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Abstract: In this paper a coarse-grain model is presented that describes the major features
of cell growth and cell cycle in Saccharomyces cerevisiae. Central for the construction of
the growth and cell cycle model has been the large amount of scientific papers covering the
description of cellular growth in steady-state and perturbed growth conditions, describing
ribosome and protein contents, and the description of cell cycle progression as percentage of
budded cells (cells that have entered S-phase). The coarse model is composed by i) a growth
module, i.e. a set of ODEs representing the dynamics of synthesis/degradation of ribosomes
and proteins, and ii) a cell cycle module, i.e. a set of three consecutive timers (T1, T2 and
TB) that temporally accounts for the yeast cell cycle, underlying the length of the G1 phase
(timer T1 plus T2) and of the budded phase (timer TB) entailing S, G2 and M phases. The
growth module acts as a master, setting the length of the first of the three sequential timers.
Main results coming from the mathematical analysis involve the qualitative behavior of the
system, constraining ribosome synthesis and growth to the set of model parameters. Further
results involve the generalization of a known constraint that involves the lengths of the cycles
of parent and daughter cells, and accounts for the genealogical age heterogeneity, typical of
budding yeast Saccharomyces cerevisiae.

Keywords: Linear ODE models, Systems Biology.

1 Introduction
This work investigates the qualitative behavior of a coarse-grain mathematical model
of the budding yeast Saccharomyces cerevisiae, a micro-organism known to be ex-
ploited as a model for eukaryotic cells. The model constitutes of two modules. The

– 205 –



P. Palumbo et al.
A coarse-grain model of growth and cell cycle

in Saccharomyces cerevisiae: a mathematical analysis

former describes the cell growth by means of a pair of Ordinary Differential Equa-
tions (ODEs) dealing with ribosomes and protein content. The latter introduces a set
of three timers that cover the whole cell cycle, namely T1, T2 and TB. Timer T1 starts
with the newborn cell and is formally over when the G1/S regulon is activated; then
T2 starts and is over with the end of the G1 phase. The notation used for the first two
timers T1 and T2 is the same one that has been introduced in [1]. According to the
mentioned paper, T1 refers to the period a newborn cell takes to activate the G1/S
regulon and is formally measured by the time the regulon inhibitor Whi5 takes to
exit the nucleus; on the other hand, T2 refers to the time cyclins Clb5/6 (responsible
for the onset of the S phase) take to get rid of their inhibitor Sic1. The sum of T1
and T2 provides the length of the G1 phase.

At the end of the G1 phase, contemporary to the onset of the S phase, TB starts and
covers the rest of the cycle, i.e. S+G2+M phases. Such a period is called budded
phase because the cell is characterized by a bud, and all protein and ribosome pro-
duced in TB go straightforwardly to the bud (that will become the newborn cell at
the end of the cycle).

Growth and cell cycle are linked together by timer T1, since its length depends on
the cell size. More in details, the link is rendered by the fact that T1 depends on
the initial cell size, i.e. its length has an inverse dependence on the protein content
at cell birth. This is a simplifying hypothesis with respect to the more accurate
model developed in [2], where the link between growth and cell cycle is driven by a
molecular sizer, that is able to account also for extra-small cell.

Figure 1 provides a graphical representation of the coarse-grain model, showing the
details of each module and the connection point between them.

Growth module
Growth and cycle model

T1 T2 TB

G1

Cycle module

Figure 1
Block diagram of the growth and cell cycle model.
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Part of the mathematical analysis dealing with the growth module has been devel-
oped in [3]. Here we extend those results and introduce a set of constraints straight-
forwardly related to the length of parent and daughter cycles.

2 The growth and cell cycle model
The growth and cell cycle model is composed of two modules (see Figure 1):

• the growth module based on a set of ordinary differential equations that de-
scribes the dynamics of synthesis and degradation of ribosomes and proteins;

• the cell cycle module consisting of a sequence of the three timers T1, T2 and
TB that describes the cell cycle progression after cell birth.

2.1 The growth module
Cell proliferation is sustained by the increase of cell components. A large part of
energy and building blocks utilized in cellular processes is exploited for the biosyn-
thesis of ribosomes and proteins, whose increase results from the balance between
the rate of protein/ribosome synthesis and degradation.

The growth module is taken from [4] and deals with the ribosome content R, ex-
pressed as number of ribosomes per cell, and the protein content P, expressed as
number of polymerized amino acids per cell. The working hypothesis is that ribo-
some and protein contents are allowed to vary continuously, so that the dynamics of
the two state variables is described by the following ODEs:

Ṙ(t) = K1
[
ρP(t)−R(t)

]+− R(t)
τ1

, R(0) = R0 ≥ 0,

Ṗ(t) = K2R(t)− P(t)
τ2

, P(0) = P0 ≥ 0,
(1)

where

[z]+ =

{
z, for z > 0,
0, otherwise.

