighborhood sequences and the derived discrete distances will be reviewed in 

brief. Second, the disks corresponding to the neighborhood sequences will be 

formally expressed in terms of dilations (i.e., fundamental morphological 

operations) [26]. 

We will now present some basic notions and results concerning neighborhood 

sequences. 



Acta Polytechnica Hungarica Vol. 13, No. 7, 2016 

 – 131 – 

Let n,m ∈ ℕ with m ≤ n. Two points p=(p1, …, pn) and q=(q1, …, qn) in ℤn
 are said 

to be m-adjacent if both of the following conditions are satisfied: 

 |𝑝𝑖 − 𝑞𝑖| ≤ 1  (𝑖 ∈ {1,2, … , 𝑛}) 
 ∑ |𝑝𝑖 − 𝑞𝑖| ≤ 𝑚

𝑛
𝑖=1  

Note that these relations are reflexive and symmetric. In the case of n=2 (i.e., the 

2-dimensional orthogonal grid), 1– and 2–adjacency relations are often referred to 

as 4– and 8–adjacencies, respectively [9]. 

The sequence 𝒜=<A(1),A(2),…> is called an nD–neighborhood sequence if  

A(i)∈{1, 2, …, n} for all i∈ℕ. If for some t∈ℕ, we have A(i+t)=A(i) for all  

i∈ℕ, then the neighborhood sequence 𝒜 is called periodic with period t. For 

simplicity, let 𝒜=<A(1),…,A(t)> stand for a periodic neighborhood sequence 

having a period t. 

Let 𝒜=<A(1),A(2), …> be an nD–neighborhood sequence. The sequence of 

points <r0,…, rl> (rj∈ℤ
n
, j∈{0,…, l}) is an 𝒜-path of length l (l ≥ 0) from point p 

to point q if p=r0, q=rl, and rj−1 and rj are A(j)-adjacent for all j (j∈{1, …, l}). 

Let d𝒜 (p, q) stand for the 𝒜-distance between two points p and q. It is defined as 

the length of the shortest 𝒜-path(s) between p and q. 

As we are considering 2D binary images, we shall now examine 2D neighborhood 

sequences. According to the definitions above, 2D–neighborhood sequences may 

contain two kinds of elements, namely “1” and “2”. Notice that distances d<1>, 

d<2>, and d<1,2> correspond to cityblock, chessboard, and octagonal distances, 

respectively [27]. It can readily be seen that there exist an infinite number of 

possible neighborhood sequences. The trick is to choose the neighborhood 

sequence which gives the best approximation to the Euclidean distance. The 

existence of the best approximating neighborhood sequence was proved in [28]. 

This non-periodic sequence is: 

𝒜𝑜𝑝𝑡 = < 2,1,1,1,2,1,2,1,1,2,1,1, . . . > (11) 

Let dE(p, q) represent the Euclidean distance between the two points p and q in ℤ2
. 

A natural partial ordering relation “≼” can be defined for 2D–neighborhood 

sequences 𝒜1 and 𝒜2. 

If |d𝒜1(p, q) − dE(p, q)| ≤ |d𝒜2(p, q) − dE(p, q)| (for any two points p and q), then 

𝒜1 ≼ 𝒜2 (i.e., 𝒜1 is better than 𝒜2). 

The following conditions hold for the four neighborhood sequences under 

comparison [28]: 

𝒜𝑜𝑝𝑡 ≼ < 1,2 > ≼ < 1 >                   

𝒜𝑜𝑝𝑡 ≼ < 1,2 > ≼ < 2 > (12) 
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Figure 3 
Sample disks corresponding to the cityblock, chessboard, and octagonal distances of radii up to 4. The 

points denoted by a “0” are the origin and each point denoted by r≤k belongs to a disk of radius k. 

 

<1> 

 

<2> 

 

<1,2> 

 

𝒜𝑜𝑝𝑡 

Figure 4 

Approximations of the Euclidean disk of radius 96 (represented as a black circles) considering four 

neighborhood sequences <1>, <2>, <1,2>, and 𝒜𝑜𝑝𝑡. 

