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Abstract. There is given an application of pseudo-analysis in the the-
ory of fluid mechanics. First, the monotonicity of the components of the
velocity for the solutions of Euler equations is proven, which allows to obtain
the pseudo-linear superposition principle for Euler equations. This principle
is proven also for the Navier-Stokes equations but with respect to two dif-
ferent pairs of pseudo-operations. It is shown that Stokes equations satisfy
the pseudo-linear superposition principle with respect to a pair of pseudo-
operations which are generated with the same function of one variable.
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1 Introduction

The motion of fluids was mathematically modeled in the period of more than
two hundred years. The ordinary incompressible Newton Fluids are modeled
by the Navier-Stokes equations and the related Euler equations. Some of the
recent investigations are summarized in the two volumes of the Handbook of
Mathematical Fluid Dynamics ([5, 6]).
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We shall prove in this paper an important property of the three basic
equations (Euler, Navier-Stokes, Stokes), the so called pseudo-linear super-
position principle. To achieve this principle in full generality we shall neglect
at this level the problem of the regularity of the solution, which is a very
important part of the investigations in fluid dynamics, see ([1, 2, 3, 24]).

What we are doing, roughly speaking, is that we replace the usual field
of real numbers by a semiring on a real interval [a, b] ⊂ [−∞,∞] ([7, 8,
11, 12, 14]), where the corresponding operations are ⊕ (pseudo-addition)
and � (pseudo-multiplication). Based on the semiring structure there is
developed in ([12, 13, 14, 15, 18, 19]) the so called pseudo-analysis, in an
analogous way as classical analysis, introducing pseudo-measure, pseudo-
integral, pseudo-convolution, pseudo-Laplace transform, etc.([15, 16, 17, 18,
20, 21, 22]). The advantage of the pseudo-analysis is that the problems
(usually nonlinear) from many different fields (system theory, optimization,
control theory, differential equations, difference equations, etc.) are covered
with one theory, and so with unified methods. The pseudo-analysis is used
for solving nonlinear equations (ODE,PDE, difference equations, etc.), based
on pseudo-linear superposition principle, which means that if u1 and u2 are
solutions of the considered nonlinear equation, then also a1 � u1 ⊕ a2 � u2

is a solution for any numbers a1 and a2 from [a, b]. The important fact is
that this approach gives also solutions in a new form, not achieved by other
theories. In some cases it enables for the nonlinear equations to obtain exact
solutions in a similar form as for the linear equations.

After some preliminaries in Section 2, and recalling some basic facts on
the Euler equations in Section 3, we prove in Section 4 the monotonicity of
the velocity for the solutions of the Euler equations. This help us to prove in
Section 5 the pseudo-linear superposition principle for the Euler equations.
This principle is achieved also for the Navier-Stokes with respect to two
different pairs of pseudo-operations. In Section 6 it is shown that Stokes
equations satisfy the pseudo-linear superposition principle but with respect
to a pair of pseudo-operations which are generated with the same function
of one variable.
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2 Preliminary notions

We consider a fluid which occupies a 2-dimensional region, denoted by D, and
we denote by ∂D the boundary of D. We denote by x the spatial coordinate
x = (x, y), with t the time and with u the field of the velocity of each element:
u = u(x, t) = u(u(x, y, t), v(x, y, t)). Moreover we assume that the fluid has
a well-defined mass density, indicated with ρ = ρ(u, t).

We shall use the following notations: grad p = (px, py, pz),

∂x =
∂

∂x
, ∂t =

∂

∂t
,

div u = ∇u = ∂xu+ ∂yv, (u∇)· = u∂x ·+ v∂y · .

The expression

D·
Dt

= ∂t ·+(u∇)· (1)

will be called the material derivative, and we have

a =
Du

Dt
= u∂xu + v∂yu + ∂tu = ∂tu + (u∇)u ,

Dρ

Dt
+ ρ div u =

∂ρ

∂t
+ div(ρu) .

We consider two kinds of fluids:

– incompressible fluid if for any subregion W the volume is constant in
t. This implies div u = 0. From continuity equation and ρ > 0 it follows
that the fluid is incompressible if and only if the mass density is constant:
Dρ
Dt

= 0;

– homogeneous fluid if the density ρ is constant in space.

