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1 Introduction 
In 1978, Shorrocks [11] defined mobility index in the social sciences, as a 
continuous function over the set of transition matrices, and he was first to provide 
axiomatic approach to mobility indices, see [1], [4]. However, Shorrocks himself 
showed that the axioms he proposed are not consistent for all mobility indices, i.e., 
there is no mobility index which satisfies all axioms. Different indices detect 
various mobility aspects. Mobility is defined as movement of dynamic system 
from one state to the other in time. In social sciences, there are important different 
types of mobility, as social classes mobility, intergenerational mobility, 
intragenerational mobility, etc [4]. The selection of the mobility index is very 
important. Namely, it should satisfy different motivations for measuring mobility. 
It is common practice, when selecting mobility indices, to initially define the 
desired features which these indices should satisfy, and that these features have to 
be consistent. The applied mobility indices have a great influence on transition 
matrices ranking. 
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In this paper, the motivation is to measure mobility as movement by using 
mobility indices which induce partial order on the set of transition matrices. Then 
every two transition matrices can be compared by using such mobility indices. 
Transition matrices, which have more movement in them, must have higher 
mobility index. In this paper the set of transition matrices is reduced to the set of 
transition bistochastic matrices, as well as the properties of mobility indices are 
given. Mobility indices with selected properties induces partial order on the set of 
transition bistochastic matrices and semirings are formed. 

Since mobility index is a bounded function, the mobility index minimal value is 
zero, and the maximal is one. There are also controversies over the selection of 
transition matrices with minimal and maximal mobility. Transition matrices, as 
non-negative matrices, are closely related to the class of stochastic processes 
which are Markov chains. Markov chains are used as theoretical models for 
description of a system which can be found in different states. In Section 2, an 
overview of definitions related to Markov Chains and transition matrices are 
given, and specially important homogenous regular Markov Chains. In Section 3, 
Shorrocks axiomatic approach to mobility measures is described with stress laid 
on the inconsistency of these axioms and possibilities of overcoming of this 
inconsistency. A brief overview of the influences of mobility measure on the order 
of transition matrices and the problem area of selecting transition matrices which 
have the values of mobility indices 0 or 1 are presented. In Section 4 a semiring is 
formed over the set of all the bistochastic transition matrices in which partial 
ordering is induced by mobility measure, which satisfies some of the Shorrocks 
axioms. In other words, mobility measure which induces the order in the formed 
semiring satisfies all the Shorrocks axioms except  the monotonicity axiom. The 
way out is that the mobility measure satisfies the relaxed monotonicity condition 
thereby achieving the consistency of the axioms. 

2 Transition Matrix of Markov Chain 
Markov chains (MCs) are used to describe a system which can be found in 
different states, see [11]. The system passes from one state to the other in time, 
and this transition is described by the set of transition probabilities pij(k). If the 
behaviour of the system is known at the initial time (time 0), the set of transition 
probabilities determines the behaviour of the system. According to [10] we have 
the following definitions. 

Definition 2.1: For a given a countable state space S={s0, s1, s2,..} a sequence of 
random variables (Xk)k∈N’, where N’ = N ∪ {0}, taking values in S, is called 
Markov Chain if it has the following property: if  x0, x1, ..., xk+1  are elements of S, 
then 

P(Xk+1 = xk+1| Xk = xk,...,X0 = x0) = P(Xk+1 = xk+1| Xk = xk) 
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if P(Xk = xk,...,X0 = x0) > 0. We call the probability P(Xk+1 = sj | xk = si) the 
transition probability from state si to state sj and write it as pij(k+1), si, sj ∈S, k∈N. 

We denote the row vector of the initial distribution by '
0∏ . We have by [3], [10]. 

Definition 2.2: (i) For fixed  k  in N the matrix Pk= [pij(k)], si, sj ∈S, is called the 
transition matrix with non-negative elements. 

(ii) Ω = { P | pij ≥ 0 ∀pij, 1
1

=∑
=

n

j
ijp } is called the class of stochastic matrices. 

(iii) Γ= { P | pij ≥ 0 ∀pij, 1
1

=∑
=

n

i
ijp , 1

1
=∑

=

n

j
ijp } is called the class of bistochastic 

matrices. 

(iv) If P1 = P2 =...= Pk... the Markov chain is said to have stationary transition 
probabilities or is said to be homogeneous. Otherwise it is non-
homogeneous. 

Let Pk be a transition matrix. Denote by '
k∏  the row vector of the probability 

distribution of Xk. We shall use notation 

r,pT = Pp+1Pp+2...Pp+r, 

and write '
k∏ = '

0∏ T0,k. For  k > p it is 

'
k∏ = '

p∏ Tp,k-p. 