Both ribosome and protein dynamics are described by the balance between pro-
duction and degradation rates. A special role is played by the parameter ρ , that
represents the ideal “ribosomes-over-proteins” ratio, for each steady-state growth
condition. When the ratio R(t)/P(t) is higher than ρ , then there is no ribosome
production, so that the dynamics of R and P is described by the following linear
working mode,

µ1 :


Ṙ(t) =−R(t)

τ1
,

Ṗ(t) = K2R(t)− P(t)
τ2

;
(2)

otherwise, the ribosome production rate is proportional to the (positive) difference
ρP(t)−R(t) by means of parameter K1 and the R-P dynamics is described by an-
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other linear working mode as follows

µ2 :


Ṙ(t) =−

(
K1 +

1
τ1

)
R(t)+K1ρP(t),

Ṗ(t) = K2R(t)− P(t)
τ2

.
(3)

The switches between µ1 and µ2 depend on the position of the state variables of the
system in the phase plane and, in particular, on the value of their ratio R(t)/P(t)
compared to the threshold ρ (see Figure 2 where an example of trajectory in the
phase plane is reported).

R

P

R/P = r

r

R0/P0

µ1 ® µ2

µ
1 ¬
µ

2

!"

!#

Figure 2
An explanatory trajectory in the phase-plane for a cell that is born according to ribosome synthesis
conditions, then it first switches to absence of ribosome synthesis (from µ2 to µ1) and then it switches
back to µ2 again.

The properties of each working mode and the switching conditions from one mode
to the other one are given in Section 3 and are partially demonstrated in [3]. Such
properties are necessary to characterize the qualitative behaviour of R(t) and P(t),
as well as to establish if the yeast cell is actually growing (i.e. if the linear model
has at least one positive eigenvalue) or not.

Experimental evidences related to yeast populations in exponential growth show
that each growth condition (i.e. each growth rate) is characterized by a specific ratio
of “ribosomes-over-proteins”, although the molecular mechanism of the association
is still unclear. The mechanism may involve TOR-dependent phosphorylation of
Sfp1, a positive regulator of transcription of genes encoding ribosomal proteins [5].
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Experimental evidences also support the choice of the non-linear ribosome produc-
tion rate of model (1) as they show the existence of a negative feedback reducing
the ribosome biosynthesis in presence of ribosomes not engaged in protein biosyn-
thesis [6, 7]. In Escherichia coli, this mechanism runs via ppGpp and is relatively
well understood; it appears to provide a robust and optimal partitioning of cellular
resources over ribosomes and other proteins [8]. In eukaryotes it involves the TOR
pathway [5, 9, 10]. Experimental values for the “ribosomes-over-proteins” ρ can be
found in [11–14].

2.2 The cell cycle module
Saccharomyces cerevisiae cells divide asymmetrically [15], cell mass at division is
unequally partitioned between a larger, old parent cell (P) and a smaller, newly
synthesized daughter cell (D). The degree of asymmetry of cell division in Saccha-
romyces cerevisiae is modulated by nutrients: poor media – such as ethanol – yield
a high level of asymmetry with large parent cells and very small daughter cells,
whereas in rich media – such as glucose – parents and daughters at division are very
close in size (reviewed in [16]). Since cells have to grow to a critical cell size before
entering S phase and budding, small cells have longer cycle time than larger cells,
most notably in poor media. As a matter of fact, this difference in cycle time is due
to differences in the G1 phase, having the budded period TB essentially the same
length whatever the size of the cells [1].

The first timer T1 starts with the birth of the new cell and is over when nuclear Whi5
exits the nucleus. Aiming not to detail the whole molecular machinery, Whi5 will
not be explicitly involved in the model. The length of T1 is strongly related to the
initial size of the cell, according to a constraint that makes smaller the length of T1
for larger cells and vice versa. So, the initial size of the cell plays a crucial role to
assess the value of T1. More in details, T1 is set according to the following equation

T1 = max{T1P,W0−W1 ln(P(0))}, (4)

with P(0) denoting the size of the cell at birth. Notice that P(0) plays an active role
in the setting of T1 only for cells small enough to ensure

W0–W1 ln(P(0))> T1P =⇒ P(0)< e

W0−T1P

W1 . (5)

Length of timer T2 does not depend on protein content, and it is set to the same
value for small and large cells. At the end of timer T2, the critical size expressed
both as ribosome content and as protein content, Rs and Ps respectively, is estimated.
Timer T2 is related to the period inhibitor Sic1 takes to get out of the nucleus thus
activating cyclins Clb5,6, responsible for the onset of the budded phase [1].