The classical approach ([4]) is based on three assumptions:

1) conservation of the mass :
mass is neither created nor destroyed. The consequence of this principle

is the so-called continuity equation:

∂ρ

∂t
+ div(ρu) = 0.
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2) balance of momentum or Newton’s second law :

ρ
Du

Dt
= − grad p + f ,

where f are the forces.

3) conservation of energy :
energy is neither created nor destroyed.

3 Euler equations

In this paragraph we recall the equations of the motion of an incompressible
fluid in 2-dimensional case. They are based on the Newton’s second law,
mass conservation and condition of incompressibility (Euler equations):

ρ
Du

Dt
= − grad p + f (2)

Dρ

Dt
+ ρ div u = 0

div u = 0

u · n = 0 on ∂D, (3)

where n is the normal to the region D. (3) is the boundary condition.

The unknown functions of the system (2)-(3) are the components u, v
of the velocity: u : IR × IR × IR+ → IR , u = (u(x, t), v(x, t)) and the
pressure p : IR× IR× IR+ → IR. We denote by s the triple of the functions
u(x, t), v(x, t), p(x, t) : s = (u(x, t), v(x, t), p(x, t)).

Without loss of generality we suppose that ρ = 1 and f = 0.

Now we reformulate the equation (2) taking into account the definition
of material derivative (1). We have
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∂tu + (u∇)u + grad p = 0 (4)

div u = 0 (5)

v(x, y = 0, t) = 0 . (6)

As we have seen above, the velocity u depends on the variables x, y, t, in
particular y ∈ [0,∞[; the boundary condition (3) involves only the compo-
nent of the velocity on the axe y, whose unit vector is n.

Now, we project the first (vector) equation (4) on axes x and y:

∂tu+ u∂xu+ v∂yu+ ∂xp = 0 (7)

∂tv + u∂xv + v∂yv + ∂yp = 0 . (8)

We know ([2, 4, 10, 25, 26]) that the Euler equations are particular case
of the Navier-Stokes equations when the viscosity ν of the fluid is zero. The
solution of the Navier-Stokes equations can be well approximated by an Euler
equation, when the viscosity is small, at least away from boundaries.

4 Monotonicity of the components of the ve-

locity

Now we come back to the general discussion of the Euler equations (4)-
(6). With the above notation, from the condition (5), we have for the Euler
equations ∂xu+ ∂yv = 0, i.e.,

v = −
∫ y

0

∂xu(x, y′, t) dy′. (9)
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Proposition 4.1 . Let u1 = (u1(x, t), v1(x, t)),u2 = (u2(x, t), v2(x, t)) be
two velocities which satisfy the condition (5). If the function (u2−u1)(x, t) is
either non-increasing or non-decresing with respect to x, then the functions
v1(x, t) and v2(x, t) satisfy either the following condition v1 6 v2 or the
condition v2 > v1, respectively, i.e., either

∂x(u2 − u1) 6 0⇒ v1 6 v2

or

∂x(u2 − u1) > 0⇒ v1 > v2.

Proof. As the function (u2 − u1)(x, t) is non-increasing with respect to
x, then ∂x(u2 − u1) 6 0. Therefore by the the condition (9) for v we have∫ y

0

∂x(u2 − u1)(x, y
′, t) dy′ 6 0,

and then

v2 − v1 = −
∫ y

0

∂xu2(x, y
′, t) dy′ −

(
−
∫ y

0

∂xu1(x, y
′, t) dy′

)
> 0,

i.e., v2 > v1. 2

From now on we consider the following sets of functions :

Uni = {(u1, u2) | u1 6 u2 and ∂x(u2 − u1) 6 0}

Und = {(u1, u2) | u1 > u2 and ∂x(u2 − u1) > 0}.
As consequence of Proposition 4.1 we have the following:

Proposition 4.2 If the couple of functions (ui, vi) i = 1, 2 satisfy the con-
dition (9) and ui i = 1, 2 are elements either of the set Uni or the set Und,
then v1 6 v2 and v1 > v2, respectively.