For homogeneous Markov chain it holds: Tp,k = Pk. 

Definition 2.3: (i) A square non-negative matrix P is said to be primitive if there 
exists a positive integer k such that Pk > 0. 

(ii) Any initial probability distribution 0∏  is said to be stationary, if '
0∏ = 

'
k∏ , 

and a Markov chain with such an initial distibution is itself said to be 
stationary. 

Let us denote the stationary distributon by π. 

Definition 2.4: (i) An n×n non-negative matrix P is irreducible if for every pair i, j 
of its index set, there exist a positive integer m≡m(i,j) such that 0>)m(

ijp . 

(ii) MCs is irreducible when its transition matrix is irreducible. 

Irreducible matrix cannot have a zero row or column, see [10]. 
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Theorem 2.5: An irreducible MCs has a unique stationary distribution π’  , given as 
a solution of  the equations π’P = π’ and  π’1 = 1, where 1 is vector column with 
unity in each position, and 1π’ is a transition matrix whose rows are all equal to π’. 

We have by [10]. 

Theorem 2.6: (Ergodic Theorem for primitive MCs) For a primitive MCs we have: 

∞→k
lim Pk = 1π’ elementwise, where π is the unique stationary distribution of the 

MCs, and the rate of approach to the limit is geometric. 

Following the literature on mobility indices, we assume that the transition matrix 
P is homogeneous, irreducible and primitive. Then there exist a unique stationary 
distribution π (vector column of probability distribution). Morever, 

∞→k
lim Pk = 1π’. 

3 Mobility Measure on Transition Matrices 
In 1978, Shorrocks [11] defined mobility measure as a continuous real function M 
over the set PP of all transition matrices. 

Definition 3.1: Mobility index in the Schoorrocs sense is a function M: PP → R, 
which satisfies the following axioms: 

(N)      Normalization: 0≤M(P) ≤ 1, for all P∈PP. 

(M)    Monotonicity: Mobility index reflects the change of increase in the matrix 
off-diagonal elements at the expense of diagonal elements. Thus, we write Pf P' 
when ijp  ≥ '

ijp for all the ji ≠  and ijp  > '
ijp  for a ji ≠ . We have that 

Pf P' implies M(P) > M(P'). 

(I)       Immobility: M(I) = 0, where I is identity matrix. 

(PM)  Perfect Mobility: Matrices with identical rows have maximal mobility 1. 

(SI)     Strong immobility: M(P) = 0 if and only if P = I. 

(SPI)  Strong perfect mobility: M(P) = 1 if and only if P has identical rows. 

Example 3.2: Shorrocks gives in [11] an example which show that (M) and (PM) 
are into conflict. Consider the following matrices: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

2
1

2
1

2
1

2
1

1P       ⎥
⎦

⎤
⎢
⎣

⎡
=

01
10

2P . 
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Axioms (M) and (PM) imply M(P2) > M(P1)=1, which violets (N). 

Shorrocks assumes that a perfectly mobile structure is given by the maximum 
value of mobilty index, and that the exact index ranking is unimportant, so that the 
basic conflict is between the axioms (PM) and (M). As one of the ways for solving 
this conflict Shorrocks proposes adjusting the monotonicity condition by 
substituting the M(P) > M(P') by a weaker condition. 

Relaxed monotonicity: Mobility index reflects the change of increase in the matrix 
off-diagonal elements at the expense of diagonal elements. Thus, we write Pf  P' 
when ijp  ≥ '

ijp  for all the ji ≠  and ijp > '
ijp  for a ji ≠ . Then Pf  P' 

implies M(P) ≥ M(P'). 

In this way, consistence is restored, since maximum mobility is assigned to all the 
transition matrices whose off-diagonal elements are not smaller than some 
perfectly mobile structure. 

Different mobility measures can give different transition matrices ranking. 
Dardanoni (1993), gives an illustration of ranking of these matrices on the 
example of three transition matrices and five mobility measures [2]. Dardanoni 
examines ordering of transition matrices by applying the following mobility 
measures: 

1 Eigenvalue: The second highest characteristic square according to the module 
2λ . 

2 Trace: trace = 
1n

1)P(trace
−

− . This mobility index ignores the extradiagonal 

transition probabilities. 

3 Determinant: 

Determinant = 1n
1

P − . 

This mobility index gives the minimum mobility value to the transition matrices 
which have any two rows or columns equal. 

4 Mean first passage: 

Mean first passage = ππ P' M . 

