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Abstract: Modern aircraft turbojet engines represent complex systems where it is important 

to focus on the issues of safety, reliability, efficiency and also the reduction of maintenance 

costs. Continuous progress in diagnostics brings new possibilities in the implementation of 

progressive methods instead of traditional based on the use of hardware redundancy. The 

article deals with the design of the diagnostic and backup system, which uses a voting 

method and analytical redundancy representing computational models using experimental 

identification methods (polynomial models, neural networks). Part of the system is also an 

expert system, which is able to distinguish between engine failure and sensor error. The 

proposed system for jet engines was tested in laboratory conditions on a small turbojet 

engine iSTC-21v with positive results. 

Keywords: backup; diagnostics; experimental identification; neural networks; turbojet 
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1 Introduction 

The increase in the complexity of aircraft turbojet engines (their structure contains 

a greater number of elements) also leads to the increased failure probability of 

engine components. Consequently, any potential failure of an aircraft engine could 

cause even more extensive damages, therefore the issue of safety and reliability 
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come to the fore. It is essential to detect faults as fast as possible and to ensure that 

they do not affect the control of nonlinear systems [1, 2, 3], especially systems 

like aircraft engines, where failures can be disastrous [4, 5]. Advances in 

diagnostic systems offer better opportunities for the use of new progressive 

methods [6, 7]. Today’s computers can process back-up controllers and sensor 

models to create a highly redundant multi-sensor networks with greatly increased 

efficiency and reliability [8, 9]. 

Fault detection and isolation (FDI) [10, 11] plays a fundamental role in reducing 

the maintenance and operating costs and ensuring reliability and safety operation 

of any system, including a jet engine. A traditional approach to FDI is a hardware 

redundancy method that is based on the use of multiple sensors. However, this 

method requires additional equipment which increases cost and weight. That’s 

why we are using analytical redundancy, which uses existing relationships 

between engine’s parameters, so there are no need for extra hardware. 

The article deals with the proposal, creation and application of the diagnostic-

backup system for small turbojet engines in the software environment 

MATLAB/Simulink and LabView. The primary focus is oriented on real-time 

diagnostics of the sensors and engine components using a multi-sensor network 

[12] and multiple model approach. A voting method, based on results of pair 

comparison, detects a fault and an expert system determines the type of the fault. 

The system is able to detect any sensor errors during the engine’s operation and to 

eliminate these errors with the calculated models using other sensors as the 

backup. These models are created by methods of experimental identification that 

require the existence of the studied object [13]. In our case, the real object is 

represented by the small turbojet engine iSTC-21v (see Fig. 1), which undergoes 

tests in the Laboratory of Intelligent Control Systems of Aircraft Engines [14]. 

The advantage of using this engine lays mainly in the relatively lower technical 

complexity compared to normal sized jet engines. But at the same time, the 

thermodynamic processes ongoing in small and standard jet engines are very 

similar and the proposed methods are applicable to other types of aircraft engines 

and systems. 

 

Figure 1 

Small turbojet engine iSTC-21v 
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2 Related Work 

The current diagnostic systems that represent a complex of different and unrelated 

technologies provide only a basic level of monitoring [15]. These systems have 

limited capabilities and use the obtained information mainly to start maintenance 

actions, not for decision-making in real time. A lot of promising techniques in the 

field of fault detection and isolation with good results in simulation environment 

have been published. Some of them are mentioned in this paper, divided according 

to the applied methods, together with their limitations, which we try to overcome 

with our proposed system. 

2.1 Kalman Filters 

Merrill, Delaat and Bruton in [16] used a bank of Kalman filters (KF) for aircraft 

engine sensor fault detection and isolation (FDI). They successfully improved the 

control loop tolerance to the failure of sensors, but did not take the actuator 

failures into account. Kobayashi and Simon in [17] devised an aircraft engine 

sensor and actuator FDI system that utilizes a bank of Kalman filters. Based on the 

results, the designed system is promising for detection of sensor and component 

faults. Wei and Yingqing in [18] used KF for estimation of engine’s health 

degradation and further fault detection. According to Zedda and Singh [19], the 

main disadvantages are that Kalman Filters may become unstable if computer 

calculations have not been sufficiently accurate or include too many small values. 

