
Acta Polytechnica Hungarica Vol. 4, No. 2, 2007

 – 157 –

Resource-oriented Programming Based on
Linear Logic

Valerie Novitzká, Daniel Mihályi
Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of Košice
Letná 9, 042 00 Košice, Slovakia
valerie.novitzka@tuke.sk, daniel.mihalyi@tuke.sk

Abstract: In our research we consider programming as logical reasoning over types.
Linear logic with its resource-oriented features yields a proper means for our approach
because it enables to consider about resources as in real life: after their use they are
exhausted. Computation then can be regarded as proof search. In our paper we present
how space and time can be introduced into this logic and we discuss several programming
languages based on linear logic.

Keywords: linear logic, programming languages, resource-oriented programming

1 Introduction

The aim of our research is to describe solving of large scientific problems by
computers as constructive logical reasoning in some logical formal system over
type theory. Predicates we consider as predicament-forming functors with
nomenclative arguments (symbols), where unary predicates express properties and
predicates of higher arity express relations. Using logical reasoning in categorical
logic over type theory we can get a mathematical solution of a given problem and
the existence of a proof in the intuitionistic linear logic provides us a computable
solution of a problem [16, 17].

The role of computer program is to execute instructions under whose the computer
system is to operate, to perform some required computations [15]. A running
program should provide us a desirable solution of a given problem. We consider
programming as a logical reasoning over axiomatized mathematical theories
needed for a given solved problem. A program is intuitively understood as data
structures and algorithms. Data structures are always typed and operations
between them can be regarded as algorithms. Results of computations are obtained

V. Novitzká et al. Resource-oriented Programming Based on Linear Logic

 – 158 –

by evaluation of typed terms. Due to discovering a connection between linear
logic and type theory - a phenomenon of Curry-Howard correspondence [5], we
are able to consider types as propositions and proofs as programs. Then we can
consider a program as a logical deduction within linear logical system. Precisely,
reduction of terms corresponding to proofs in the intuitionistic linear logic can be
regarded as computation of programs. Thus computation of any resource-oriented
program is some form of goal-oriented proof search in linear logic. One of the
main goals of this approach is to avoid eventual mistakes of correctness generated
by implementation of a programming language. This approach also keeps us away
from potentional problems in verification of programs.

Linear logic (LL) was defined by Girard in [6,7] as resource-oriented logic, where
formulae are actions. It enables reasoning similar as in real life, where resources
are exhausted after their using. The basic ideas about LL we present in section 2.
There are several programming languages based on LL and Section 2.2 contains
the short disscussion about them. The rest of this paper presents the most
important features of LL that enable to introduce resources as space and time into
linear logic.

2 Linear Logic

LL is regarded as a continuation of the constructivisation that began with both
classical and intuitionistic logic and it can serve as a suitable interface between
logic and computer science [1]. Whereas classical logic treats sentences with
stable values depended on Tarsky semantic tradition (i.e. interested in denotation
of sentences), values of linear intuitionistic logic sentences depend on an internal
state of a dynamic system according to Heyting semantic tradition (i.e. interested
in constructing the proof of a given sentence).

2.1 Logical Connectives of LL

LL introduces new logical connectives. Linear implication A ⎯ο B describes that
an action A is a cause of action B; a formula A can be regarded as a resource that is
exhausted by linear implication so as in real life. It is the most important feature of
LL and also of programming based on LL. In clasical logic the truth value of
formula A after the implication A → B remains the same. Classical implication can
be rewritten in linear manner as (!A) ⎯ο B, where ‘!’ is modal operator
(exponential) expressing that we can use a resource A repeatebly, as many times as
we need. LL defines multiplicative conjunction (MC), A ⊗ B, expressing that both
actions A and B will be done. Additive conjunction (AC), A & B, expresses that
only one of these actions will be performed and we can choose which one.
Additive disjunction (AD), A ⊕ B, also describes that only one action of A and B

Acta Polytechnica Hungarica Vol. 4, No. 2, 2007

 – 159 –

will be performed but we do not know which one. And finally, multiplicative
disjunction (MD), A ℘ B, expresses: if A is not performed then B is done, or if B
is not performed then A is done. MD is similar to disjunction in classical logic.
Neutral element for MC is 1, for AC is T, for MD is ⊥, and for AD is 0. Linear
negation, A⊥, is obtained by analogy with the dual spaces in algebra [9], as it is
expressed in (1):

A ⎯ο B = B⊥ ⎯ο A⊥ (1)

Negation is involutive, i.e. (A⊥)⊥ = A. An entailment in LL is a sequent of the form

Γ ‌– A (2)

where Γ = (A1 ,…, An) is a finite sequence of linear formulae and A is a linear
formula deductible from the premises in Γ. If Γ is empty, then a formula is
provable without assumptions. Inference rules of LL have a form