5 Bartholomew 

Bartholomew = ∑∑ −
− i j

iji jip
1n

1
π  

where πi is the i-th coordinate of π. 
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Mean first passage and Bartholomew mobility indices are called equilibrium 
indices. This indices measure mobility where the probability distribution remains 
unchanged over time, i.e. remains equal to unique stationary distribution π. 

Example 3.3: Consider the following three matrices: 

;
7.025.005.0
25.04.035.0
05.035.06.0

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=P ;

7.02.01.0
2.05.03.0
1.03.06.0

2

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=P

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

7.02.01.0
3.04.03.0

04.06.0

3P . 

Each of these three matrices can be  most mobile, depending on the selected 
mobility measure. The ordering of the transition matrices P1, P2, P3 induced by the 
selected mobility measures as most mobile are the following: 

1 Eigenvalue                              P2, 

2 Trace                                       P2, P3, 

3 Determinant                            P1, 

4 Mean First Passage                 P3, 

5 Bartholomew                          P1, P2, P3. 

4 Semirings 
Let S be non-empty set endowed with a partial order ≤. The operation ⊕ (pseudo-
addition) is function ⊕ : S × S → S which is commutative, non-decreasing, 
associative and has a zero element, denoted by 0. Let S + = {x: x∈ S, x ≥  0}. The 
operation ⊗ (pseudo-multiplication) is a function ⊗: S × S → S which is 
positively non-decreasing, i.e., x ≤ y implies x ⊗ z ≤ y ⊗ z, z ⊗ x ≤ z ⊗ y, z ∈ S +, 
associative and for which there exist a unit element 1∈ S, i.e., for each x∈ S, 1 ⊗ 
x = x. We suppose 0 ⊗ x = 0 and that ⊗ is a distributuve pseudo-multiplication 
with respect to ⊕ , i.e.,  x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z). The structure (S, ⊕, ⊗) is 
a semiring (see [5], [6], [7], [8], [9]). 

Example 4.1: Two special important real cases are ([0, ∞), min, +) and g-calculus, 
i.e., when there exist a bijection g:[a, b]→[0,∞] such that x ⊕ y=g-1(g(x)+g(y)) 
and x ⊗ y = g-1(g(x)g(y)), where [a, b] ⊂ [-∞, ∞]. 

We denote by PP the set of transition matrices I, P1, P2, P3,..,Pk,.. , where P is a 
primitive homogenous transition matrix. According to Theorem 2.6, the sequence 
(Pk) k∈N converges with exponential growth to stationary regime which has all 
rows equal. 
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Theorem 4.2:  (PP, min, *) is a semiring, where min: PP
2 → PP is an idempotent 

operation, which induces the order on PP, and it is defined for every two matrices 
Pi, Pj from PP in the following way 

min(Pi, Pj) = Pi if  M(Pi) ≤  M(Pj), (1) 

where M is the mobility measure which satisfies all Shorrocks axioms, and * is 
matrix multiplication. 

Proof. Let us observe, without loss of generality, transition matrices P1, P2 and P3 , 
and mobilty index M which satisfies all Shorrocks axioms. By matrix 
multiplication transition probabilities increase at the expense of diagonal elements, 
and thus 

M(P1) < M(P2) < M(P3). 

Operation min given by (1) is closed in the set PP. It is associative: 

min(P1, min(P2,P3)) = min(P1, P2) 

                                 =  P1 

                                 = min(P1, P3) 

                                 = min(min(P1, P2), P3). 

It is commutative: min(P1, P2)= min(P2, P1), and the neutral element 0 is the 
matrix which has all rows equal, and it is stationary distribution matrix 1π’. 
Mobility index of this matrix is 1. For every P∈ PP we have min(P, 1π’) = 
min(1π’, P) = P. 

Operation * of the  multiplication operation of transition matrices is closed in set 
the PP, and associative, since the matrix multiplication, in general is associative. 
The neutral element 1 is the unit matrix I, and its mobilty index is zero, i.e., for 
every P ∈ PP we have I * P=P * I = P. 

Distributivity of the matrix multiplication according to min follows in the 
following way 

P1 * min(P2, P3) = P1 * P2 = min(P1 * P2, P2 * P3). 

For every P∈ PP we have P * 0 = 0 * P = 0. Matrix 1π ’is the left zero for matrix 
multiplication: 1π’ * P = 1π’. If we multiply the equation from the right side by 
matrix P, we get: 1π’ * P2 = 1π’ * P = 1π’. Continuing this procedure, it follows 
that 

1π’ * Pk  = 1π’ * Pk - 1 = ... = 1π’. 