The third timer TB refers to the budded period, which eventually leads to cellular
division. Like timer T2, TB length does not depend on the protein content, and it is
set to the same value for small and large cells.

Notice that the setting of timer T1 may allow small cells (i.e. the ones that com-
ply with (5)) to reduce their critical cell size variability w.r.t. the initial variability.
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Indeed, denote with P̄0 and ∆0 the average value of the initial size and its corre-
sponding variability in a population of cells in balanced exponential growth (growth
rate λ ), with the initial size complying with inequality (5). Define P̄s and ∆s the
average value of the critical size and its corresponding variability. Then, because of
(5), we have:

Ps = P(0)eλ (T1+T2) = P(0)eλ (W0−W1 lnP(0)+T2), (6)

By accounting for size fluctuations, we obtain after simple computations:

Ps = P̄s +∆s = (P̄0 +∆0)
1−λW1eλ (W0+T2). (7)

Applying first-order approximation, we finally have

∆s ' (1−λW1)P̄
−λW1
0 eλ (W0+T2)∆0. (8)

A biologically meaningful parameter setting provides ∆s ≤ ∆0 (see for instance [2]),
which is coherent with the idea that the G1/S transition is able to reduce size vari-
ability.

2.3 Genealogical age heterogeneity
When a yeast cell buds, a chitin ring, called bud scar, builds up at the bud isthmus
and remains on the parent cell after the bud has separated (reviewed in [16]). Since
each new bud starts at a new site, it is possible to determine the number of bud scars s
present on the surface of a parent cell and consequently to establish the genealogical
age k of the parent cell, meaning the age of the parent cell equal to the number of
daughters it has generated (i.e., k = s). So, denoting by Pk a parent cell of age k, a
cell P1 has one bud scar since it has completed a cycle, a cell P2 has two bud scars
since it has completed two cycles, and so on. On the other hand, a cell without bud
scars (s = 0) is a daughter cell and it has not yet completed a cycle. The model of
growth and cell cycle, however, distinguishes the genealogical age of the daughter
cells: it can be 1 if the daughter is born from another daughter, while it is k > 1 if the
daughter is born from a parent Pk−1. We denote by Dk a daughter of genealogical
age k. It has to be stressed that such a notation refers to a cell in a specific cycle of
its life. In other words, the same cell is labeled by a different name each time a new
cycle starts. For instance, a newborn cell coming from any daughter cell is called
D1 in its first cycle, will be called P1 in its second cycle, P2 in its third cycle, and
so on.

Because at every generation each parent increases in size before starting to bud
[17–19] and at division it receives the mass it had at budding (the mass synthesized
during the budded phase going to the newborn daughter), it follows that in parents,
the critical size increases with genealogical age. Experimental evidence shows that
the higher is the genealogical age (i.e. the number of bud scars), the smaller is the
increase in size at budding from one generation to the other [16, 20]. The reduction
in cell size increase with genealogical age has been explained by the mechanical
stress of the cell wall, which increases with cell size [21, 22].
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In order to account for the aforementioned behavior, both K2 and τ2 in Eqs. (1)
(rate of protein synthesis and time constant of protein degradation respectively) are
decreased to lower and lower values during the pre-budded period (G1 phase, i.e.
T1 + T2), according to the parent genealogical age. We define K2k and τ2k the K2
and τ2 parameters for a parent cell with genealogical age k. At the end of timer
T2 – coincident with the end of the G1 phase and with the onset of the budded
phase – the values of K2k and τ2k return to the nominal values of K2 and τ2, so that
the parent cell Pk grows again with the steady-state exponential rate (given by the
positive eigenvalue, see next section). Daughter cells (of any genealogical age) are
not affected by such a mechanical stress.

Table 1 collects all the model parameters introduced in this section, providing also
the corresponding measurement units and definitions.

Parameter Unit Definition
ρ rib/aa Asymptotic ratio of ribosomes over proteins
K1 min−1 Ribosome production rate
τ1 min Ribosome degradation time constant
K2 aa/(rib*min) Protein production rate

for any Dk and for Pk in budded phase
K2k aa/(rib*min) Protein production rate

k = 1, 2, ... for Pk in G1-phase
τ2 min Protein degradation time constant

for any Dk and for Pk in budded phase
τ2k min Protein degradation time constant

k = 1, 2, ... for Pk in G1-phase
T1P min Minimum value for T1
W0 min T1 length for unitary P(0)
W1 min Size-related coefficient to set T1 length
T2 min Length of T2
TB min Length of the budded phase

Table 1
Measurement units and definitions of the model parameters.