2.2 Linear/Non-Linear Gas Path Analysis 

Urban and Volponi in [20] introduced the Gas Path Analysis (GPA) as a method 

for determining the condition of engine components by using existing aero-

thermodynamic relationships between the measured gas path parameters and 

components. Linear GPA works with the assumption that there are only small 

changes in health parameters and influence/coefficient matrix (ICM) is invertible. 

According to Escher in [21] this method does not deal with sensor noise and 

requires many measurements for the analysis. Escher uses the Newton-Raphson 

technique to solve the non-linear relationship between the health-parameters and 

measurements. 

2.3 Bayesian Belief Network 

Breese et al. in [22] presented a Bayesian Belief Network (BBN) method that uses 

the statistical data of the engine, for detection of faults on large gas turbines. 

Romessis and Mathioudakis in [23] introduced a diagnostic BBN that is based on 

a heuristic approach for determining the network elements. It can be implemented 
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on any type of engine, but it requires scarce statistical data and BBNs cannot deal 

with sensor bias. 

2.4 Genetic Algorithms 

Zedda and Singh in [19] proposed a diagnostic method based on a genetic 

algorithm (GA). It is used to gain a set of engine parameters which produce a set 

of predicted dependent parameters through a non-linear model of the gas turbine. 

The disadvantages are that the method is more computationally demanding than 

the classic estimation techniques and it is limited to four parameters experiencing 

parallel degradation. These limitations have been overcome by improving the 

methods. Kobayashi and Simon in [24] devised the hybrid diagnostic technique 

that consists of Neural Networks used to estimate the engine internal health and 

Genetic Algorithms for sensor bias detection and estimation. 

3 Experimental Identification 

Identification represents the process leading to the compilation of a mathematical 

model of a certain system by using measured data. We used the measured engine 

data and experimental identification methods to calculate coefficients and the 

parameters of the engine’s mathematical models. 

The basic concepts of the system experimental identification are a real object and 

its model. A real object represents the original device, in our case the engine iSTC-

21v, on which, we can execute certain measurements, to gain knowledge about the 

systems parametric relationships. System validation is performed through model 

simulation and the subsequent comparison of each output (measured outputs of a 

real object are compared with outputs calculated by the model). The process runs 

until the required similarity of the model, with the real object, is reached [25, 26, 

27]. 

In recent years, there has been substantial progress in the area of experimental 

identification methods. For these methods, it is essential to have a studied object 

and the possibility to do experiments with it, but they do not require precise 

knowledge of the system structure and the description of ongoing processes. To 

create models of the iSTC-21v engine’s parameters, we have chosen 7 methods of 

experimental identification, which are: 

1) Polynomial models 

a. ARX 

b. ARMAX 

c. Output – Error 

d. Box – Jenkins 
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2) Artificial Neural Networks 

a. Time Delay Neural Network 

b. Distributed Delay Neural Network 

c. NARX Network 

3.1 Polynomial Models 

3.1.1 ARX Model 

ARX model (Auto-Regressive model with eXternal input) [28] estimates 

parameters using the least squares method provided the measured value is affected 

only by white noise. It is considered as a simple and highly usable method. ARX 

model is represented as an equation: 

           ,11...1 11 tenntubtubntyatyaty bknan ba
  (1) 

where 

    𝑦(𝑡) is the system output and 𝑡 is time 

    𝑎1 … 𝑎𝑛 and 𝑏1 … 𝑏𝑛 are model parameters for data estimation 

    𝑛𝑎 is the order of the polynomial 𝐴(𝑞) 

    𝑛𝑏 is the order of the polynomial 𝐵(𝑞) 

    𝑛𝑘 is the time delay between input u(𝑡) and output 𝑦(𝑡) 