S1 … Sn (3)

 S

where S1 ,…, Sn , and S are sequents, S1 ,…, Sn are assumptions and S is a
conclusion of the rule. A proof in this calculus has the form of (proof-) tree, the
direction of a proof is from-bottom-to-up, i.e. from the root to the leaves of the
tree, where the root is the proved formula and leaves are axioms. In every proof
step we can apply the inference rules of LL in Fig. 1 that introduce logical
connectives and negation:

Figure 1

Inference rules for LL connectives and negations

In LL are valid the following De Morgan laws:

 (A ⊗ B) ⊥ = A⊥ ℘ B⊥ (A ℘ B) ⊥ = A⊥ ⊗ B⊥ (4)

 (A & B) ⊥ = A⊥ ⊕ B⊥ (A ⊕ B) ⊥ = A⊥ & B⊥ (5)

V. Novitzká et al. Resource-oriented Programming Based on Linear Logic

 – 160 –

Due to meaning of linearity, LL refuses weakening, i.e. the constant function
F(x)=a and contraction, i.e. the quadratic function F(x)=G(x,x), but they can be
reintroduced as logical rules by using modal operators. Just this restriction gives
linear logic it’s resource conscious nature. On the other side, due to reintroducing
weakening and contraction as logical rules, proof symetry of sequents can be
restored again.

2.2 Polarity in LL

Logical connectives of LL can be divided into two classes: positive and negative
connectives. Girard [8] regarded positive connectives of LL as algebraic style and
negative connectives of LL as logical style. Positive connectives and constants of
LL are ⊗, ⊕, 1, 0 and negative ones are &, ℘, T, ⊥.

A formula of LL is positive if its outermost logical connective is positive; dually it
is negative if its outermost logical connective is negative. A rule of LL calculus is
invertible if it introduces a negative connective. Negative connectives are
introduced by just one rule and the decomposition in proof from bottom-to-up is
deterministic. From this it follows a very important consequence: we can get
together several proof steps as a single step if we have a cluster of negative
formulae. Dual property to invertibility is focalisation [2], it says that if we have a
cluster of positive connectives called synthetic connective, we can perform
corresponding rules simultaneously. The dual properties of
invertibility/focalisation express associativity of logic that is the LL analogue of
the Church-Rosser property of λ-calculus.

The polarity between positive/negative properties is general in LL. A cluster of
rules with the same polarity can be performed as a single rule, by invertibility in
the negative case, by focalisation in the positive case. So, the change of polarity in
a proof means a new step in this proof and it can be consider as a time
incrementation. In this manner we can introduce time into LL. If we forget truth of
formulae and their content and we consider only their locations in proofs, then we
can introduce space into LL and explicitly handle resources in LL. Due to the
important property of invertibility and focalisation linear connectives can be
organized by polarities. Summary of significant properties of LL connectives is
shown in the Table 1.

2.3 Programming Languages Based on Linear Logic

LL forms a base for several functional and logic programming languages.
Between functional programming languages [12] based on LL we mention Lilac
[13] designed in 1994, but it is not wide-spread language.

Acta Polytechnica Hungarica Vol. 4, No. 2, 2007

 – 161 –

Abbrev. Symb. Descr. Neutral Polarity NonDeter. Human influence
MC ⊗ parallel 1 + we know how
AC & choice T - internal we know how
AD ⊕ choice 0 + external we don’t know how
MD ℘ until ⊥ - we know how

Table 1
Overview of linear connectives and constants

Logic programming may be viewed as the interpretation of logical formulae as
programs and proof search as computations. Our view to logic programming is
that computation is a kind of a proof search: let us have program P and goal G.
We are trying to find a proof of the sequent P ‌– G. Different goals correspond to
different computation sequences. The result of a computation with logic program
is a proof that the goal is the logical consequence of the facts and rules. The search
strategy is determined by the structure of the goal and the program supplies the
context of the proof. The goal is ‘active’ whereas program is ‘pasive’ and provides
a context in which the goal is executed. This principle is called goal-directed
provability.

Whereas classical logic programming is based on the first order logic, the
resource-oriented programming is based on LL. Resource-oriented program also
consists of facts and rules and user-query starts a calculation that it answers the
question whether query result belongs to a given program or not. But the
difference is only that for performing any action in this logic a clause in a
corresponding resource-oriented program must be used exactly once.

There are numerous programming languages that make use of all resource-
oriented benefits of LL. In these languages, it is possible to create and consume
resources dynamically as logical formulae. Lolli, Lygon, and Forum are
implemented as interpreter systems; Lolli [10] is based on SML and Prolog,
Lygon [18] is implemented over Prolog, and Forum [14] is based on SML,
λProlog and Prolog. Nowadays we have good experiences with Lygon
programming language, its implementation can be viewed as extended module
over Prolog with full support of LL.