5 Pseudo-linear superposition principle

5.1 Pseudo-analysis

We shall use the approach from ([14, 15, 18]). Let [a, b] be a closed (in some
cases semiclosed) subinterval of [−∞,∞]. We consider here a total order ≤
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on [a, b] (although it can be taken in the general case a partial order). The
operation ⊕ (pseudo-addition) is a function ⊕ : [a, b] × [a, b] → [a, b] which
is commutative, non-decreasing, associative and has a zero element, denoted
by 0. Let [a, b]+ = {x : x ∈ [a, b], x > 0}. The operation � (pseudo-
multiplication) is a function � : [a, b] × [a, b] → [a, b] which is commutative,
positively non-decreasing, i.e. x ≤ y implies x � z ≤ y � z, z ∈ [a, b]+,
associative and for which there exists a unit element 1 ∈ [a, b], i.e., for each
x ∈ [a, b], 1� x = x.

We suppose, further, 0 � x = 0 and that � is a distributive pseudo-
multiplication with respect to ⊕, i.e.,

x� (y ⊕ z) = (x� y)⊕ (x� z).

The structure ([a, b],⊕,�) is called a semiring.

We shall use the following important cases (pairs):

α⊕ β = min(α, β), α� β = max(α, β),

α⊕ β = max(α, β), α� β = min(α, β),

α⊕ β = min(α, β), α� β = α + β,

α⊕ β = max(α, β), α� β = α + β.

We translate the previous operations pointwise on functions.

We use the following notations:

u1 = (u1(x, t), v1(x, t), t),u2 = (u2(x, t), v2(x, t), t),

si = (ui(x, t), vi(x, t), pi(x, t)), i = 1, 2,

and specially for p1 = p2 = p we take

si,p = (ui(x, t), vi(x, t), p(x, t)), i = 1, 2.

Given two triplets of solutions s1 and s2, we take

min(s1, s2) :=
min(u1, u2),min(v1, v2),min(p1, p2)

 (10)

and

max(s1, s2) :=
max(u1, u2),max(v1, v2),max(p1, p2)

. (11)
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5.2 Superposition principle for the Euler equations

In this section prove the pseudo-linear superposition principle for the Euler
equations.

Lemma 5.1 Let si,p = (ui, vi, p), i = 1, 2 be two solutions of (7), (8), (5),
such that both ui, i = 1, 2, are either elements of Uni or elements of Und, i =
1, 2.

Then the function

s1,p ⊕ s2,p = min(s1,p, s2,p),

where min(s1,p, s2,p) is defined by (10), is again solution of (7), (8), (5).

Proof. We consider two solutions si,p = (ui, vi, p), i = 1, 2, of (7), (8), (5) .
First we shall show that s1,p ⊕ s2,p satisfies (4), which is written in the form
of the projection (7) and (8). So we shall prove that s1,p ⊕ s2,p satisfies (7).
Using the notation u1 = (u1, v1) and u2 = (u2, v2), where s1,p = (u1, v1) and
s2,p = (u2, v2) we have

∂t(u1 ⊕ u2) + (u1 ⊕ u2)∂x(u1 ⊕ u2) + (v1 ⊕ v2)∂y(u1 ⊕ u2) + ∂x(p⊕ p)

= ∂t(min(u1, u2)) + (min(u1, u2))∂x(min(u1, u2))

+(min(v1, v2))∂y(min(u1, u2)) + ∂xp

=


∂tu1 + u1∂xu1 + v1∂yu1 + ∂xp as (u1, u2) ∈ U ni

∂tu2 + u2∂xu2 + v2∂yu2 + ∂xp as (u1, u2) ∈ U nd

= 0 ,

since by Proposition 4.2 we have for i, j ∈ {1, 2} that (u1, u2) ∈ U ni, implies
vi(x, y, t) ≤ vj(x, y, t) , and (u1, u2) ∈ U nd implies vi(x, y, t) ≥ vj(x, y, t).
This means that s1,p ⊕ s2,p satisfies the equation (7).

In an analogous way we shall prove that s1,p ⊕ s2,p is solution of (8).
Namely,
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∂t(v1 ⊕ v2) + (u1 ⊕ u2)∂x(v1 ⊕ v2) + (v1 ⊕ v2)∂y(v1 ⊕ v2) + ∂x(p⊕ p)

=


∂tv1 + u1∂xv1 + v1∂yv1 + ∂xp as (u1, u2) ∈ U ni

∂tu2 + u2∂xv2 + v2∂yu2 + ∂xp as (u1, u2) ∈ U nd

= 0 .