3 Properties of the growth module
It is important to determine which are the conditions on the model parameters of
system (1) required for cell growth, under each working mode µ1 or µ2. So, let us
introduce the notation g and ḡ to denote two opposite growing dynamics of the cell:
the state g represents growth, i.e. ribosomes and proteins are actually increasing
(after a transient period) because of the existence of a positive eigenvalue in system
(1); conversely, the state ḡ represents a not growing cell in which ribosomes and
proteins are non-increasing.

Let us now give some simple results on the growing dynamics related to system (1).
Let us observe first that ḡ (no growth) is the only allowed dynamics for system (1)
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when R(t)/P(t) ≥ ρ , i.e. when the working mode is µ1 (no ribosome synthesis).
This trivially comes from the negative sign of the eigenvalues related to the linear
system (2) (λ1 =−1/τ1, λ2 =−1/τ2).

The following theorem shows instead the growing dynamics of system (1) when
R(t)/P(t)< ρ .

Theorem 1. When the working mode of system (1) is µ2 (presence of ribosome
synthesis), both the growing dynamics are allowed. In particular it is:

• g (growth) when x > 0,

• ḡ (no growth) when −1≤ x≤ 0,

where x is the following function of the model parameters

x = 4
K1K2ρ−

(
K1 +

1
τ1

)
1
τ2(

K1 +
1
τ1

+
1
τ2

)2 . (9)

The condition x < −1 cannot occur for any non-negative setting of the model pa-
rameters.

Proof. The proof comes from the computation of the eigenvalues of the linear sys-
tem (3) (working mode of system (1) when R(t)/P(t)< ρ), that is

λ1 = y
(
−1−

√
1+ x

)
, λ2 = y

(
−1+

√
1+ x

)
, (10)

where x is given by (9) and

y =
1
2

(
K1 +

1
τ1

+
1
τ2

)
. (11)

Let us prove first that the condition x < −1 cannot be satisfied so that λ1, λ2 are
always real (no oscillatory dynamics). In particular, it is shown by the following
arguments that x≥−1 for any non-negative setting of the model parameters.

Let us rewrite the quantity x as

x = t1 + t2, (12)

where

t1 = 4
K1K2ρ(

K1 +
1
τ1

+
1
τ2

)2 , t2 =−4

(
K1 +

1
τ1

)
1
τ2(

K1 +
1
τ1

+
1
τ2

)2 . (13)

The inequality t1 ≥ 0 straightforwardly comes from the non-negativity of the model
parameters. In particular, t1 = 0 if and only if K1 = 0 or K2 = 0 or ρ = 0 (as well
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as it approaches zero if and only if K1 tends to infinity or one parameter among
τ1, τ2 approaches zero). On the other hand, the second term of x satisfies the in-
equality −1 ≤ t2 ≤ 0. The non-positivity of t2 trivially comes again from the non-
negativity of the model parameters; conversely, the inequality t2 ≥ −1 holds if and
only if (K1 + 1/τ1− 1/τ2)

2 ≥ 0, which is trivially satisfied for any parameter set-
ting. Moreover, the minimum value t2 =−1 is obtained if and only if the condition
K1 +1/τ1−1/τ2 = 0 holds. So, from the previous arguments we can conclude that

x = t1 + t2 ≥ 0−1 =−1. (14)

We also notice that

x =−1, ⇐⇒

 K1 = 0 or K2 = 0 or ρ = 0,
and
K1 +1/τ1−1/τ2 = 0.

(15)

Finally, from property (14) and Eqs. (10), we easily get the following items:

• λ1 is always real and negative (for any x≥−1),

• λ2 is always real; moreover, it is λ2 > 0 for x > 0 and λ2 ≤ 0 for −1≤ x≤ 0,

that complete the proof of the theorem.

The results on the growing dynamics of system (1) given above are summarized by
the flow scheme of Figure 3, showing the possible combinations of working modes
(µ1, µ2) and growing dynamics (g, ḡ), on the basis of R(t)/P(t) and x values. The
figure shows that the population of ribosomes and proteins can actually grow only
when x > 0, but it depends on the value of the ratio R(t)/P(t): the growth dynamics
g is actually obtained only under the working mode µ2, i.e. when R/P < ρ (green
block). Conversely, when −1 ≤ x ≤ 0 the growth is not allowed, independently of
the values of the state variables (i.e. of the current working mode).