The programming languages ACL and HACL [11] introduce concurrent paradigm
in LL programming. Every formula of LL is regarded as a process in some state,
the proceses run concurently with asynchronous communication. Minerva is a
commercional language based on Java with own development environment. It
enables using LL, but also clasical logic features. The programming language
Jinni (Java Inference eNgine and Networked Interactor) enables only a fragment
of LL with linear implication, AC and AD and it makes a connection between
object-oriented programming and logic programming.

V. Novitzká et al. Resource-oriented Programming Based on Linear Logic

 – 162 –

3 Resource Handling in LL

In this section we present how it is possible to introduce the resources of space
and time into LL. Our approach follows the famous idea published in [9] and it
represents a novel approach to proof theory, where proofs are written in locative
structure of Gentzen’s sequent calculus.

Objects of linear logic are called designs and they play the role of proofs, λ-
proofs, etc. in usual syntax. Designs are located somewhere. Therefore we need a
concept of location. A design represents a cut-free proof of a LL formula A, in
which all information has been erased, only locations in sequents are kept.

Let A be a LL formula. Immediate subformulae (w. r. t. focalisation) are denoted
by natural numbers called biases written as i,j,k,… A finite set of biases is called
ramification, denoted by I,J,K,… An address, locus, is a finite sequence <i1,…,in>
of biases. We denote addresses by σ,τ,υ,ξ,… A locus denotes a place or spatial
location of a formula. If we have a formula A and its proof, then A is in the root of
the proof tree. Formulae in this tree are subformulae and they have precise
locations (absolute or relative to the root). But if some subformula occurs in the
proof tree more times, then its every occurrence need to receive a distinct location.
If locus of A is σ and B is a subformula of A with bias i then locus of B is σ*<i>.
Let σ be a locus. Then σ*τ, where symbol ‘*’ denotes concatenation, is a sublocus
of σ. Sublocus σ*τ is called

• strict if τ is non-empty sequence, τ ≠ <>;

• immediate if τ consists of just one bias, τ = <i>.

We can say that a locus σ is in ordering relation ‘≤’ with all its sublocuses, i.e.
σ ≤ σ*<i>.

Because in sequent calculus we proceed in a proof from its conclusion (root of
proof tree), a locus occurs before its subloci w. r. t. time relation. Two loci can be
comparable and incomparable (disjunct) w.r.t. relation ‘≤’. When two loci are

• incomparable, their relation is spatial, i. e. they are completely
independent;

• comparable, their relation is timeable.

Ramification is needed for multiplicative rules where are two subformulae
(assumptions) at the same time. We assume one-sided sequents of the form ‌– Γ if
all formulae in Γ are positive. If a sequent ‌– A,B,C consists of two positive
formulae B,C and a negative formula A, then we replace this one-side sequent by
two-side one

A⊥ ‌– B,C (6)

that consists only of positive formulae. Focalisation enables restriction to sequents
with at most one formula on the left side.

Acta Polytechnica Hungarica Vol. 4, No. 2, 2007

 – 163 –

Every formula in a sequent has a locus, i. e. a finite sequence of biases. If we
forget everything in a sequent except loci of formulae, we get an expression called
pitchfork:

{ ξ } ‌– Λ (7)

where { ξ } is singleton containing one locus { ξ } that can be empty set and Λ is a
finite set of loci. A locus on the left side is incomparable with every locus in Λ. A
pitchfork { ξ } ‌– Λ consists of a handle ξ and the tines (loci) in Λ. A pitchfork is
positive if it has no handle and negative if it has a handle. A pitchfork is atomic if
it has a form ξ ‌– , or ‌– ξ.

These definitions enable to introduce space and time into LL. In the following
example we show how it can be done for a LL formula.

Example: Let A=((P⊥ ⊕ Q⊥) ⊗ R⊥) be a LL formula with P, Q, R positive
formulae. We can construct the following three proofs of A. Proofs 1 and 2 differs
only in using left- or right- rules for introducing AD, in the 3 proof we firstly
rewrite A using De Morgan rules and then we build its proof.

3. Using De Morgan rules we can write

A=((P⊥ ⊕ Q⊥) ⊗ R⊥) = ((P ⊕ Q) ⊥ ⊗ R⊥) = ((P ⊕ Q) ℘ R) ⊥ .