    𝑦(𝑡 − 1) … 𝑦(𝑡 − 𝑛𝑎) are previous outputs that depend on current outputs 

    𝑢(𝑡 − 1) … 𝑢(𝑡 − 𝑛𝑘 − 𝑛𝑏 + 1) are previous inputs that depend on current inputs 

    𝑒(𝑡) is white noise 

ARX model can also be represented by a more compact form: 

         ,tentuqBtyqA k   (2) 

where 

  ,...1 1

1
a

a

n

n qaqaqA
   (3) 

  ,...
11

21

  b

b

n

n qbqbbqB  (4) 

and 𝑞−1 is the delay operator defined as: 

   .11  tutuq  (5) 

The ARX model architecture is shown in Fig. 2. 
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Figure 2 

The architecture of the ARX model [29] 

3.1.2 ARMAX Model 

ARMAX model (Auto-Regressive Moving Average model with eXternal input) 

[29] is used to estimate parameters by means of the recursive extended least 

square method. It is able to model stochastic and deterministic parts of the system 

independently and describes the dynamic behavior of the disturbance variables. 

The outcome of the ARMAX model is expressed through the idpoly object. This 

model is defined by an equation: 

           ,teqCtuqBtyqA   (6) 

where 

  ,...1 1

1
c

c

n

n qcqcqC
   (7) 

The structure of the ARMAX model can be seen in Fig. 3. 

 

Figure 3  

The scheme of the ARMAX model [29] 

3.1.3 Output – Error Model 

Output – Error (OE) model [30] describes the system dynamics separately from 

the stochastic dynamics. It does not use any parameters in order to simulate the 

disturbance characteristics. As the identification method of the OE model is used 

the prediction error method. This model is defined by an equation: 
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 
 
 

   ,tentu
qF

qB
ty k   (8) 

where 

  ,...1 1

1
f

f

n

n qfqfqF
   (9) 

The structure of the OE model can be seen in Fig. 4. 

 

Figure 4 

Output - Error model architecture [29] 

3.1.4 Box – Jenkins Model 

Box – Jenkins (BJ) model [29] is a mathematical model used to predict data 

within a time series. It is the combination of AR and MA models, where failures 

are modeled separately from the dynamics of the system: 

 
 
 

 
 
 

 ,te
qD

qC
ntu

qF

qB
ty k   (10) 

where 

  ,...1 1

1
d

d

n

n qdqdqD
   (11) 

The scheme of the Box – Jenkins model is shown in Fig. 5. 

 

Figure 5 

The structure of the Box - Jenkins model [29] 
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3.2 Artificial Neural Networks 

3.2.1 Time Delay Neural Network 

Time delay neural networks (TDNNs) [31, 32] represents an architecture which 

main purpose is to work on sequential data. Their units generally form part of a 

larger pattern recognition system and are able to recognize characteristics 

independent of time-shift. A key ability of the TDNNs is to express a relation 

between inputs in time and so on recognizing patterns between the delayed inputs. 

3.2.2 Distributed Delay Neural Network 

Distributed delay neural networks (DDNNs) [33] are similar to feed forward 

networks, with the exception that each input and layer weights have a tap delay 

line associated with it. This allows the network to have a finite dynamic response 

to time series input data. This network is also close to the TDNN, with the 

difference that it only has delays on the input weight. 

3.2.3 NARX Neural Network 

NARX (Nonlinear Autoregressive models with eXogenous input) neural network 

[34] is capable of predicting one time series, given past values of the same time 

series and current and past values of the exogenous or external time series. In 

addition, the model contains an "error" term, which applies to the fact that 

knowledge of the other concepts will not enable the present value of the time 

series to be predicted precisely. 

4 Diagnostic and Backup System 

The proposed diagnostic and backup architecture is composed of two main blocks. 

