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Abstract: Stroke is a widespread and perilous condition globally, necessitating effective 
rehabilitation assessment methods. Presently, clinicians rely on manual observation or 
costly equipment like motion capture systems to evaluate stroke patients’ recovery 
progress. This study introduces a streamlined measurement system designed for assessing 
lower limb function recovery in stroke patients. The system employs wearable IMU 
(Inertial Measurement Unit) sensor modules strategically placed on the lower limbs to 
capture joint angles. An algorithm processes sensor data to calculate precise joint angles. 
To counteract environmental interference affecting IMU sensors, a Kalman filter is 
implemented to minimize errors, providing real-time adjustments for sensor accuracy. 
Experimental validation, using exercises and criteria from the FUGL-MEYER Assessment, 
a widely adopted method for evaluating stroke patients’ physical performance, was 
conducted to compare the proposed system with the VICON motion capture system. Results 
demonstrated close alignment between the two systems, affirming the proposed system’s 
reliability, applicability, and practicality for real-life medical evaluations. Importantly, the 
proposed system offers a cost-effective and portable alternative for measuring joint angles, 
maintaining effectiveness and precision. In summary, this system offers a straightforward 
design, easy installation, and affordable hardware, making it a viable and practical 
solution for evaluating lower limb rehabilitation in stroke patients. 
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1 Introduction 

Stroke is a medical condition that occurs when the blood supply to a part of the 
brain is blocked, interrupted, or reduced, causing deprivation of oxygen to brain 
cells. The World Health Organization (WHO) reported that stroke is the second 
leading cause of death and the third leading cause of disability [1]. According to 
the World Stroke Organization (WSO), there are over 12.2 million new strokes 
each year, with a survival rate of only 46.7% [2]. In Vietnam, the stroke incidence 
rate is estimated to be 161 per 100,000 people per year [3], and according to WHO 
in 2020, stroke deaths in Vietnam reached 159,032 or 23.2% of total deaths that 
year [4]. Patients who experienced a stroke and survived often face severe 
consequences and challenges, such as limb paralysis, which drastically change 
their way of living. 

It is reported that between 70-85% of stroke survivors experience hemiplegia 
(paralysis of one side of the body), which often affects the lower body [5]. To help 
these patients regain their motor functions and return to their formal daily life, 
physical rehabilitation therapies were developed, widely adopted, and 
progressively proven to be effective in assisting patients on their journey to 
recovery. 

A critical phase in any therapy is the assessment of the patient’s progress. 
Progress evaluation is often based on a certain scale like NIHSS, mRS, or BI, 
which helps doctors assess the patient’s recovery on various aspects using 
different methods and exercises. For physical rehabilitation, especially lower limb, 
the Fugl-Meyer Assessment (FMA) is found to be among the most objective, 
simplest, and effective scale that is commonly used by physicians. The FMA 
method was designed to evaluate the upper and lower limb motor recovery of 
stroke patients through simple, visually guided exercises with predefined ratings, 
which help make the evaluation process easy for both the doctor and the patient 
[6]. However, traditional FMA depends heavily on the doctor’s subjective 
observations, which sometimes could be unreliable and incorrect [7]. Moreover, 
the prospect of storing the patients’ motion data for reviewing later is still rather 
limited. This study aims to develop a system that can counter these drawbacks, 
reducing the need for manual monitoring and providing the ability to log the 
patient’s data. To accomplish these tasks, the patient’s joint angles, the hip, knee, 
and ankle angles, are needed. With that goal in mind, along with wearability and 
portability, the Inertial Measurement Unit (IMU) sensor is a great candidate for 
this research. 
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In fact, numerous studies have used IMU sensors to measure body joint angles for 
different applications [8] [9], most of which reported their accuracy and 
performance to be well acceptable. The sensors are considered small, versatile, 
and reliable systems suitable for wearables that do not impede movements [10] 
[11]. This allows them to be effectively integrated into the assessment process, 
helping healthcare professionals to evaluate the patient’s progress more 
objectively and accurately, without being at the expense of their comfort.  
The IMU sensor in this research is the BNO055 from Adafruit Industries, which is 
based on the BNO055 9-DoF sensor from Bosch SensorTec. It is a popular sensor 
module for its affordable price, and compact design with multiple functionalities, 
especially the integrated Kalman filter which boosts the stability and accuracy of 
the output data [12]. 

