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Abstract: Qualitative reasoning attracts special attention over the last two decades due to 
its wide applicability in every-day tasks such as diagnostics, tutoring, real-time monitoring, 
hazard identification, etc. Reasoning about qualitative probabilities is one of the most 
common cases of qualitative reasoning. Here we will present a part of our work on the 
problem of sound, strongly complete and decidable axiomatization of the notion of 
qualitative probability. 

1 Introduction 
Reasoning about qualitative probabilities is one of the most prominent cases of the 
qualitative reasoning. Some varieties of qualitative probability are discussed in 
[18]. Here we will present a part of our work on the axiomatization of the notion 
of qualitative probability within the framework of probabilistic logic. Though they 
are infinitary, our logics are sound, strongly complete and decidable. 

The standard approach to probabilistic logic [3], [9] (see also the database [10]) 
involves extension of the classical propositional or predicate calculus with the 
modal-like operators, in our notation ( ) sP ≥α , with the attended meaning ‘the 
probability of α is at least s ’, where s  ranges over the predefined index set S . 
The corresponding semantics is defined as special kind of Kripke models with 
probability measures on worlds. 

As it is well known (see [9], [17]), the key issue for this kind of logics is the non-
compactness phenomena: there are examples of finitely satisfiable inconsistent 
sets of formulas. There are several ways to overcome this problem. In [3] a 
finitary axiomatization which involves the reasoning about linear inequalities was 
provided. However, only simple completeness (every consistent formula is 
satisfiable, in contrast to the strong completeness: every consistent set of formulas 
is satisfiable) can be proved for that logic. As a consequence, there are examples 
of consistent unsatisfiable sets of formulas. 

In [8], [9], [11], [12], [14], [15] some infinitary probabilistic logics were presented 
and the corresponding strong completeness theorems were proved. In those logics 
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we keep formulas finite and allow countably infinite inference rules (conclusions 
might have countably many premises). In [9], [13] and [17], some probabilistic 
logics with a fixed finite range for probability measures were given. 

Lately, probabilistic logics with the non-Archimedean measures were introduced. 
For instance, in [15] was introduced a non-Archimedean probabilistic formalism 
that can be used for the modeling of default reasoning. 

In the presence of the probabilistic operators ( ) sP ≥α one can semantically 
express the notion of the qualitative probability in the following way: a formula 
β is at least probable as a formula α iff ( ) sP ≥β implies ( ) sP ≥α for all 

Ss∈ . Building on our previous work, we have extended the probability 
language with an additional binary operator βα p with the intended meaning 
‘β is at least probable as α ’. Depending on the choice of the index set S and the 
range of the models, we have developed several formal systems (see [12]). Here 
we will only present the basic ideas. 

2 Syntax and Semantics 
By Var we will denote the set of propositional variables. We assume that there 
are countably many propositional variables. The corresponding set of 
propositional formulas will be denoted by CFor . Propositional formulas will be 

denoted by α , β  and γ , indexed if necessary. The index set S is defined as the 

set of all rational numbers in the real unit interval [ ]1,0 . The elements of S will 
be denoted by r  and s , indexed if necessary. 

A basic probabilistic formula is any formula of the following two forms: 

• ( ) sP ≥α ; 

• βα p . 

Abbreviations such as ( ) sP >α , ( ) sP ≤α , etc. are defined as usual (see [12]). 

The set PFor  of all probabilistic formulas is the Boolean closure of the basic 
probabilistic formulas. Probabilistic formulas will be denoted by φ , ψ  and θ , 
indexed if necessary. 

A model is any structure vHWM ,,, μ=  with the following properties: 

• W  is a nonempty set. 
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• H  is an algebra of sets on W . 

• [ ]1,0: →Hμ  is a finitely additive probability measure. 

• { }1,0: →×WForv C  is a truth assignment. 

For CFor∈α , by [ ]α  we will denote the set of all Ww∈ such that 

( ) 1, =wv α . A model M  is measurable if [ ] H∈α  for all CFor∈α . 