𝒜𝑜𝑝𝑡 ≼ < 1,2 > ≼ < 1 >                   

𝒜𝑜𝑝𝑡 ≼ < 1,2 > ≼ < 2 >Let us consider the discrete distance d𝒜 based on the 

neighborhood sequence 𝒜. The corresponding discrete disk of radius k (k=0,1, …) 

centred at the origin 𝒪 is defined by 

∆𝒜(𝑝) = { 𝑝 | 𝑑𝒜(𝒪, 𝑝) ≤ 𝑘 } (13) 

Figure 3 shows some discrete disks derived from the three periodic discrete 

distances d<1>, d<2>, and d<1,2>. 

It is well known that the neighborhood sequences <1> and <2> (which are 

composed of only one kind of adjacency relation) are diamond–shaped and 

square–shaped, respectively, and we can get various octagon–shaped discrete 

disks if both relations are combined. 

In order to get discrete disks based on neighborhood sequences in terms of 

dilations, we will assign structuring elements to adjacency relations. 

Let us consider the m-adjacency in ℤ2
 (m=1,2). The structuring element Y(m) for 

the m-adjacency is defined by: 

𝑌(𝑝) = { 𝑝 | 𝑝 ∈ ℤ2 such that 𝑝 is 𝑚-adjacent to 𝒪 }  (14) 

Since m-adjacency is a reflexive and symmetric relation over ℤ2
, the structuring 

element Y(m) contains the origin and it is symmetric, i.e., if p=(p1,p2)∈Y(m), then 

−p=(−p1,−p2)∈Y(m). 
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It can readily be seen that the discrete disk ∆𝒜(k) can be expressed in terms of 

dilations (denoted by “⊕” [26]) as follows 

∆𝒜(𝑘) = {
{𝒪} if 𝑘 = 0

∆𝐸(𝑘 − 1)⨁𝑌(𝐴(𝑘)) otherwise
 

              = (… ({𝒪}⨁𝑌(𝐴(1)))⨁…) ⨁𝑌(𝐴(𝑘))   (15) 

Approximations of Euclidean disks with the structuring elements (or discrete 

disks) derived from four kinds of neighborhood sequences are illustrated in  

Figure 4. 

4.1.2 Generalized Morphological Skeletons Driven by 

Neighborhood Sequences 

The skeleton of a discrete binary image can be characterized via morphological 

operations. In this section first the conventional morphological skeleton that just 

uses one structuring element will be reviewed. Then we will focus on the 

generalized morphological skeletons that are driven by neighborhood sequences. 

The 2D morphological skeleton S(X,Y) of a discrete set of points X⊂ℤ2
 (i.e., object 

points in a 2D binary image) determined by a structuring element Y consists of the 

centers of all maximal inscribed discrete disks of radius k (k=0,1,...) [26]. With 

this approach, the structuring element Y is assumed to be the unit disk (i.e., a disk 

of radius 1) and the discrete disk Y
k
 of radius k is derived from Y by successive 

dilations: 

𝑌𝑘 = {
{𝒪} if 𝑘 = 0,

𝑌𝑘−1⨁𝑌 otherwise
 

       = (… (({𝒪}⨁𝑌)⨁𝑌)⨁…)⨁𝑌⏟                  
𝑘−times

 (16) 

A point p∈X is the center of a maximal inscribed discrete disk of radius k  

(k =0,1,…) if p∈X⊖Y
k
 and p∉(X⊖Y

k+1
)⊕Y , where “⊖” denotes the erosion (i.e., 

a fundamental morphological operation that is dual to dilation) [26]. 