To verify the integration of BNO055 into rehabilitation evaluation, as well as its 
precision and performance in the process, the module’s collected data was 
compared to those obtained from the current “gold standard” for evaluating lower 
limb kinematics, which is VICON, a three-dimensional motion analysis 
(3DMA)system [13]. VICON used multiple cameras placed around the room to 
fully capture all ranges of motion of the subject in three dimensions. It was used 
with Vicon Nexus and Plug-in Gait lower body model for the joint angles of the 
lower limbs [14]. 

After the system was successfully built, experiments were conducted involving 
using it simultaneously with the VICON system while doing exercises from the 
FMA method, which are Hip Flexion, Knee Flexion, and Ankle Dorsiflexion.  
The BNO055s were strapped onto the abdomen, thigh, body shank, and foot. Data 
from the sensors were transmitted to the Arduino Mega 2560, a microcontroller 
board, via I2C protocol, which calculated the joint angles by putting the data 
through an algorithm. The results were then sent to a computer via USB 
connection to be displayed and stored. 

The rest of the paper is organized as follows. The theoretical bases of this research 
are provided in Section 2, which includes details on the FMA method, the Kalman 
filter, and the BNO055 sensor module along with its calibration. The proposed 
method and system design are presented in Section 3. Conducted experiments are 
demonstrated in Section 4, while comparison with VICON data and results 
discussions are given in Section 5. Finally, conclusions and future work are stated 
in conclusions. 
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2 Theoretical Foundations 

2.1 The Basis of Functional Recovery Assessment Method 

The assessment of a stroke patient’s recovery is often combined with scales to 
create a comprehensive picture of the patient’s health status and recovery level. 
There are several commonly used scales to assess functional recovery, such as the 
National Institutes of Health Stroke Scale (NIHSS), modified Rankin Scale 
(mRS), Barthel Index (BI), Fugl-Meyer Assessment (FMA), Canadian 
Neurological Scale (CNS), and more. The NIHSS is a highly accurate tool to 
evaluate the severity of stroke via neurological functions in stroke survivors 
including level of consciousness, visual fields, movement of facial muscles, and 
movement of upper and lower extremity [15]. Another simple tool used in 
assessing neurological status of stroke patients is the CNS, which evaluates 10 
clinical domains including mentation and motor function in the acute phase of 
stroke [16]. In addition to these recovery evaluation scales, the mRS is a 7-point 
hierarchical scale applied in functional independence measurement. The broad 
concentration provided by mRS potentially goes beyond the basic scale measuring 
Activities of Daily Living (ADLs), upon which the BI operates to assess 
poststroke outcomes in stroke trials [17]. 

The Fugl-Meyer Assessment (FMA) is also one of the most commonly used tools 
to support the evaluation of functional recovery for stroke patients. The FMA 
comprises a set of performance-based impairment indexes that evaluate motor 
functioning, sensation, balance, joint range of motion and joint pain in stroke 
survivors [18]. The FMA possesses some advantages compared to other recovery 
evaluation scales such as NIHSS, mRS and BI. First, FMA is more stroke-specific 
and reflects the natural history of motor recovery after stroke, while NIHSS, mRS 
and BI can be used for other neurological conditions due to their generality [18] 
Secondly, FMA covers more domains (5 domains in total) than NIHSS, mRS and 
BI, with the former only focusing on neurological deficits [15] and the two latters 
only assessing functional dependence [17]. Thirdly, FMA is more objective than 
mRS, which are mainly based on subjective ratings through interviews with 
patients that also leads to inter-observer variability – the main drawback of mRS 
[17]. Finally, the fourth benefit of FMA comes from its sensitivity and 
responsiveness to minor improvements or deteriorations in stroke recovery [18], 
which result in better reliability compared to NIHSS, mRS and BI. 