Now we shall show that s1,p ⊕ s2,p is a solution of the equation (5). In
fact

div (u1 ⊕ u2) = ∂x(min(u1, u2)) + ∂y(min(v1, v2))

=


∂xu1 + ∂yv1 as (u1, u2) ∈ U ni

∂xu2 + ∂yv2 as (u1, u2) ∈ U nd

= 0.

So we have proved that s1,p ⊕ s2,p is solution of the system (7), (8) and (5).
2

Lemma 5.2 Under the same suppositions as in Lemma 5.1, we have that
the function

s1,p ⊕ s2,p = max(s1,p, s2,p),

defined by (11), is again a solution of the equations (7), (8) and (5).

As an immediate consequence of the previous Lemmas 5.1 and 5.2 we get
the following theorems.

Theorem 5.3 Let si,p = (ui, vi, p), i = 1, 2, be two solutions of (7), (8), (5)
such that (u1, u2) are elements either of Uni or of Und, and a1, a2 two real
numbers. Then the pseudo-linear combination

(a1 � s1,p)⊕ (a2 � s2,p) = min(max(a1, s1,p),max(a2, s2,p))

with ⊕,� given by (10) and (11), respectively, is again a solution of (7), (8)
and (5) .
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Theorem 5.4 Let si,p = (ui, vi, p), i = 1, 2, be two solutions of (7) ,(8) ,
(5) such that (u1, u2) are elements either of Uni or of Und and a1, a2 two real
numbers. Then the pseudo-linear combination

(a1 � s1,p)⊕ (a2 � s2,p) = max(min(a1, s1,p),min(a2, s2,p))

with ⊕,� given by (11) and (10), respectively, is again a solution of (7), (8)
and (5) .

We obtain, with an additional condition, the pseudo-linear superposition
principle for another pair of pseudo-operations.

Theorem 5.5 Let si,p = (ui, vi, p), i = 1, 2, be two solutions of (7), (8) and
(5) such that (u1, u2) are elements either of Uni or of Und. If (ui, vi), i = 1, 2
satisfy the condition

∂yui = ∂yvi i = 1, 2. (12)

then the pseudo-linear combination for two real numbers a1, a2

(a1 � s1,p)⊕ (a2 � s2,p),

where ⊕ is given by (10) and � is defined by

λ�s = λ�(u, v, p) = (λ+ u, λ+ v, λ+ p), (13)

is again a solution of (7), (8) and (5).

Proof. First, by Lemma 5.1 min(s1,p, s2,p) is a solution of (7) and (8).
Now, it is easy to see that the trivial solution given by three constants

λi, i = 1, 2, 3: sc = (λ1, λ2, λ3) is again a solution of (7),(8) and (5). We shall
prove that for any real number λ , λ�s is a solution of (7). In fact,

∂t(λ+ u) + (λ+ u) ∂x(λ+ u) + (λ+ v) ∂y(λ+ u) + ∂x(λ+ p)

= ∂tu+ (λ+ u)∂xu+ (λ+ v)∂yu+ ∂xp

= ∂tu+ u∂xu+ v∂yu+ ∂xp+ λ(∂xu+ ∂yu)

= λ(∂xu+ ∂yu) = 0,

where we have used the condition (12), which with (5) for u, i.e., ∂xu+∂yv =
0, implies

∂xu+ ∂yu = 0.
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So, we have proved that λ�s is a solution of (7). In a analogous way we
prove that it satisfies (8) and (5). 2

In an analogous way we obtain the following theorem.

Theorem 5.6 Let si,p = (ui, vi, p), i = 1, 2, be two solutions of (7), (8) and
(5) such that (u1, u2) are elements either of Uni or of Und. If (ui, vi), i = 1, 2
satisfy the condition (12), then the pseudo-linear combination for two real
numbers a1, a2

(a1 � s1,p)⊕ (a2 � s2,p),

where ⊕ is given by (11) and � is defined by (13) is again a solution of (7),
(8) and (5). 2

5.3 Superposition principle for Navier-Stokes equations

In this section we prove the pseudo-linear superposition principle to Navier-
Stokes equations. We consider an incompressible homogeneous viscous flow:
that means that div u = 0, for the density ρ = 1, ν is the coefficient of
viscosity, for the forces f = 0. The equations of motion of this flow are the
Navier-Stokes equations:

ρ
Du

Dt
= − grad p− ν∆u (14)

div u = 0

u = 0 on ∂D,

where ∆u is the Laplacian of the velocity u, defined in this way:

∆u = (∂xx + ∂yy)u = (∂xxu+ ∂yyv),

as u(x, t) = (u(x, y, t), v(x, y, t)).
We consider two-dimensional incompressible flow in the upper half plane

y > 0; so the projections of the Navier-Stokes equations (14) on axes x and
y are the following:
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∂tu+ u∂xu+ v∂yu+ ∂xp+ ν(∂xxu+ ∂yyu) = 0 (15)

∂tv + u∂xv + v∂yv + ∂yp+ ν(∂xxv + ∂yyv) = 0 (16)

∂xu+ ∂yv = 0 (17)

u = v = 0 on ∂D. (18)

In analogous way as in section 5.2 of the Euler equations, we obtain the
following theorems.

Theorem 5.7 Let si,p = (ui, vi, p), i = 1, 2, be two solutions of (15) - (18)
and a1, a2 two real numbers, such that (u1, u2) are elements either of Uni or
of Und. Then the pseudo-linear combination

(a1 � s1,p)⊕ (a2 � s2,p) = min(max(a1, s1,p),max(a2, s2,p))

with ⊕,� given by (10) and (11), respectively, is again a solution of (15)
- (18). 2

Theorem 5.8 Let si,p = (ui, vi, p), i = 1, 2, be two solutions of (15) - (18)
and a1, a2 two real numbers, such that (u1, u2) are elements either of Uni or
of Und. Then the pseudo-linear combination

(a1 � s1,p)⊕ (a2 � s2,p) = max(min(a1, s1,p),min(a2, s2,p))

with ⊕,� given by (10) and (11), respectively, is again a solution of (15)
- (18). 2

Theorem 5.9 Let si,p = (ui, vi, p), i = 1, 2, be two solutions of (15) - (18)
such that (u1, u2) are elements either of Uni or of Und. which satisfy the
condition (12). Then the pseudo-linear combination for two real numbers
a1, a2

(a1 � s1,p)⊕ (a2 � s2,p),

where ⊕ and � are given by (10) and (13), respectively, is again a solution
of (15) - (18). 2

16



Theorem 5.10 Let si,p = (ui, vi, p), i = 1, 2, be two solutions of (15) - (18)
such that (u1, u2) are elements either of Uni or of Und. If the solutions satisfy
the conditions (12) , then the pseudo-linear combination for two real numbers
a1, a2

(a1 � s1,p)⊕ (a2 � s2,p),

where ⊕ and � are given by (11) and (13), respectively, is again a solution
of (15) - (18). 2

6 Superposition principle for Stokes equations

We know ([2]) that the Stokes equations are approximate equations for in-
compressible flow:

∂tu + grad p + ν∆u = 0

div u = 0.

The projections on axes x and y of the equations above are:

∂tu+ ∂xp+ ν(∂xxu+ ∂yyu) = 0 (19)

∂tv + ∂yp+ ν(∂xxv + ∂yyv) = 0. (20)

∂xu + ∂yv = 0. (21)

In this section we prove the pseudo-linear superposition principle for
Stokes equations: we shall consider the application to solutions of (19)-(21),
which depend only of time t.

Theorem 6.1 Let si(t) = (ui(t), vi(t), pi(t)), i = 1, 2 be solutions of (19)-
(21). Then the pseudo-linear combination for two real numbers a1, a2

(a1 � s1)⊕ (a2 � s2),
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where ⊕ and � are given with generator g defined by

g(a) = e− c a, c > 0, and then g−1(b) = −1

c
log b,

s1 ⊕ s2 = (g−1(g(u1) + g(u2)), g
−1(g(v1) + (g(v2)), g

−1(g(p1) + g(p2))),

and

a� s = (g−1(g(a) · g(u)), g−1(g(a) · g(v)), (g−1(g(a) · g(p)))

= (a+ u, a+ v, a+ p)

is again solution of (19)-(21).

Proof. Let si(t) = (ui(t), vi(t), pi(t)) be solutions of the equation (19)-
(21).