For this reason, the morphological skeleton MS of a set X determined by a 

structuring element Y is defined by: 

𝑀𝑆(𝑋, 𝑌) = ⋃ 𝑀𝑆𝑘(𝑋, 𝑌)
𝐾
𝑘=0   

= ⋃ (𝑋 ⊖ 𝑌𝑘) − [(𝑋 ⊝ 𝑌𝑘+1) ⊕ 𝑌]𝐾
𝑘=0   (17) 

where K is the radius of the largest inscribed disk. In other words, 

𝐾 = max { 𝑘 | 𝑋 ⊖ 𝑌𝑘 ≠ ∅ } (18) 

According to the formulation defined by (17) and (18), the morphological skeleton 

is the union of the disjoint skeletal subsets, where MSk(X, Y) contains the centers 

of all maximal inscribed disks of radius k (k=0,1, ..., K). An interesting property of 
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the morphological skeleton is that, a set X, can be exactly reconstructed from the 

K+1 skeletal subsets: 

𝑋 = ⋃ 𝑀𝑆𝑘(𝑋, 𝑌) ⊕ 𝑌𝑘𝐾
𝑘=0  (19) 

The main limitation of a morphological skeleton is that its construction is based on 

“disks” of the form Y
k
. If the chosen structuring element Y=Y(m) (m=1,2) (see 

(14)), then the discrete disk Y
k
=∆<m>(k) (see (15)). Discrete disks Y

k
=∆<1>(k) and 

Y
k
=∆<2>(k) do not give “good” approximations to the Euclidean disks (see Figure 

4), hence we suspect that morphological skeletons are probably not “close” to the 

expected skeleton. 

In order to reduce the shortcomings of the conventional morphological skeleton, 

Maragos proposed generalized morphological skeleton transforms that allows us 

to use varying structuring elements in different steps [29]. In his approach, the 

structuring element Y
k
 (i.e., a discrete disk of radius k, see (16)) can be replaced by 

{O}⊕Y1⊕. . .⊕Yk, where <Y1, …, Yk> is the prefix of length k of an arbitrary 

sequence structuring elements (k = 0, 1, …). 

These generalized morphological skeletons can be combined with neighborhood 

sequences by using the sequence of structuring elements  

< 𝑌(𝐴(1)), 𝑌(𝐴(2)), … > which are related to the neighborhood sequence 

𝒜 =< 𝐴(1), 𝐴(2), … >. 

This sequence skeleton makes use of discrete disks ∆𝒜(k) (k = 0, 1, …) (see (15)).  

The sequence skeleton SS of a X⊆ℤ2
 driven by a neighborhood sequence 𝒜 is 

defined by 

𝑆𝑆(𝑋,𝒜) = ⋃ 𝑆𝑆𝑘(𝑋,𝒜)
𝐾
𝑘=0  (20) 

where 

𝑆𝑆𝑘(𝑋,𝒜) = (𝑋 ⊝ Δ𝒜(𝑘)) − [(𝑋 ⊖ Δ𝒜(𝑘 + 1)) ⊕ 𝑌(𝐴(𝑘 + 1))]  (21) 

and K is the radius of the largest inscribed disk; that is 

𝐾 = max { 𝑘 | 𝑋 ⊝ Δ𝒜(𝑘) ≠ ∅ }  (22) 

With this formulation defined by (20) and (22), the sequence skeleton is the union 

of disjoint skeletal subsets, where 𝑆𝑆𝑘(𝑋,𝒜) contains the centers of all maximal 

inscribed disks ∆𝒜(k) (k=0, 1, . . . ,K). 

It is easy to see that in the 𝒜=<m> case (m=1,2) 

𝑆𝑆(𝑋,𝒜) = 𝑀𝑆(𝑋, 𝑌(𝑚)) (23) 

thus the conventional morphological skeleton is a special case of sequence 

skeletons. Some illustrative examples of sequence skeletons are given in Fig. 5. 
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X 

 

𝑆𝑆(𝑋,< 1 >) = 𝑀𝑆(𝑋, 𝑌(1)) 

 

𝑆𝑆(𝑋,< 2 >) = 𝑀𝑆(𝑋, 𝑌(2)) 
 

 

𝑆𝑆(𝑋, < 1,2 >) 

 

𝑆𝑆(𝑋,𝒜opt) 

Figure 5 

A 115 × 90 image of an elephant and its sequence skeletons driven by four kinds of neighborhood 
sequences. Notice that the first two sequence skeletons are also conventional morphological skeletons. 