Given the aforementioned benefits, FMA was selected as the standard in this study 
to measure the extent of functional recovery among stroke patients. Even though it 
has shown advantages over alternative assessment scales, the traditional scoring 
technique still mostly relies on medical staff members’ direct observation [19].  
As a result, this may lead to less reliable results and make it more difficult to 
gather and save patient movement data for later analysis. In order to address these 
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shortcomings, numerous studies have incorporated Inertial Measurement Units 
(IMU) into motion capture apparatuses to obtain more precise kinematic data [20] 
[21]. With the help of this integration, medical professionals can now evaluate 
stroke patients’ progress with greater objectivity and accuracy, and they can now 
provide targeted treatment plans with specific information. Therefore, the primary 
goal of this research is to create a motion data gathering system that is integrated 
with IMU sensors and assess how the model might be used to measure patients’ 
functional recovery, using FMA as the assessment tool. 

The upper extremity has 33 items on the FMA scale, whereas the lower extremity 
has 17 items. Every item is rated on a 3-point rating scale: with 0, 1 and 2 
respectively represents an inability to perform, a partial performance, and full 
performance. The possible maximum score for upper extremity and lower 
extremity are 66 and 34 points respectively [22]. Nonetheless, the primary 
function of FMA in this study is to serve as a scale to evaluate the developed 
IMU-integrated system’s potential use in gathering motion data from stroke 
survivors. For that reason, and in order to streamline and expedite the evaluation 
process during the system’s initial development phase, the article only focuses on 
the FMA evaluation of the lower extremity’s range of motion. The selected 
section consists of 3 exercises: Hip Flexion (beyond 90o), Knee Flexion (beyond 
90o) and Ankle Dorsiflexion (beyond 5o) [19] that assess movement range of hip, 
knee and ankle joints of lower limbs. These chosen movements are executed 
within the sagittal plane, with the required range of motion of lower limb’s joints 
that when combined can allow patients to perform Walking exercise in the later 
stage of the functional recovery process. 

2.2 Kalman Filter 

The Kalman filter algorithm is a method for estimating the state of a dynamic 
system based on measurements and the system’s predictive model [23].  
The algorithm was developed by Rudolf E. Kalman in 1960 and has become one 
of the most-used tools in the field of signal processing and automatic control. 

During signal measurement, sensors are very sensitive to measurement noise and 
external noise, which causes errors in the measured values. The Kalman filter is an 
effective filter in solving unobservable noise. It is designed to handle state 
estimation problems in noisy environments. The Kalman Filter Algorithm 
provides an efficient method for updating and predicting the system’s state based 
on measurements and dynamic models. The algorithm operates in two main steps: 
prediction and update. 

(1) Prediction: In this step, the algorithm uses the system’s dynamic model to 
predict the next state. This prediction is often performed through a transition 
matrix and a control vector. 



T.-T. Nguyen et al.  The Development of a Motion-Tracking System to  
 Assess the Recovery Level for Stroke Survivors 

 – 14 – 

(2) Update: In this step, the algorithm uses new measurement information to 
update the estimated state of the system. This update assumes that the 
measurement information has some noise, and it will compute an optimal estimate 
of the state based on both the previous prediction and the current state. 

The model of the algorithm can be described as follow: 
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noise obeying the Gaussian distribution. Qt and Rt are the corresponding noise 
matrices for the process noise and measurement noise. The state would be 
predicted based on the previous state using the state transition matrix F, where tu


 

is the control vector, B is the control matrix. At this point, we have the prediction 
equation from the output of the filter at the previous step and the transition matrix: 
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With covariance prediction:  
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Update the state using the observation matrix tz . Matrix H represents the mapping 
between the state space and the measurement space. 