The diagnostic block created in the LabView environment consists of the 

diagnostic method (voting method) to detect an error and the expert system to 

determine the type of the error. The backup block contains the calculated 

mathematical models, obtained by experimental identification methods, in 

MATLAB/Simulink. Both are interconnected and communicate through the 

shared variables using OPC server and fully described in this chapter. 
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4.1 Multi-Sensor Network 

Experimental identification [26] is the process that leads to the calculation of the 

mathematical model of a real system using data obtained by measurement. In our 

case, these data are represented by ten parameters of the small turbojet engine 

iSTC-21v. These parameters are: 

 T2C – total temperature on the compressor’s outlet [°C] 

 T3C – total temperature in the combustion chamber [°C] 

 T4C – total temperature beyond the gas turbine [°C] 

 P2C – total pressure of air beyond the compressor [Pa] 

 P3C – total pressure of gas at the inlet to the gas turbine [Pa] 

 Ppal – fuel pressure [Pa] 

 Qpal – fuel flow supply [l/min] 

 Ft – thrust of the engine [N], 

 n – speed of the turbo-compressor [rpm] 

 A5 – exhaust nozzle diameter [%] 

The measured data was divided into training, testing and validation sets. In order 

to get the most accurate experimental models, we have created over 5000 models 

in the MATLAB/Simulink environment, using the above mentioned experimental 

identification methods in different configurations. Then we compared these 

models, using validation data and selected the best one, based on the values of the 

mean absolute percentage error (MAPE). The results are shown in Table 1. The 

simplified structure of the multi-sensor network can be seen in Fig. 6. Each of the 

inputs to individual models of one parameter is measured by different sensor 

except exhaust nozzle diameter A5 which is the essential model input because it 

influences the thermodynamic properties of the engine and this eliminates the 

possibility of mutual influence and thus increases the reliability and efficiency of 

the system. 
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Figure 6 

The scheme of multi-sensor network 
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Table 1 

Final experimental models of engine parameters 

Outputs Inputs Method MAPE [%] 

T2C 
P2C, n, A5 TDNN 7.9784 

P3C, A5 Output - Error 5.1810 

T3C 
Qpal, Ppal, A5 TDNN 1.8654 

Ft, A5 Output - Error 4.0667 

T4C 
P2C, Qpal, A5 DDNN 5.1094 

Ft, A5 Output - Error 4.4707 

P2C 
n, Ft, A5 TDNN 1.1303 

P3C, A5 Output - Error 3.2630 

P3C 
n, Qpal, A5 NARX 0.8733 

P2C, A5 Output - Error 2.7789 

Ppal 
P2C, P3C, A5 TDNN 4.8581 

Qpal, A5 Output - Error 10.2502 

Qpal 
n, P3C, A5 TDNN 2.0113 

P2C, A5 Output - Error 7.5757 

Ft 
P2C, Qpal, A5 NARX 5.7475 

P3C, A5 Output - Error 8.0302 

n 
Ppal, P2C, A5 NARX 0.6436 

Qpal, A5 Box - Jenkins 2.2926 

4.2 Diagnostic Modules 

The complete diagnostic and backup system is composed of nine diagnostic 

modules for each of the chosen iSTC-21v engine’s parameters. These modules in 

monitor engine condition in real time and evaluate whether the sensors provide 

correct data. If a sensor fault is detected, they can replace it with backup 

represented by the created experimental model of that parameter whose sensor is 

faulty. Due to the limited number of pages, for example, the designed architecture 

of diagnostic module for parameter n (speed of the turbo-compressor) is shown in 

the Fig. 7. 
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Figure 7 

The structure of the diagnostic module for the parameter n 

The system is based on triple modular redundancy and a dynamic backup which 

switches between basic and backup elements, depending on the results of the 

diagnostics. As a diagnostic method the voting method was selected [35, 36]. 

Inputs to the voting method are the measured data from the sensor and modeled 

values of parameter computed by experimental models. In our case, for parameter 

n this represents a signal from the optical sensor (In1) and outputs of the NARX 

neural network (In2) and Box – Jenkins model (In3). These inputs are fed into the 

block of pair comparisons, where each couple is compared and evaluated 

depending on the amount of the maximum allowed deviation. The size of this 

permissible error for each pair is computed as the sum of the allowed deviation 

values for signals that make up the pair. For the sensors it represents the accuracy 

with which they work and for experimental models that value is determined as the 

maximum absolute error (MaxAE), compared to real measured data. The 

maximum allowed deviation values for parameter n are shown in Table 2. 