The reconstruction formula from the sequence skeleton SS(X,𝒜) is analogous to 

(19), hence: 

𝑋 = ⋃ 𝑆𝑆𝑘(𝑋,𝒜) ⊕ ∆𝒜(𝑘) .
𝐾
𝑘=0  (24) 

This means that like the conventional morphological skeletal subsets, the subsets 

of the sequence skeleton also fully represent the original set of points [29] [30]. 

Next, note that the connectivity of the conventional morphological skeletons and 

sequence skeleton is not guaranteed (i.e., these skeletons are not connected and 

topologically correct for numerous connected objects). 

It is known that the non–periodic neighborhood sequence 𝒜opt (see (11)) provides 

the best approximation to the Euclidean distance and the Euclidean disk [28]. 

Hence we can assume that SS(X, 𝒜opt) is the best sequence skeleton for any X (i.e., 

it gives the best approximation to the expected skeleton). 

4.2 Validation with Sequence Skeletons 

In this section we validate the proposed method for the quantitative comparison of 

skeletons with the help of neighborhood sequences. 

We examined our gold standard image database, containing 55 pairs of reference 

images and reference skeletons, the four suggested similarity measure AA, and the 

four metrical neighborhood sequences <1>, <2>, <1, 2>, and 𝒜opt (see (11)). 

For each pair of (RI, RS) we calculated the followings: 

 The four sequence skeletons driven by the four neighborhood sequences 

in question: 

S1 = SS(RI, <1>)  
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S2 = SS(RI, <2>) 

S3 = SS(RI, <1, 2>)  

S4 = SS(RI, 𝒜opt) (see (20)) 

 The five normalized distance maps corresponding to the reference 

skeleton and the four sequence skeletons: 

𝐷𝑀̅̅ ̅̅ ̅𝑅𝑆,𝑤𝑅𝐼   

𝐷𝑀̅̅ ̅̅ 𝑆̅1,𝑤𝑅𝐼    

𝐷𝑀̅̅ ̅̅ 𝑆̅2,𝑤𝑅𝐼   

𝐷𝑀̅̅ ̅̅ 𝑆̅3,𝑤𝑅𝐼   

𝐷𝑀̅̅ ̅̅ 𝑆̅4,𝑤𝑅𝐼
 (see (7) and Fig. 2) 

 The four values of similarity measures: 

AARI(S1,RS)   

AARI(S2,RS)   

AARI(S3,RS)   

ARI(S4,RS) (see (9)) 

All the measures for the 55 pairs of reference images and reference skeletons, are 

presented in the following website:   
https://www.inf.u-szeged.hu/~gnemeth/compskel/ 

Observe that a smaller value in a row, means a better similarity of the sequence 

skeleton and the reference skeleton. 

We know that 𝒜opt≼<1, 2>≼<1>,<2> (see (12)), hence the following inequalities: 

𝑆𝑀𝑅𝐼(𝑆𝑆(𝑅𝐼,𝒜𝑜𝑝𝑡), 𝑅𝑆) ≤ 

𝑆𝑀𝑅𝐼(𝑆𝑆(𝑅𝐼, < 1,2 >), 𝑅𝑆) ≤ 

𝑆𝑀𝑅𝐼(𝑆𝑆(𝑅𝐼, < 1 >), 𝑅𝑆) 

should hold for a reasonable similarity measure SM, for each pair of reference 

image and reference skeleton (RI,RS) (see (10)). We should add that the similarity 

measure AA satisfies it for high resolution images (in the case of Kimia dataset the 

image resolution is too low to measure big differences), hence, it is judged a 

reasonable similarity measure. Note, as well, that none of the five types of 

similarity measures applied in our previous paper [8] are reasonable. 