Let us now provide some properties on the switch between the two working modes
µ1 and µ2. In general, a piecewise affine system can show different behavior, span-
ning from stability to chaos [23]. The following results give conditions on the
model parameters determining if each working mode remains stable or switches
to the other one. Being in a given working mode at time t only depends on the
ratio R(t)/P(t) at the same time, but the value of the model parameters is the only
knowledge that we need in order to determine if the working mode is stable, i.e. it is
indefinitely maintained after t, or if it is unstable, i.e. a switch towards the opposite
working mode soon or later will occur.

Let us study such properties for meaningful values of the model parameters, that
is for positive values. Indeed, when some parameters vanish either the model is
not defined or the switching mechanism has no meaning because no growth can
be accomplished (the condition x > 0 is straightforwardly violated). In particular,
the dynamical equations of (1) are not defined when τ1 = 0 or τ2 = 0. Conversely,
according to definition (9), it is x < 0 when K1 = 0 or K2 = 0 or ρ = 0, meaning
that ribosomes and proteins are not growing under such parameter conditions (see
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Figure 3
Possible combinations of working modes and growing dynamics.

Theorem 1). We finally notice that the condition x > −1 holds when only positive
values of the model parameters are considered (indeed, according to relation (15),
at least one of the parameters K1, K2, ρ must vanish in order to obtain x =−1).

Let us first give the result establishing whether the ratio R(t +δ )/P(t +δ ) remains
larger than/equal to ρ (no synthesis, µ1), or alternatively becomes lower than ρ

(synthesis, µ2), for δ → ∞.

Theorem 2. Given the condition R(t)/P(t) ≥ ρ at a given time t, the ribosome
synthesis of system (1) is not active and the working mode µ1 is going to change or
not in t +δ , for δ → ∞, only depending on the model parameters. In particular,

1. the working mode µ1 sooner or later will switch to µ2 if

τ1 ≤ τ2, (16)

or if

τ1 > τ2 and ρK2 > 1/τ2−1/τ1; (17)

2. otherwise the working mode µ1 is indefinitely maintained.

Proof. The proof of Theorem 2 is completely given in Section IV.A of [3].

From Theorem 2 the following corollary can be derived.
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Corollary. If the model parameters are such that ρK2 > 1/τ2 − 1/τ1, then the
switch µ1→ µ2 is unavoidable; otherwise it is forbidden.

Proof. The proof of the corollary straightforwardly comes noticing that the con-
dition τ1 ≤ τ2 necessarily implies ρK2 > 1/τ2 − 1/τ1, as 1/τ2 − 1/τ1 ≤ 0 and
ρ,K2 > 0. So, the condition ρK2 > 1/τ2 − 1/τ1 is the largest condition on the
parameter values implying that the switch µ1 → µ2 sooner or later will happen,
independently of the values of τ1, τ2.

The next theorem deals with the behaviour of R(t +δ )/P(t +δ ) for δ →∞, starting
from R(t)/P(t)< ρ (presence of synthesis, µ2).

Theorem 3. Given the condition R(t)/P(t) < ρ at a given time t, the ribosome
synthesis of system (1) is active and the working mode µ2 is going to change or not
in t +δ , for δ → ∞, only depending on the model parameters. In particular,

1. the working mode µ2 is indefinitely maintained if

x > 0, (growth condition) (18)

or if

−1 < x≤ 0 and ρK2 ≥ 1/τ2−1/τ1; (19)

2. otherwise the working mode µ2 sooner or later will switch to µ1.

Proof. The proof of the stability of µ2 when the growth condition x > 0 holds is
given in Section IV.B of [3]. Here we extend such results to include also the case
−1 < x≤ 0.

In order to study the behaviour of the ratio R(t +δ )/P(t +δ ), δ → ∞, when −1 <
x ≤ 0 and R(t)/P(t) < ρ , we need to compute the explicit solutions of system (3).
Such solutions in t + δ can be given as linear combinations of the natural modes
eλiδ , i = 1,2, where the eigenvalues λi are provided by Eqs. (10). In particular, we
have:[

R(t +δ )
P(t +δ )

]
= u1vT

1

[
R(t)
P(t)

]
eλ1δ +u2vT

2

[
R(t)
P(t)

]
eλ2δ , (20)

where ui and vi are respectively the right and the left eigenvectors associated to the
eigenvalues λi, i = 1,2 (i.e. the solutions of the systems (A− λiI)ui = 0, vT

i (A−
λiI) = 0, i = 1,2). Recalling the expression of the eigenvectors reported in [3], we
obtain:

R(t +δ )=
λ1 +

1
τ2

λ2−λ1

(
−R(t)+

λ2 +
1
τ2

K2
P(t)

)
eλ1δ

+
λ2 +

1
τ2

λ2−λ1

(
R(t)−

λ1 +
1
τ2

K2
P(t)

)
eλ2δ ,

(21)
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P(t +δ )=
K2

λ2−λ1

(
−R(t)+

λ2 +
1
τ2

K2
P(t)

)
eλ1δ

+
K2

λ2−λ1

(
R(t)−

λ1 +
1
τ2

K2
P(t)

)
eλ2δ .