Matrix 1π’ is the right zero for matrix multiplication: P * 1π’ = 1π’. Let us show, 
witout loss of generality, that this equation is fulfilled for n = 3, 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

321

321

321

321

321

321

333231

232221

1211 13

bbb
bbb
bbb

bbb
bbb
bbb

ppp
ppp
ppp

, 

and this is valid because ∑ ==
n
j ijp1 1 . If we multiply the last equation from the left 

side by P matrix, we get that for every Pi stationary probabilty matrix 1π’ is the 
right zero for multiplication of homogenous transition matrices.                    �       

Remark 4.3: In Theorem 4.2 the semiring is formed on the set PP of transition 
matrices  I, P1, P2, P3,..,Pk,.. , where P is a primitive homogenous transition 
matrix. By matrix multiplication, transition probabilities increase at the expense of 
diagonal elements, and mobility index reflects this change. According to theorem 
2.6, for some k, the matrix Pk is stationary distribution matrix with all rows equal. 
For m > k,  Pm is equal to stationary distribution matrix. Counterexample from 
Example 3.2 is out of the present situation, and the axiom of monotonicity is 
satisfied. 

Theorem 4.4: (P, min, *) is a semiring where P is the set of all primitive 
homogenous transition bistochastic matrices and unit matrix I, min: P2 → P is an 
idempotent operation, which induces the order on P, and it is defined for every 
two matrices Pi, Pj from P in the following way 

min(Pi, Pj) = Pi  if  M(Pi) ≤  M(Pj), (2) 

where M is the mobility measure, which fulfils the condition of relaxed 
monotonicity and all Shorocks' axioms (except monotonicity), and * is the matrix 
multiplication. 

Proof. Let us observe, by not taking away from generality, homogenous transition 
bistochastic matrices P1, P2 i P3 and mobility index M which fulfils the conditions 
of theorem. Without loss of generality we suppose that 

M(P1) ≤  M(P2) ≤ M(P3). 

Operation min is given by (2) is closed in the set P and it is associative: 

min(P1, min(P2, P3)) = min(P1, P2) 

                                  = P1 

                                  = min(P1, P3) 

                                  = min(min(P1, P2), P3). 

It is commutative: min(P1, P2) = min(P2, P1), and the neutral element 0 is the 
matrix which has all rows equal. On the set of all homogenous bistochastic 
matrices, every stationary distribution matrix of the 1π’ form for a sequence Pi

k 
has the mobility index 1. From the set of matrices with the mobility index 1, only 
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the form matrix 
nxnn⎥⎦
⎤

⎢⎣
⎡1  is at the same time zero element for multiplying, so let us 

take this matrix as a neutral element for the min operation. For every P ∈ P we 

have min(P, 
nxnn⎥⎦
⎤

⎢⎣
⎡1 ) = min(

nxnn⎥⎦
⎤

⎢⎣
⎡1 ,P) = P. 

Operation * is multiplication operation of transition matrices, and it is closed in set 
P, and associative, since matrix multiplication, in general, is associative. The 
neutral element 1 is the unit matrix I, and its mobility index is zero, i.e., for every 
P ∈ P we have I * P = P * I = P. 

Distributivity of the matrix multiplication according to min follows in the 
following way 

P1 * min(P2,P3) = P1* P2 = min(P1 * P2, P2 * P3). 

For every P∈ P we have P * 0 = 0 * P = 0. Without loss of generality, let n = 3. 
The following then applies: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

nnn

nnn

nnn

nnn

nnn

nnn

ppp
ppp
ppp

111

111

111

111

111

111

333231

232221

1211 13

, 

this is valid because 13
1 =∑ =j ijp . 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

nnn

nnn

nnn

ppp
ppp
ppp

nnn

nnn

nnn

111

111

111

111

111

111

333231

232221

1211 13

 

this is valid because ∑ ==
3

1 1i ijp .                     � 

Conclusions 
In sociological researches often occurs the problem of determining the minimal 
and maximal mobile transition matrices, as well as the problem of ordering 
transition matrices whose mobility measures are between 0 and 1. Many authors 
keep considering this problem by introducing partial order on the set of transition 
matrices, induced by mobility measure. So far, this problem has not been 
considered by forming a semiring on the set of transition bistochastic matrices. In 
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this paper, a semiring on the set of transition bistochastic matrices has been 
formed, which is induced by mobility measures, which represents a consistent set 
of axioms. The research will be continued in the direction of determining mobility 
measures which satisfy the mentioned set of axioms, as well as comparing orders 
which induce these measures on the set of transition bistochastic matrices. 
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