5 Results 

In this section we compare and rank nineteen thinning algorithms. The similarity 

measure AA has been computed for the 4×55=220 morphological skeletons driven 

by the four neighborhood sequences <1>, <2>, <1,2> and 𝒜𝑜𝑝𝑡. In each case, 

𝒜𝑜𝑝𝑡 provided the best result.  

Evaluation is based on three different ranking methods: 
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1) Sum of ranks: For each test image, the similarity measure AA has been 

calculated and the algorithms have been sorted according the AA value. 

The scores have been summarized for each algorithm. The winner has the 

lower score value. Table 1 summarizes the result according to this 

ranking method. 

2) Sum of AA values: The score of an algorithm has been computed as the 

sum of AA values for each test image. The winner algorithm has the 

lowest score. Table 2 shows the result according to this ranking. 

3) Tournament: In a competition two algorithms play matches for each test 

image. If an algorithm is better (i.e., has a lower AA value) for more 

images than the other one in a competition, then it wins 1 point. In the 

tournament, the algorithms plays competitions pairwise. The best 

algorithm wins the most competitions. Table 3 presents the result of this 

ranking. 

According to the our quantitative and fully automated comparison with the three 

types of rankings, we can state, that the 2*2-subiteration parallel thinning 

algorithm SI-<NE,SW,NW,SE>-E3, proposed by Németh Kardos and Palágyi 

[31], is the best choice, among the nineteen thinning algorithms compared. 

Conclusions 

A novel method for quantitative comparison of skeletons was presented herein. 

The proposed method is based on a new similarity measure and a gold standard 

2D image database, containing pairs of reference images with elongated objects 

and their expected skeletons. Our method is validated using generalized 

morphological skeletons, driven by neighborhood sequences. According to the 

experiments, the proposed method can be used for evaluating arbitrary 2D 

skeletonization algorithms. Based on our method, the quantitative comparison of 

nineteen 2D thinning algorithms were presented, as well. In future work, we plan 

to extend our method to evaluate 3D skeletonization techniques. 