(22)

According to the expression of eigenvalues (10) and to the condition−1 < x≤ 0, by
also recalling the relations implied by the minimal condition x =−1 given by (15),
it is easy to obtain the following inequalities:

λ1 < λ2 ≤ 0 =⇒ eλ1τ < eλ2τ ≤ 1, ∀τ > 0,

λ2−λ1 = 2y
√

1+ x > 0,

λ1 +
1
τ2

< 0, λ2 +
1
τ2

> 0.

(23)

Inequalities (23) can be exploited to verify that the solutions of R(t+δ ) and P(t+δ )
given by Eqs. (21)-(22) are strictly positive for any pair R(t),P(t)> 0 and that their
behaviours tend to be equal to the following ones for δ → ∞

R(t +δ ) =
λ2 +

1
τ2

λ2−λ1

(
R(t)−

λ1 +
1
τ2

K2
P(t)

)
eλ2δ > 0,

P(t +δ ) =
K2

λ2−λ1

(
R(t)−

λ1 +
1
τ2

K2
P(t)

)
eλ2δ > 0,

(24)

since the natural mode eλ1δ tends to zero more rapidly than eλ2δ (see inequalities
(23)). This implies that the limit of the ratio R(t + δ )/P(t + δ ) is given by the
following expression

lim
δ→∞

R(t +δ )

P(t +δ )
=

λ2 +
1
τ2

K2
, γ2 > 0. (25)

Studying the sign of the time derivative of R(t +δ )/P(t +δ ), it is possible to prove
its monotonic behaviour in approaching γ2. Indeed, by introducing the quantity
γ1 ,−(λ1 +1/τ2)/K2, from Eqs. (21)-(22) we have

R(t +δ )

P(t +δ )
=

γ1 (R(t)− γ2P(t))eλ1δ + γ2 (R(t)+ γ1P(t))eλ2δ

−(R(t)− γ2P(t))eλ1δ +(R(t)+ γ1P(t))eλ2δ
. (26)

By exploiting the time derivative:

d
dδ

[
R(t +δ )

P(t +δ )

]
=

P(t)2

K2

(
γ2−

R(t)
P(t)

)(
R(t)
P(t)

+ γ1

)
(λ2−λ1)

2

(
− (R(t)− γ2P(t))eλ1δ +(R(t)+ γ1P(t))eλ2δ

)2 e(λ1+λ2)δ .

(27)

Taking into account inequalities (23), it is easy to verify that the sign of (27) only
depends on the value of R(t)/P(t), i.e. on the sign of the factor γ2−R(t)/P(t). Such
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a sign cannot change with δ and the monotonic behaviour of R(t + δ )/P(t + δ ) is
guaranteed for any value of the initial ratio R(t)/P(t).

In order to complete the proof we need to find the parameter conditions under
which the relation γ2 ≤ ρ , as well as the opposite one, is satisfied. Indeed, since
R(t)/P(t) < ρ , requiring γ2 ≤ ρ means that the ratio of ribosomes over proteins
will remain lower than ρ for any finite time, being γ2 the limit value of the ratio for
infinite time. So, by imposing the relation

γ2 =
λ2 +

1
τ2

K2
≤ ρ, (28)

we have

λ2 ≤ K2ρ− 1
τ2
, (29)

where λ2 ≤ 0 because of the condition −1 < x ≤ 0. Now, substituting the expres-
sion of λ2 given in (10) in the previous inequality and performing simple algebraic
operations, it is possible to obtain the final relation

K2ρ +
1
τ1
− 1

τ2
≥ 0, (30)

meaning that

γ2 ≤ ρ ⇔ K2ρ +
1
τ1
− 1

τ2
≥ 0. (31)

Obviously, implications (31) can be also given exploiting the opposite inequalities,
i.e.

γ2 > ρ ⇔ K2ρ +
1
τ1
− 1

τ2
< 0. (32)

So, we can conclude that, when −1 < x ≤ 0, the ratio R(t + δ )/P(t + δ ) remains
under the threshold ρ for δ → ∞ if K2ρ ≥ 1/τ2− 1/τ1 or it crosses the threshold
otherwise.

From Theorem 3 the following corollary can be derived.

Corollary. If the model parameters are such that ρK2 < 1/τ2 − 1/τ1, then the
switch µ2→ µ1 is unavoidable; otherwise it is forbidden.