Update the estimated state: 

| | 1 | 1.( )t t t t t t tx x K z x− −= + −
  

 (4) 

With Kalman gain: 
1

| 1 | 1. .( . . )T
t t t tK P H H P H R −
− −= +  (5) 

Update the error covariance: 

| | 1( . ).t t t t tP I K H P −= −  (6) 

The Kalman Filter algorithm is used in various fields such as automatic control, 
image processing, positioning, and measurements. It has become an important tool 
in applications that require tracking and predicting the state of dynamic systems, 
including the IMU-based motion capture system developed in this research. 
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Figure 1 

Kalman filter block diagram 

2.3 IMU BNO055 Sensor 

The BNO055 stands out as a sophisticated Inertial Measurement Unit (IMU) 
sensor, seamlessly integrating a 3-axis 14-bit accelerometer, a 3-axis 16-bit 
gyroscope, and a 3-axis magnetometer [12]. The accelerometer detects linear 
acceleration, including gravity, while the gyroscope tracks angular rotation, and 
the magnetometer provides a reference to the Earth's magnetic field, allowing the 
sensor to determine the orientation relative to magnetic north. Overall, this 
powerful combination of magnetometer, accelerometer and gyroscope data 
enables the sensor to furnish comprehensive data, including absolute orientation 
information in the form of Euler angles and quaternions, as well as crucial 
parameters such as acceleration, angular velocity, and magnetic field data. This 
paper uses Euler angles outputs, which the sensor detect in the range of -180˚ to 
180˚ for pitch values, -90˚ to 90˚ for roll values and 0˚ to 360˚ for yaw values.  
The collected data is updated at the rate of 100Hz. 

Despite the gyroscope’s primary role in measuring angular velocity, its long-term 
reliability is compromised by temperature-induced sensor errors, leading to the 
accumulation of inaccuracies over extended periods [24]. To counteract this issue, 
a dynamic mechanism is employed wherein inclination values derived from the 
accelerometer are used to finely adjust the gyroscope’s bias. This adjustment is 
critical for enhancing the accuracy of angular velocity measurements. 
Consequently, improving the overall precision of the IMU [24] [25] [26]. 

However, the accelerometer, while proficient in many respects, has its limitations. 
Notably, it falls short in detecting rotations around the vertical axis. This 
deficiency underscores the importance of the magnetometer in the sensor’s 
architecture. Leveraging the magnetometer’s high sensitivity to Earth’s magnetic 
field, the BNO055 employs it judiciously to correct the gyroscope’s bias 
specifically for rotations around the vertical axis. This strategic integration ensures 
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a more comprehensive and accurate orientation estimation, compensating for the 
accelerometer’s inherent limitations. To further refine the data output and mitigate 
potential inaccuracies arising from sensor noise and uncertainties, a Kalman filter 
has been seamlessly incorporated into the BNO055’s processing pipeline.  
The implemented Kalman filter compensates for errors and noise by continuously 
estimating the true orientation based on the fusion of accelerometer, gyroscope, 
and magnetometer data. It dynamically adjusts the weighting of each sensor's 
contribution based on their respective uncertainties to provide accurate orientation 
measurements. This results in a more robust and precise estimation of Euler angles 
and quaternions. The Kalman filter acts as a crucial component in enhancing the 
overall performance of the BNO055, especially in dynamic and challenging 
environments where accurate orientation data is paramount [27]. In essence, the 
BNO055’s design represents a holistic approach to IMU sensing, addressing the 
intricacies of each sensor component and seamlessly integrating them into a 
coherent system. Through the dynamic interplay of the accelerometer, gyroscope, 
and magnetometer, complemented by the intelligent application of a Kalman 
filter, the BNO055 stands as a reliable solution for applications requiring accurate 
and stable orientation data over time. 

2.4 Sensors Calibration 

Even with the Kalman filter’s ability to fuse sensors, the calibration procedure that 
comes before IMU operation is still necessary to guarantee measurement accuracy 
and dependability. Firstly, even though the Kalman filter excels at mitigating the 
mistakes of uncertain sensors, it might not be able to completely compensate for 
systembased errors of IMUs including biases, misalignments, and scaling factors. 
Thus, in order to produce more dependable results, the calibration procedure must 
locate and fix those systematic mistakes. Second, IMU sensor calibration lays the 
groundwork for the Kalman filter estimation process, which needs precise baseline 
data in order to interpret sensor data as best it can. Additionally, the process of 
calibration can improve the overall performance of the Kalman filter by improving 
the IMU’s ability to adapt to changes in the environment, accounting for non-
Gaussian errors brought on by outside disturbances like magnetic interference, and 
identifying and compensating for crossaxis effects that have been observed in 
some IMU sensors. In conclusion, because of the complementing properties of the 
calibration steps—which help handle uncertainties that the Kalman filter does not 
fully address—the combination of calibration and Kalman filter paves the way for 
the highest level of operational accuracy and performance in IMU-based systems. 