Table 1 
“Sum of ranks” method 

Rank Algorithm Ref. Type Sum of ranks 

for each image 

1 SI-<NE,SW,NW,SE>-E3 [31] sub iteration-based 535 

2 SI-<NE,SW,NW,SE>-E2 [31] sub iteration-based 547 

3 BM99 [32] fully parallel 916 

4 H89 [33] fully parallel 1235 

5 SI-<NE,SW,NW,SE>-E1 [31] sub iteration-based 1268 

6 GH92C [34] fully parallel 1344 

7 GH89A1 [35] sub iteration-based 1656 

8 FP-E3 [31] fully parallel 1685 

9 FP-E2 [31] fully parallel 1701 

10 PAV81 [36] [37] fully parallel 1862 

11 EM93 [38] fully parallel 1965 

12 FP-E1 [31] fully parallel 2071 
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13 AK2 [10] fully parallel 2131 

14 SI-<N,E,S,W>-E2 [31] sub iteration-based 2965 

15 SI-<N,E,S,W>-E3 [31] sub iteration-based 2965 

16 ZSLW [39] sub iteration-based 3146 

17 SI-<N,E,S,W>-E1 [31] sub iteration-based 3570 

18 RUT66 [40] fully parallel 4267 

19 CWSI87 [41] fully parallel 4759 

Table 2 

Sum of AA values” methods 

Ran

k 

Algorithm Ref. Type Sum of AA values 

1 SI-<NE,SW,NW,SE>-E3 [31] sub iteration-based 3.3108 

2 SI-<NE,SW,NW,SE>-E2 [31] sub iteration-based 3.3122 

3 SI-<NE,SW,NW,SE>-E1 [31] sub iteration-based 3.7920 

4 BM99 [32] fully parallel 3.8911 

5 H89 [33] fully parallel 4.0083 

6 PAV81 [36] [37] fully parallel 4.0200 

7 GH92C [34] fully parallel 4.0210 

8 FP-E3 [31] fully parallel 4.0587 

9 FP-E2 [31] fully parallel 4.0602 

10 EM93 [38] fully parallel 4.0604 

11 AK2 [10] fully parallel 4.1016 

12 GH89A1 [35] sub iteration-based 4.1181 

13 FP-E1 [31] fully parallel 4.1665 

14 
SI-<N,E,S,W>-E3 [31] sub iteration-based 5.1786 

SI-<N,E,S,W>-E2 [31] sub iteration-based 5.1786 

16 ZSLW [39] sub iteration-based 5.3166 

17 SI-<N,E,S,W>-E1 [31] sub iteration-based 5.7857 

18 RUT66 [40] fully parallel 6.9958 

19 CWSI87 [41] fully parallel 9.0067 

Table 3 

“Tournament” methods 

Rank Algorithm Ref. Type Number of winner 

single combats 

1 SI-<NE,SW,NW,SE>-E3 [31] sub iteration-based 18 

2 SI-<NE,SW,NW,SE>-E2 [31] sub iteration-based 17 

3 SI-<NE,SW,NW,SE>-E1 [31] sub iteration-based 16 

4 BM99 [32] fully parallel 15 

5 H89 [33] fully parallel 14 

6 GH92C [34] fully parallel 13 

7 GH89A1 [35] sub iteration-based 12 

8 FP-E3 [31] fully parallel 11 

8 FP-E2 [31] fully parallel 10 

10 FP-E1 [31] fully parallel 9 

11 PAV81 [36] [37] fully parallel 8 

12 EM93 [38] fully parallel 7 
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13 AK2 [10] fully parallel 6 

14 
SI4-<N,E,S,W>-E3 [31] sub iteration-based 4 

SI4-<N,E,S,W>-E2 [31] sub iteration-based 4 

16 ZSLW [39] sub iteration-based 3 

17 SI-<N,E,S,W>-E1 [31] sub iteration-based 2 

18 RUT66 [40] fully parallel 1 

19 CWSI87 [41] fully parallel 0 

 

References 

 

[1]  P. Giblin and B. B. Kimia: A formal classification of 3d medial axis points 

and their local geometry, IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol. 26, 2004, pp. 238-251.  

[2]  K. Siddiqi and S. Pizer, Medial representations – Mathematics, algorithms 

and applications, vol. 37, Springer, 2008.  

[3]  G. Németh and K. Palágyi: Topology preserving parallel thinning algorithms, 

International Journal of Imaging Systems and Technology, vol. 21, 2011, pp. 

37-44.  

[4]  L. Lam and C. Y. Suen: Automatic comparison of skeletons by shape 

matching methods, Int. Journal on Pattern Recognition and Artificial 

Intelligence, vol. 7, 1993, pp. 1271-1286.  

[5]  W. Lee, L. Lam and C. Y. Suen: A systematic evaluation of skeletonization 

algorithms, Int. Journal on Pattern Recognition and Artificial Intelligence, 

vol. 7, 1993, pp. 1203-1225.  

[6]  R. Plamondon, C. Y. Suen, M. Bourdeau and C. Barriére: Methodologies for 

evaluating thinning algorithms for character recognition, Int. Journal on 

Pattern Recognition and Artificial Intellelligence, vol. 7, 1993, pp. 1247-

1270.  

[7]  W.-P. Choi, K.-M. Lam and W.-C. Siu: Extraction of the Euclidean skeleton 

based on a connectivity, Pattern Recognition, vol. 36, 2003, pp. 721-729.  

[8]  A. Fazekas, K. Palágyi, G. Kovács and G. Németh: Skeletonization Based on 

Metrical Neighborhood Sequences, Proceedings of the 6th Int. Conf. 

Computer Vision Systems), LNCS, vol. 5008, A. Gasteratos, M. Vincze and J. 