Proof. The proof comes from Theorem 3 noticing that the inequality ρK2 ≥ 1/τ2−
1/τ1 can be assumed as the only condition for the stability of µ2, independently of
the value of x. Indeed, the growth condition x > 0 can be rewritten as

K1K2ρ >

(
K1 +

1
τ1

)
1
τ2
, (33)

– 217 –



P. Palumbo et al.
A coarse-grain model of growth and cell cycle

in Saccharomyces cerevisiae: a mathematical analysis

or equivalently, for positive values of K1, as

K2ρ >
K1 +

1
τ1

K1

1
τ2
. (34)

From condition (34) and from the positivity of the model parameters we obtain the
following chain of inequalities

K2ρ >
K1 +

1
τ1

K1

1
τ2

>
1
τ2

>
1
τ2
− 1

τ1
, (35)

showing that x> 0 implies ρK2 > 1/τ2−1/τ1. So, the condition ρK2 ≥ 1/τ2−1/τ1
can be taken as the only constraint to be verified in order to establish the stability of
µ2, independently of the value of x.

The results of the corollaries of Theorems 2 and 3 are depicted in Figure 4, where
all the possible working modes and growing dynamics of system (1) are represented
in the positive orthant of the parameter space, showing when the transitions are
forbidden or unavoidable.

Positive parameter space

!"# >
1
&"

− 1
&(

!"# <
1
&"

− 1
&(

!"# =
1
&"

− 1
&(

+, + ./
R/P < #

+, + .0
R/P≥ #

+, + ./
R/P < #

+, + .0
R/P≥ #

+, + ./
R/P < #

+, + .0
R/P≥ #

, + ./
R/P < #

+, + .0
R/P≥ #

!(!"# > !( +
1
&(

1
&"

(3 > 0)
!(!"# ≤ !( +

1
&(

1
&"

(3 ≤ 0)

(3 > −1)

Growth

Figure 4
Switching of the working modes in the parameter space.

4 Properties of the cell cycle module
In 1977 Hartwell and Unger proposed in [15] a relationship that links the daughter
and parent cycle period, TD and TP, to the growth rate of a budding yeast cell, namely
the positive eigenvalue λ2 in our growth model (1):

e−λ2TD + e−λ2TP = 1, (36)

where TD = T1(D)+T2 +TB and TP = T1(P)+T2 +TB.
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The relationship can be derived from a minimal model of exponentially growing
yeast populations that comprises only 2 cell types (parents and daughters of ge-
nealogical age 1) in either budded or unbudded state. The equation has been shown
to be satisfied in exponentially growing cells [16,24]. Constraint (36) is graphically
represented by the mesh in Figure 5, where the Mass Duplication Time (MDT ) is
exploited instead of λ2, on the basis of the relation MDT = ln(2)/λ2.

The remainder of this section is devoted to derive and extend analogous relationships
among the cycle periods of the proposed growth and cycle cell model, that accounts
for many kinds of daughter and parent cells, according to the rules that:

• a daughter cell of any genealogical age, Dk, provides at cellular division a
pair of newborn D1 and P1 cells;

• a parent cell of genealogical age k, Pk, provides at cellular division a pair of
newborn Dk+1 and Pk+1 cells.

Further rules involve the facts that:

• proteins and ribosomes produced during the budded phase go exclusively to
the bud (the future daughter cell);

• T2 and TB are (in average) the same for daughter and parents of any genealog-
ical age;

• cells are supposed to be in balanced exponential growth, with growth rate
provided by λ2;

• parent cells grow at a slower growth rate during their unbudded phase, due
to the mechanical stress discussed in Section 3. The growth rate associated
to Pk cells in G1-phase will be denoted in the following as λ2k and it can
be computed from the model parameters exploiting the same function used
for λ2, i.e. Eq. (10), but assuming that the mechanical stress influences the
values of the parameters related to the protein dynamics. In other words, λ2k
will change for Pk cells in G1-phase by changing the age k because of the
relation λ2k = λ2k(K2k,τ2k).

Denoting by TG1 the length of the G1 phase (TG1 = T1 +T2), the first relationship is
derived taking into account the exponential growth of a D1 cell from birth to bud:

P0(D1)eλ2TG1(D1) = Ps(D1), (37)

and from bud to cellular division, assuming the newborn D1 cell to be identical to
the original D1:

Ps(D1)eλ2TB = Pcd(D1) = P0(P1)+P0(D1) = Ps(D1)+P0(D1), (38)

so that:

Ps(D1)eλ2TB = Ps(D1)+Ps(D1)e−λ2TG1(D1), (39)

and finally:

e−λ2T (D1)+ e−λ2TB = 1. (40)
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Notice that eq.(40) very well resembles eq. (36), and it can be represented again
by the mesh of Figure 5. By explicitly accounting for T (D1) = T1(D1)+T2 +TB,
a mesh can be drawn constraining the three timers lengths (T1(D1), T2, TB), for any
given value of λ2:

T1(D1) =
1
λ2

ln
(

1
eλ2TB −1

)
–T2. (41)

In Figure 6 we report the case for λ2 = 0.0073 min−1, corresponding to the ex-
perimental condition of MDT = 97 min in glucose 2%. It has to be stressed that,
according to (41), not all the pairs (T2, TB) allow a feasible (i.e. positive) choice for
timer T1(D1) length. In fact, for given values of T2, according to (41) it must be:

T1(D1)> 0 → TB <
1
λ2

ln
(

1+ e−λ2T2
)
. (42)

Figure 7 shows the upper bound for TB as coming from (42) according to different
values of T2. The same reasoning can be generalized, this time taking into account
the exponential growth of a cell Dk from birth to bud, so that:

P0(Dk)eλ2TG1(Dk) = Ps(Dk), (43)

and the exponential growth of a Pk−1 cell from bud to cellular division:

Ps(Pk−1)eλ2TB = Pcd(Pk−1) = P0(Pk)+P0(Dk) = Ps(Pk−1)+P0(Dk), (44)

so that:

Ps(Pk−1)eλ2TB = Ps(Pk−1)+Ps(Dk)e−λ2TG1(Dk), (45)

or equivalently:

Ps(Pk−1) = Ps(Pk−1)e−λ2TB +Ps(Dk)e−λ2T (Dk). (46)

On the other hand, if we consider the exponential growth of a Pk cell from birth to
bud, we have:

P0(Pk)eλ2kTG1(Pk) = Ps(Pk) = Ps(Pk−1)eλ2kTG1(Pk), (47)

since P0(Pk) = Ps(Pk−1). Notice that eq. (47) accounts for different growth rates
for parent cells of different genealogical ages, due to the mechanical stress before
the bud occurs. Differently from eqs. (40) and (36), constraints (45)-(47) involve
size and cycle parameters together.

Conclusions
The coherence of a mathematical model (i.e. whether the associated solutions are
meaningful for the largest range of the feasible model parameters) is an important
feature a good model is required to attain, especially when aiming at describing a
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Figure 5
Constraint among MDT , parent and daughter cycle lengths (TP and TD, respectively). It is obtained from
(36), exploiting also the relation MDT = ln(2)/λ2. The same mesh represents the relationship among
MDT , budded phase and D1 cycle length (TB and T (D1), respectively) in our model, according to (40).

Figure 6
Constraint among T1(D1), TB and T2 for MDT = 97 min, as coming from (41).

wide range of possible working modes. In this work we have investigated the qual-
itative behavior of a coarse-grain model of cellular growth, recently exploited as
a module of a larger interconnected model that integrates metabolism, growth and
cell cycle in yeast. More in details, we found a specific sufficient condition (x > 0)
for the growth of ribosome and protein populations. In particular, when starting the
dynamic evolution with active ribosome synthesis such a condition guarantees to
maintain synthesis and growth for any time. Conversely, when starting with the ri-
bosome synthesis initially inactive, determining a temporary non-growing state, the
system approaches a state condition that allows the switch for an active synthesis
and, consequently, exponential growth. On the other hands, if such a condition is
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Figure 7
Upper bound for TB as coming from (42) according to different values of T2.

violated (x ≤ 0), no growth is possible, independently of the ribosome synthesis.
Furthermore, by linking the growth module to a basic set of timers describing the
cell cycle, we are able to derive constraints among timers and growth rate that some-
how generalize, to the more complex case accounting for the variety of genealogical
ages, analogous constraints achieved half a century ago and still exploited as a pre-
liminary validity check for mathematical models of cell cycle in yeast.

Acronyms

For the convenience of the reader, the following table collects all the acronyms used
in the text.

Acronym Definition
Whi5 Transcriptional regulator in the budding yeast cell cycle, notably

in the G1 phase.
Clb5/6 B-type S-phase cyclins in yeast that assist in cell cycle regulation.

Stoichiometric inhibitor of Cdk1-Clb complexes (bindings of the
Sic1 Cyclin-dependent kinase 1 - a key player of the cell cycle

regulation in yeast - and the B-type cyclins Clb).
TOR Target Of Rapamycin, protein kinase
Sfp1 Transcription factor that regulates growth and cell division in yeast.

Guanosine tetraphosphate, an alarmone which is involved in the
ppGpp stringent response in bacteria, causing the inhibition of RNA

synthesis when there is a shortage of amino acids present.

Table 2
List of the acronyms used in the text.
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