An IMU sensor’s calibration procedures can differ based on the model of the 
sensor and the manufacturer’s instructions, but a typical method usually entails a 
few essential phases that are covered in-depth in this paragraph. It is necessary to 
set up a controlled environment with consistent temperature, low vibration, and 
magnetic impedance before the calibration procedure can start. The IMU would 
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then be placed on a level surface by the calibration specialist in the initial 
orientation, which may be either upright or flat. To provide accurate calibration 
data, carefully follow these instructions after completing pre-calibration setups 
[12]: 

• Gyroscope bias calibration: The IMU sensor, specifically BNO055 in this 
study, should be held standing in any stationary position to estimate the 
gyroscope biases. This helps enhance the accuracy of angular velocity 
measurements. 

• Accelerometer calibration: The BNO055 must be placed at rest in 6 standing 
positions [12] that shown in Figure 2. This helps estimate accelerometer 
biases and scale factors as well as compensate for the influence of cross-axis 
effects. 

• Magnetometer calibration: The sensor should be held parallel to the ground 
and moved along the pattern illustrated in Figure 3. This allows correction of 
errors caused by magnetic disturbances. 

 

Figure 2 
Six stable positions for Accelerometer Calibration 

 
Figure 3 

Magnetometer Calibration 

3 Proposed Method For System Development 

3.1 Measurement Principle 

The system consists of 4 IMU sensors placed at the abdomen, thigh, shank, and 
foot positions to measure the motion of the hip joint, knee joint, and ankle joint. 
Each IMU sensor will measure Euler angle values based on accelerometer, 
gyroscope, and magnetometer for calculations. For the purpose of measuring the 
movements of FMA, including Hip Flexion, Knee Flexion, and Ankle 
Dorsiflexion, which are movements in the 2D plane, this study only needs to use 
the pitch angle of each IMU. The description of the Hip, Knee, and Ankle angles 
is shown in the Figure 4. The angles are calculated by: 
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With 
iIMUφ , 

iIMUθ , 
iIMUψ  respectively being the roll, pitch, yaw angle of the 

IMU number i. 

 
Figure 4 

Measurement principle 

 
Figure 5 

 Overall structure of the system 

3.2 Wiring Diagram 

As exhibited in Figure 6, the Arduino Mega 2560 is used as the central control 
unit. It facilitates signal reception from the entire Inertial Measurement Unit 
(IMU) array through the I2C communication standard. By default, each IMU is 
assigned one of two unique IDs: 0x78 and 0x79. To enable a single controller to 
read data from all four IMUs, an TCA9548a expansion module is employed. This 
module aids in the identification of each sensor, allowing the Arduino to 
accurately discern the received signals from the IMUs [12]. 
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3.3 Hardware Design 

 
Figure 6 

Wiring diagram of the system 

 
Figure 7 

Full Controller Box fastened to waist belt, with the first IMU attached to the lid 

As being illustrated in Figure 5, the overall structure of the system consists of two 
main clusters: the Controller Box (1) and the IMU Box (2). The Controller Box is 
the location housing the central control board, Arduino Mega 2560, responsible 
for receiving Euler angle data from IMU sensors to process, calculate joint angles 
of the Hip, Knee, Ankle, and transmit the computed results to the display for the 
user. The Controller Box is positioned at the abdomen on the user’s body, secured 
by a waist belt to minimize displacement during movement. On the lid of the 
Controller Box, IMU number 1 is attached to determine the coordinate system’s 
orientation for the entire measurement system (Figure 7). 

Meanwhile, the IMU Box is tasked with securely fixing IMU sensors at 
predefined positions (abdomen, thigh, shin, foot) using flexible joint belts to 
ensure stable data acquisition during the execution of movements in this research. 