K. Tsotsos, (eds.), Springer, 2008, pp. 333-342. 



G. Németh et al. A Method for Quantitative Comparison of 2D Skeletons 

 – 140 – 

[9]  T. Y. Kong and A. Rosenfeld: Digital topology: Introduction and survey," 

Computer Vision, Graphics, and Image Processing, vol. 48, 1989, pp. 357-

393.  

[10]  G. Bertrand and M. Couprie: New 2D parallel thinning algorithms based on 

critical kernels, Proceedings of the 11th Int. Workshop Combinatorial Image 

Analysis, LNCS, vol. 4040, R. Reulke, U. Eckhardt, B. Flach, U. Knauer and 

K. Polthier (eds.), Springer, 2006, pp. 45-59. 

[11]  D. Shaken and A. Bruckstein: Pruning Medial Axes, Computer Vision and 

Image Understanding, vol. 69, no. 2, 1998, pp. 156-169.  

[12]  G. Borgefors: Distance transformations in arbitrary dimensions, Computer 

Vision, Graphics, and Image Processing, vol. 27, 1984, pp. 321-345.  

[13]  R. Fabbri, L. F. Costa, J. C. Torelli and O. M. Bruno: 2D Euclidean distance 

transform algorithms: A comparative survey, ACM Computing Surveys, vol. 

40, no. 2, 2008, pp. 1-44.  

[14]  R. Klette és A. Rosenfeld: Digital Geometry – Geometric Methods for 

Digital Picture Analysis, Morgan Kaufmann Publisher, 2004.  

[15]  M. Couprie and G. Bertrand: Asymmetric parallel 3D thinning scheme and 

algorithms based on isthmuses, Pattern Recognition Letters, vol. 76, 2016, 

pp. 21-31.  

[16]  A. Sobieczki, H. Yassan, A. Jalba and A. Telea: Qualitative comparison of 

contraction-based curve skeletonization methods, Proceedings of 11th 

International Symposium on Mathematical Morphology, Springer-Verlag, 

2013, pp. 425-439. 

[17]  A. Sobieczki, A. Jalba and A. Telea: Comparison of curve and surface 

skeletonization methods for voxel shapes, Pattern Recognition Letters, vol. 

47, 2014, pp. 147-156.  

[18]  C. Aslan, A. Erdem, E. Erdem and S. Tari: Disconnected skeleton: Shape at 

its absolute scale, IEEE Trans. Pattern Analysis and Machine Intelligence, 

vol. 30, no. 12, 2008, pp. 2188-2203.  

[19]  X. Bai and L. J. Latecki: Path similarity skeleton graph matching, IEEE 

Trans. Pattern Analysis and Machine Intelligence, vol. 30, 2008, pp. 1282-

1292.  

[20]  J. Tschirren, G. McLennan, K. Palágyi, E. A. Hoffman and M. Sonka: 

Matching and anatomical labeling of human airway tree, IEEE Trans. 

Medical Imaging, vol. 24, 2005, pp. 1540-1547.  

[21]  A. Brenneke és T. Isenberg: 3D shape matching using skeleton graphs, 



Acta Polytechnica Hungarica Vol. 13, No. 7, 2016 

 – 141 – 

Proceedings of Simulation and Visualisation, 2004, pp. 299-310. 

[22]  H. Sundar, D. Silver, N. Gagvani and S. Dickinson: Skeleton based shape 

matching and retrieval, IEEE, Washington, DC, USA, 2003.  

[23]  H. Barrow, J. Tenenbaum, R. Bolles and H. Wolf: Parametric 

condespondence and chamfer matching: Two new techniques for image 

matching, Proceedings of the 5th international joint conference on Artificial 

intelligence, Morgan Kaufmann Publishers Inc., 1977, pp. 659-663.  

[24]  A. Thayanantan, B. Stenger, P. S. Torr and R. Chipolla: Shape context and 

chamfer matching in cluttered scenes, Proceedings of Computer Vision and 

Pattern Recognition, 2003, pp. 127-133. 