Then the proof tree is:

V. Novitzká et al. Resource-oriented Programming Based on Linear Logic

 – 164 –

The left-side sign ‘(-)’ in proofs 1 and 2 denotes the place where polarity changes
from positive to negative. In the proof 3 the left-side sign ‘(+)’ denotes the place
where polarity changes from negative to positive. We can form clusters of the
rules with same polarity for these proof trees and perform them as the following
(single) rules that express time incrementation in proofs:

Now we forget everything except locations of formulae above. We assume that the
locus of A is ξ, and biases for P, Q, R are 3, 4, 7, respectively. We note that Γ, Δ, Λ
are no longer formulae but loci. Then we can rewrite previous rules and we get
explicit information about space resources needed for proofs. Every sequent in
these proofs is a pitchfork:

�

From this example we can see that we can represent any LL cut-free proof as
pitchfork rules. In all last three rules we explicitly treat with space and time. This
approach creates the new possibilities in logic programming and enables to see
logic as a means how to precisely reason about real life problems and solved them
by computers.

Conclusions

In our paper we tried to present foundations of the new approach of logic and
logic programming. LL enables to handle resources in explicit way, what is the
main disadvantage of classical logic used in logical programming. This idea is
very recent and it enables to see logic, namely LL, as a logic for reasoning close to
real life. In problem solving we are thinking in notions of space and time and there
are the most important notions also in programming computers. These concepts
form new criteria also for programming languages based on logic and we beliefe
that this approach will create a new age of logical reasoning and logic
programming.

Acta Polytechnica Hungarica Vol. 4, No. 2, 2007

 – 165 –

Acknowledgement

This work was supported by VEGA Grant No. 1/2181/05: Mathematical Theory of
Programming and Its Application in the Methods of Stochastic Programming.

References

[1] Abramsky S.: Computational Interpretations of Linear Logic, in Theoretical
Computer Science, 1992, pp. 1-53

[2] Andreoli J. M.: Proposition pour une synthése des paradigmes de la
programation logique et de la programmation par objects, Thése
d’informatique de l’Université de Paris VI, 1990

[3] Bierman G. M.: On Intuitionistic Linear Logic, Tech. Rep. No. 346,
University of Cambridge, 1994

[4] Faggian C., Hyland J.: Designs, Disputes and Strategies, In Proccedings of
CSL '02, 2002, pp. 1-21

[5] Girard J. Y.: Proofs and Types, Cambridge University Press, 2003, pp. 1-
175

[6] Girard J. Y.: Linear Logic, Theoretical Computer Science, 50, 1987, pp. 1-
102

[7] Girard J. Y.: Linear Logic: Its Syntax and Semantics, In: J. Y. Girard, Y.
Lafont, and L. Regnier, editors, Advances in Linear Logic, Cambridge,
1995, pp. 1-42

[8] Girard J. Y.: Locus Solum. Mathematical Structures in Computer Science,
Vol. 11, 2001, pp. 301-506

[9] Girard J. Y.: On the Meaning of Logical Rules I: Syntax vs. Semantics. In
Computational Logic, U. Berger and H. Schwichtenberg, Eds., NATO ASI
Series 165, Vol. 14. Springer-Verlag, New York, 215-272

[10] Hodas J. S, Miller D.: Logic Programming in a Fragment of Intuitionistic
Linear Logic. Information and Computation, Vol. 110, No. 2, 1994, pp.
327-365

[11] Kobayashi N., Yonezawa A.: Typed Higher-Order Concurrent Linear Logic
Programming. Technical Report 94-12, University of Tokyo, 1994

[12] Kozsik Tamás: Tutorial on Subtype Marks. Z. Horváth (Ed.) Central
European Functional Programming School (The First Central European
Summer School, CEFP 2005, Budapest, Hungary, July 4-15, 2005), Rev.
Selected Lectures. LNCS 4161. Springer-Verlag, 2006, pp. 191-222

[13] Mackie I.: Lilac – a Functional Programming Language Based on Linear
Logic, J. of Functional Programming, Vol. 4, No. 4, 1994, pp. 395-433

[14] Miller D.: A multiple-Conclusion Specification Logic. Theoretical
Computer Science, 165(1):201-232, 1996

V. Novitzká et al. Resource-oriented Programming Based on Linear Logic

 – 166 –

[15] Novitzká V.: Formal Foundations of Correct Programming, Advances in
Linear Logic, Elfa, 1999, pp. 1-70

[16] Novitzká V., Mihályi D., Slodičák V.: Linear Logical Reasoning on
Programming, Acta Electrotechnica et Informatica, 6, 3, 2006, pp. 34-39,
ISSN 1335-8243

[17] Novitzká V., Mihályi D., Slodičák V.: How to Combine Church's and
Linear Types, ECI'2006, Košice - Herľany, September 20-22, 2006, Košice,
2006, 6, pp. 128-133, ISBN 80-7099-879-2

[18] Winikoff M. D.: Logic Programming with Linear Logic, PhD. Thesis,
Univ. Melbourne, 1997