Table 2 

Maximum permissible error of inputs 

Inputs 
Allowed 

deviation [rpm] 
Pair comparison 

Sum of allowed 

deviation [rpm] 

In1 200 In1 and In2 1252 

In2 1052 In1 and In3 3363 

In3 3163 In2 and In3 4215 

If two out of the three compared output pairs exceed the sum of the permissible 

error, then the output parameter, which is present in both of the error exceeding 

pairs, is declared as faulty. If all three pairs exceed the maximum deviation value, 
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the system verifies inputs to the models. In the case where the diagnostic/backup 

system evaluates data from these sensors as accurate, the output of the model is set 

as correct. 

4.3 Expert System 

When a fault is detected, the right decision about its type (sensor, actuator or 

component) is essential. Several methods have been suggested in this area, but 

most of them were mathematical calculations [37] or were not tested on a real 

system, only in a simulation environment [38]. 

We have proposed an effective and low computer resource demanding method to 

distinguish between a sensor error and a component/engine fault. Due to the 

complexity of this area, it is difficult and almost impossible to have a hundred 

percent success, in determining the exact type of failure. So the system always 

chooses the option with a higher probability. A real-time expert system provides 

immediate decisions using if-then rules in its knowledge base [39]. This base can 

contain many rules for all engine sensors, but we could summarize them into three 

basic rules: 

 If only one sensor provides incorrect data, then it is a sensor fault (SF). – 

This is based on the assumption that an engine fault has an influence on 

more than just one parameter. 

IF 


9

1i

iE = 1 THEN (SF = 1 AND EF = 0) 

 If two sensors provide incorrect data, then it is a sensor fault / engine 

fault. – It depends on exactly which sensors the voting method has 

evaluated as a fault. If they can be affected by one interference (sensor 

fault) or if damage to one engine component can affect the values of only 

these two sensors (component fault). 

IF 


9

1i

iE = 2 THEN (SF = 1 OR EF = 1) 

 If three or more sensors provide incorrect data, then it is an engine fault 

(EF). – This is determined by the fact that the probability of failure of the 

three and more sensors is very small. 

IF 9,3
9

1


i

iE  THEN (SF = 0 AND EF = 1) 

In the case of fault detection, the results of the voting method Ei are transferred to 

the expert system. It determines whether a sensor or engine fault is detected. If it 

is a sensor fault, the output of the diagnostic/backup system is represented by the 
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most accurate signal (based on the allowed deviation value – see Table 2) which 

was diagnosed by the voting method as correct. If it is an engine fault, the output 

of the diagnostic and backup system is set as the signal from the sensor, not the 

model, so we get the real measured values. Moreover, this signal can be used to 

parameterize the situational control system and choose appropriate control 

strategy to handle an engine failure (e.g. overheat). The designed decision making 

rules of the expert system are simple probability based options and therefore 

robust, thus not susceptible to changes in sensor network or modifications in the 

measured parameters. A more complex expert system with further decision 

making when rules two and three are active can be designed to more precisely 

evaluate the failure of the engine as well as evaluate the probability of the 

classification. The link scheme is shown in Fig. 8. 