Let vHWM ,,, μ=  be a measurable model. The satisfiability relation is 

defined recursively as follows: 

• M  satisfies α if [ ] W=α . 

• M  satisfies ( ) sP ≥α  if [ ]( ) s≥αμ . 

• M  satisfies βα p  if [ ]( ) [ ]( )βμαμ ≤ . 

• M  satisfies ψφ ∧  if M  satisfies φ  and M  satisfies ψ . 

• M  satisfies φ¬  if M doesn’t satisfy ψ . 

A formula is satisfiable if there is a measurable model that satisfies it. A formula 
is valid if it is satisfied in every measurable model. A set of formulas is satisfiable 
if there is a measurable model that satisfies every formula from the set. 

3 Axiomatization 
In [12] we have shown that the following axioms and inference rules give a 
strongly complete characterization of valid probabilistic formulas. 

Axioms 

1 Substitutional instances of tautologies. 

2 ( ) 0≥αP . 

3 ( ) ( ) sPrP >→≥ αα , whenever sr > . 

4 ( ) ( ) sPsP ≥→> αα . 

5 ( ) ( ) sPsP ≥↔≥ βα , whenever βα ↔  is a tautology. 

6 ( ) ( ) ( )( ) ( ) ( ).,1min0 srPPsPrP +≥∨→=∧∧≥∧≥ βαβαβα  
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7 ( ) ( )( ) βαβα p→≥∧≤ sPsP . 

8 ( )( ) ( ) sPsP ≥→≥∧≤ βαβα . 

Inference Rules 

1 Modus ponens for propositional formulas and modus ponens for 
probabilistic formulas. 

2 Necessitation: from α  derive ( ) 1=αP . 

3 Archimedean rule: from the set of premises 
( ){ }11 : −− >−≥→ snnsP αφ  infer ( ) sP ≥→ αφ . 

4 p  rule: from the set of premises 
( ) ( )( ){ }SssPsP ∈≥→≥→ :βαφ  infer βαφ p→ . 

Let us briefly comment axioms and inference rules. The first axiom is necessary 
since all tautology instances are valid formulas (see the last two items in the 
definition of the satisfiability). The 2nd axiom and the necessitation rule provide 
that the P - value of each propositional formula is between 0 and 1. The 3rd and 
4th axiom provide the usual properties of ≥ . The 5th axiom provides that the 
equivalent formulas have the same P - values. The 6th axiom provides the finite 
additivity. The last two axioms and the p  rule axiomatize qualitative probability. 
Finally, the Archimedean rule provides the strong completeness of our system. 

4 Decidability 
An immediate consequence of the proposed axiomatization is the fact that each 
probabilistic formula has a disjunctive normal form, i.e., it is equivalent to a finite 
disjunction of literals, where a literal is either a basic probabilistic formula or its 
negation. 

Thus, the question of satisfiability of probabilistic formulas is reduced to the 
question of satisfiability of finite conjunctions of literals. Using the standard 
technique (see [8]), we can equivalently reduce satisfiability of probabilistic 
formula to the existence of a solution of the adjoined system of linear inequalities. 
It is well known that the later problem is decidable. 

Conclusion 

The paper presents a probabilistic logic in which the notion of the qualitative 
probabiliry is completely axiomatized. Our logic involve infinitary rules in order 
to achieve the strong completeness, which is impossible in the finitary setting 
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(assuming the real valued semantics and the infinite number of propositional 
variables). Detailed exposition with all proofs can be found in [12]. 

We are aware of only a few papers which present a syntactical approach to 
qualitative probability. An early result on the first order axiomatization of 
qualitative probability is due to Scott [16]. Some variants of the first order 
approach in the infinite setting were discussed in [6]. Qualitative probabilities are 
expressible in the systems introduced in [3]. However, those logics are only 
simply complete (finitary axiomatization and the real valued semantics). The 
paper [5] also provides a simply complete axiomatization of qualitative 
probability. 

In [2], [7], [9] and [11], nesting of probabilistic operators is allowed and higher 
order probabilities are expressible. Our methodology can be easily extended to 
those cases as well. 
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