[25]  J. Serra: Image Analysis and Mathematical Morphology, Academic Press, 

1982.  

[26]  R. C. Gonzalez and R. E. Woods: Digital Image Processing (3rd Edition), 

Prentice Hall, 2008.  

[27]  A. Rosenfeld and J. L. Pfaltz: Distance functions on digital pictures," Pattern 

Recognition, vol. 1, 1968, pp. 33-61.  

[28]  A. Hajdu and L. Hajdu: Approximating the euclidean distance by digital 

metrics, Discrete Mathematics,, vol. 238, 2004, pp. 101-111.  

[29]  P. Maragos: Unified Theory of Translation-Invariant Systems with 

Applications to Morphological Analysis, and Coding of Images. PhD Thesis, 

Atlanta, GA: School of Elect. Engineering, Georgia Inst. of Technology, 

1985.  

[30]  R. Kresch and D. Malah: Skeleton-based morphological coding of binary 

images, IEEE Transactions on Image Processing, vol. 7, 1998, pp. 1387-

1399.  

[31]  G. Németh, P. Kardos and K. Palágyi: 2D parallel thinning and shrinking 

based on sufficient conditions for topology preservation, Acta Cybernetica, 

vol. 20, 2011, pp. 125-144.  

[32]  T. Bernard and A. Manzanera: Improved low complexity fully parallel 

thinning algorithm., Proceedings of the 10th Int. Conf. on Image Analysis 

and Processing, Venice, IEEE, 1999, pp. 215-220. 

[33]  R. W. Hall: Fast parallel thinning algorithms: parallel speed and connectivity 

preservation, Communications of the ACM, vol. 32, no. 1, 1989, pp. 124-131.  

[34]  Z. Guo and R. W. Hall: Fast fully parallel thinning algorithms., Computer 

Vision, Graphics, and Image Processing, vol. 55, no. 3, 1992, pp. 317-328.  



G. Németh et al. A Method for Quantitative Comparison of 2D Skeletons 

 – 142 – 

[35]  R. W. Hall: Parallel connectivity-preserving thinning algorithms, Topological 

Algorithms for Digital Image Processing , Elsevier, 1996, pp. 145-179. 

[36]  T. Pavlidis: A flexible parallel thinning algorithm., Proceedings of IEEE 

Comp. Soc. Conf. Pattern Recognition, Image Processing, 1981, pp. 162-167. 

[37]  T. Pavlidis: An asynchronous thinning algorithm., Computer Graphics and 

Image Processing, vol. 20, no. 2, 1982, pp. 133-157.  

[38]  U. Eckhardt and G. Maderlechner: Invariant thinning., Pattern Recognition 

and Artificial Intelligence, vol. 7, 1993, pp. 1115-1144.  

[39]  H. Lü and P. Wang: A comment on "A fast parallel algorithm for thinning 

digital patterns", Communications of the ACM, vol. 29, 1986, pp. 239-242.  

[40]  D. Rutovitz: Pattern recognition, Journal of the Royal Statistical Society, vol. 

129, 1966, pp. 504-530.  

[41]  R. Chin, H. Wan, D. Stover and R. Iverson: A one-pass thinning algorithm 

and its parallel implementation., Computer Vision, Graphics, and Image 

Processing, vol. 40, no. 1, 1987, pp. 30-40.  

[42]  M. Couprie: Note on fifteen 2D parallel thinning algorithms. Internal Report., 

Université de Marne-la-Vallée, IGM2006-01, France, 2006. 

[43]  T. Sebastian, P. Klein and B. Kimia: Recognition of shapes by editing their 

shock graphs, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 

20, no. 5, 2004, pp. 550–571.  

[44]  N. Cornea, D. Silver and P. Min: Curve-skeleton properties, applications and 

algorithms, IEEE Transactions on Visualization and Computer Graphics, 

vol. 13, no. 3, 2007, pp. 530-548.  

 

 