 

Figure 8 

Connection diagram of individual parts of the diagnostic and backup system 

5 System Test Results 

The functionality of the proposed and implemented system for real-time 

diagnostics and backup has been tested in the Laboratory of intelligent control 

systems of jet engines on the small turbojet engine iSTC-21v. The first test 
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represents a faultless engine operation and the results for the speed of the turbo-

compressor n, is shown in Fig. 9. The engine was run for 80 seconds and the graph 

shows the measured data from the optical sensor (blue) and approximate data of 

the parameter calculated by NARX neural network (red) and Box – Jenkins model 

(black). The output of the diagnostic/backup system (green) is the most accurate 

signal, which in the case of faultless operation of the engine represents a signal 

from the optical sensor. During the test, the mean absolute error of the NARX 

neural network was MAE = 262.2621 rpm and error of the Box – Jenkins model 

was MAE = 945.7668 rpm. 
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Figure 9 

Test of the system for parameter n during faultless engine operation 

For complete testing of the system response, experiments were also performed 

when a fault occurs. Two types of sensor errors that are the most common were 

considered: 

 Failure of individual inputs – caused by sudden power loss or loss of the 

communication channel 

 Presence of random input values – caused by electromagnetic 

interference (noise) 

As the sensors cannot be physically damaged, the errors were simulated by 

influencing input values of the system. 
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Testing for Failure of Individual Inputs 

Failure of individual inputs is represented by a sudden fall of the measured data to 

zero. This fault was simulated in such a way that at the specific intervals, the real 

value of the chosen input (signal from the sensor) was set to zero. To generate an 

error, in the 20th second was measured data from optical sensor (parameter n) set 

to zero. The implemented system diagnosed the sensor error and replaced it with 

the backup which is the output of the NARX neural network. In the 40th second 

was the value of the parameter Ppal changed to zero, which affected the accuracy 

of the neural model and thus simulated an error. Only by the pair comparison 

results, it was impossible to determine which input (In1, In2, In3) is wrong. So the 

system checked all sensors and model outputs and diagnosed that only the Box – 

Jenkins model provided correct data. In the 60th second were all data set back to 

the real values and the diagnostics output was again the most accurate signal from 

optical sensor. As can be seen in Fig. 10, the designed diagnostic and backup 

system was able to detect failures and replace them with the backup (data acquired 

by experimental models). 
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Figure 10 

Test of the system for failure of individual inputs 

Discrimination Engine/Sensor Failure Test 

In this experiment, we tested the ability of the system to distinguish between 

engine and sensor faults by adding random input values, thus simulating additive 

errors. The random values appear as a rapid increase or decrease in the size of 

inputs of the voting method over their real-actual values. It was simulated by 

adding a certain value to the real values of individual inputs at a certain time.  
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The response of the system is shown in Fig. 11. Similar to the previous test, the 

error of the optical sensor was first simulated by adding the speed of 10000 rpm 

(20th – 80th second). The neural model error was then generated by increasing the 

value of fuel pressure Ppal of 30 Pa (40th – 80th second). In both cases, the system 

correctly detected the sensor failure and replaced it with a backup. Unlike the 

previous test, the adjusted values were not returned to true values. In the 60th 

second 0.5 l/min to the real value of the fuel flow supply Qpal was added. It caused 

that the expert system diagnosed engine fault because more than two sensors 

provided the incorrect data and the signal from optical sensor was set as the 

diagnostic output. This test shows than the implemented diagnostic/backup system 

is capable of responding to errors caused by random input values and engine 

faults. 
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Figure 11 

Test of the system for random input values 

Conclusions 

The issues described in this paper represent the essential components for on-line 

diagnostics of aircraft turbojet engines. It is made important by the fact, that all 

aviation systems have to work, without failure, because even a minor failure can 

have catastrophic consequences. We have designed a diagnostic and backup 

system using a multi-sensor network and multiple model approach for fault 

detection and isolation. It utilizes the signals from sensors and approximate values 

of parameters obtained by polynomial models and neural networks. Using these 

models as backups, leads to increased redundancy of the system without adding 

additional sensors, resulting in a cost reduction. The functionality and reliability of 
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the system was successfully tested on the small turbojet engine, iSTC-21v, under 

laboratory conditions. The main advantage of the proposed system is the ability to 

diagnose faults, distinguish between sensor errors and engine faults using the 

expert system and also to prevent sensor errors that have an impact on engine 

operation and by timely application of the designed backups. The system can be 

improved in the future by adding more rules to the expert system, so it will 

provide more accurate information about the detected faults of the diagnosed 

object. 
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