T.-T. Nguyen et al.  The Development of a Motion-Tracking System to  
 Assess the Recovery Level for Stroke Survivors 

 – 20 – 

Additionally, the IMU boxes are installed flat with each other for the convenience 
of computing lower limb joint angle data. Signal transmission between the IMU 
Box and Controller Box is executed through shielded signal cables, ensuring 
stability and reliability of the collected data. These connections are standardized 
with GX16-4P jack plugs, facilitating quick and easy installation while 
maintaining a stable physical connection. Exploded views of IMU Boxand 
Controller Box are demonstrated in Figures 8, 9. 

 
Figure 8 

Components of Controller Box: 1) TCA9548A; 2) PCB shield; 3) Arduino Mega2560;  
4) GX16-4P jack plug; 5) Controller box cover; 6) Waist belt clamp 

 
Figure 9 

Components of IMU Box: 1) IMU sensor; 2) IMU Box cover; 3) Joint belt clamp 

4 Experiment 

4.1 Experiment Setup 

To test the stability of the equipment and verify the accuracy of the collected data, 
measurements of the motion data were conducted for three movements within the 
FMA scale, including Hip Flexion, Knee Flexion, and Ankle Dorsiflexion 
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simultaneously using both the IMU-based system and Optical Motion Capture 
(MOCAP). In the initial evaluation phase of the system, experiments were 
performed on healthy subjects to assess the ability to collect a complete, accurate 
range of motion for the lower limb joints. If the results are promising, in the 
subsequent testing phase, the system will be tested in collecting joint angle data on 
patients recovering from functional rehabilitation. 

Each FMA movement was performed by five healthy individuals aged 18-25, with 
weights ranging from 50-65 kg. First, the necessary parameters of the subjects, 
including height, weight, ankle width, knee width, and leg length, were measured 
and carefully recorded. Next, IMU boxes were mounted on segments of the lower 
limbs of the test subjects (abdomen, thigh, shin, foot), and 14 markers were 
attached to predetermined positions [11]. All markers were directly applied to the 
skin at predefined positions (Figure 10a, b) to avoid data discrepancies caused by 
clothing. Signal cables were neatly wrapped close to the body to prevent 
hindrance to movement and to obscure the markers of the MOCAP system.  
The reflective components of the system were covered securely to avoid 
interfering with the MOCAP measurement signals. After setting up the system on 
the body, the operator assumed a T-pose at the coordinate origin of the MOCAP 
system to ensure that the system was accurately configured and ready for the 
measurement process (Figure 10c) 

 
Figure 10 

Illustration of marker positions a) Front view; b) Back view;  
c) T-pose stance before measurement process 

4.2 Experiment Process 

After completing the setup phase, the test subjects will sequentially perform three 
movements: Hip Flexion, Knee Flexion, and Ankle Dorsiflexion, similar to the 
exercises established on the FMA scale. The exercises selected from the original 
FMA scale are typically performed in a straight lying or sitting posture. However, 
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these positions may lead to marker obstruction during measurements. To mitigate 
this risk, participants in the experiment will execute the movements while 
standing upright. The prepa ration and execution postures for each exercise are 
detailed below (Figure 11). The duration for each movement is 1 minute. 

• Hip Flexion: 

– Preparation: Stand upright with both feet touching the ground, and 
slightly shift the measured leg forward. 

– Execution: Lift the hip joint as much as possible towards the upper body 
while bending the knee.  

• Knee Flexion: 

– Preparation: Stand upright, bend one knee so that the thigh is 
perpendicular to the body, and let the shin hang parallel to the body. 

– Execution: Keep the thigh in place and bend the knee as much as 
possible. 

• Ankle Dorsiflexion: 

– Preparation: Stand on one leg, raise the entire other leg at an angle of 
approximately 30˚ − 40˚ relative to the body, and straighten the raised 
leg. 

– Execution: Flex the ankle joint as much as possible. 

 

Figure 11 
Demonstration of FMA movements: a) Hip Flexion; b) Knee Flexion; c) Ankle Dorsiflexion 



Acta Polytechnica Hungarica Vol. 21, No. 9, 2024 

 – 23 – 

5 Result 

Figures 12, 13, 14 respectively compare the motion data of Hip, Knee, Ankle joint 
simultaneously measured on the IMU-integrated system and the MOCAP system. 
The deviation of data between two systems is calculated using the RMSE formula. 
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 (8) 

 
Figure 12 

Hip Flexion data comparison 

 

Figure 13 
Knee Flexion data comparison 
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Figure 14 

Ankle Dorsiflexion data comparison 

The deviation between the data of Hip Flexion and Knee Flexion movements is 
3.98˚ and 2.40˚, respectively, while the Ankle Dorsiflexion movement shows a 
relatively large error of 9.926˚. Therefore, the Knee Flexion data is the most 
accurate, slightly bigger than the ideal level (ideal error is < 2˚). Although the 
RMSE error for Hip Flexion is larger than Knee Flexion, it still falls within an 
acceptable range (< 5˚). However, the Ankle Dorsiflexion data exhibits a 
considerable error exceeding the acceptable threshold (> 5˚) [28]. The significant 
error in Ankle Dorsiflexion data may be attributed to the placement of IMU box 
number 4 on the instep of the performer’s foot. Due to the uneven slope of the 
instep, mounting the IMU box on this area can lead to the non-parallel alignment 
of the pitch axes of IMU 3 and 4. Consequently, this results in a deviation between 
the true rotation angle of the Ankle and the angle recorded by the system. This 
error is systematic and can be addressed by offsetting the initial orientation of the 
pitch axes of IMU 4. Overall, the results affirm the potential application of the 
system in assessing the range of motion for patients in the future. 

Conclusion 

This research proposed a system to measure joint angles using IMU sensors in the 
application of assisting the evaluation of lower limb rehabilitation in stroke 
patients. Euler angles were extracted from the sensors and sent to microcontroller 
Arduino Mega 2560 via I2C protocol on which the calculations were done.  
The system commnunicated with a computer via USB connection, where the 
results were presented and logged. Experiments carried out consisted of doing 
exercises from the Fugl-Meyer Assessment while using the system proposed and 
VICON motion capture system, both to verify the system’s effectiveness in the 
rehabilitation evaluation process, and to assess the accuracy of the system.  
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The comparison demonstrated that the system performed acceptably well in Hip 
Flexion and Knee Flexion exercises, but lacked precision in Ankle Dorsiflexion 
exercise. This deviation could be explained to be related to the shape of the foot 
and placement of the IMU sensor onto the dorsum of the foot. Nevertheless, this 
study showed the possibility of integrating IMU sensors in lower limb 
rehabilitation assessment, and the promise of a joint angles measuring system 
which is affordable, portable and suitable for a wide range of ages. Future work to 
improve the system developed in this paper could involve better designed boxes to 
provide greater fit for IMU placements, wireless data transmission for faster and 
more convenient usage, and a desktop application for easier recordings of angle 
data and patients’ information. 
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Appendix 

Table 1 
Details in IMU box assembly 

Name Number Function 
IMU Box 
cover 

4 
Contain and protect the IMU, clip the IMU signals 
wires, with waiting holes to attach the belt 

Joint belt clamp 4 Attach the IMU to the joint belt 
IMU 4 Collect motion data and send data to the Controller 

Joint belt 4 
Fix the IMU box at predetermined positions on the body 
to reduce the vibration of the IMU box when measuring 
motion data 

Table 2 
Details in controller box assembly 

Name Number Function 
Board Arduino Mega 
2560 1 Receive signals from IMUs and send signal to 

computer 

PCB shield 1 
Intermediate connection between 
IMU sensors, TCA9548A and 
Arduino 

TCA9548A 1 
Expanding the I2C communication pins 
between the master (Arduino Mega 2560) and 
slaves (IMU sensors) 

Jack GX16-4P 4 
Connect IMU sensor signal wires to 
Controller Box easily, ensuring a secure and 
reliable connection 
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Controller Box cover 1 

Protect the components inside the Controller 
box, contain and fix the position of the 
components inside the Controller Box, with 
waiting holes on the side wall to attach the 
jack plugs 

Waist belt clamp 1 
Attach to the bottom of the Controller Box, 
clip the belt to fix the position of the Box 
when the posture changes 

Waist Belt 1 
Fix the position of the Controller Box on the 
lower abdomen, limiting the shaking of the 
Controller Box when the user moves 
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