First we shall prove that (u1 ⊕ u2, p1 ⊕ p2) is solution of (19), i.e.,

∂t(u1 ⊕ u2) + ∂x(p1 ⊕ p2) + ν(∂xx(u1 ⊕ u2) + ∂yy(u1 ⊕ u2)) = 0. (22)

Put

U = e−cu1 + e−cu2 , P = e−cp1 + e−cp2 , (23)

we have

∂t(u1 ⊕ u2) =
∂tu1e

−cu1

U
+
∂tu2e

−cu2

U
, ∂x(p1 ⊕ p2) =

∂xp1e
−cp1

P
+
∂xp2e

−cp2

P
;(24)

moreover
∂xx(u1 ⊕ u2)

=
1

U2

∂xxu1e
−cu1U + ∂xxu2e

−cu2U − c(∂xu1 − ∂xu2)
2e−c(u1+u2)

, (25)

∂yy(u1 ⊕ u2)

=
1

U2

∂yyu1e
−cu1U + ∂yyu2e

−cu2U − c(∂yu1 − ∂yu2)
2e−c(u1+u2)

. (26)

Therefore, the left side of the equation (22) is the following:

∂tu1e
−cu1

U
+

∂tu2e
−cu2

U
+

∂xp1e
−cp1

P
+

∂xp2e
−cp2

P
+ (27)
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ν

U2

∂xxu1e
−cu1U + ∂xxu2e

−cu2U − c(∂xu1 − ∂xu2)
2e−c(u1+u2)

+

ν

U2

∂yyu1e
−cu1U + ∂yyu2e

−cu2U − c(∂yu1 − ∂yu2)
2e−c(u1+u2)

.
Moreover, in (27) we sum the terms which contain the function u1 and its
derivatives:

∂tu1e
−cu1

U
+

∂xp1e
−cp1

P
+ ν

 1

U2
(∂xxu1 + ∂yyu1) e

−cu1U
, (28)

the same for the function u2

∂tu2e
−cu2

U
+

∂xp2e
−cp2

P
+ ν

 1

U2
(∂xxu2 + ∂yyu2) e

−cu2U
. (29)

Setting: Eij = e−c(ui+pj), i, j = 1, 2, we have e−cu1P = E11 + E12, e
−cp1U =

E11 + E21 (E12 6= E21) and then (28) =

1

U P

∂tu1e
−cu1P + ∂xp1e

−cp1U + νP
(
(∂xxu1 + ∂yyu1) e

−cu1
), (30)

from which

(30) =
1

U P

 (∂tu1 + p1x + ν (∂xxu1 + ∂yyu1))E11

 +

1

U P

 (∂tu1 + ν (∂xxu1 + ∂yyu1))E12 + ∂xp1E21

; (31)

similarly (29) =

1

U P

∂tu2e
−cu2P + ∂xp2e

−cp2U + νP
(
(∂xxu2 + ∂yyu2) e

−cu2
) (32)

from which

(32) =
1

U P

 (∂tu2 + ∂xp2 + ν (∂xxu2 + ∂yyu2))E22

 +

1

U P

 (∂tu2 + ν (∂xxu2 + ∂yyu2))E21 + ∂xp2E12

 . (33)
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First, in (31) and (33) the coefficients of E11 and E22 are zero as u1 and u2

are solutions of (19). Now we sum the other terms :

(31) + (33) =
1

U P

 (∂tu1 + ν (∂xxu1 + ∂yyu1))E12 + ∂xp1E21

+

1

U P

 (∂tu2 + ν (∂xxu2 + ∂yyu2))E21 + ∂xp2E12

. (34)

As ui, i = 1, 2 are solutions of (19), we get

(34) =
1

U P

− ∂xp1E12 + ∂xp1E21 − ∂xp2E21 + ∂xp2E12

 =

1

U P

∂x(p1 − p2)(E21 − E12)
 = 0,

since by the supposition the functions pi depends only on time, ∂x(p1−p2) =
∂xp1 − ∂xp2 = 0. In (27) it remains:

ν

U2

− c(∂xu1 − ∂xu2)
2e−c(u1+u2) − c(∂yu1 − ∂yu2)

2e−c(u1+u2)
 =

−cν
U2

(∂xu1 − ∂xu2)
2 + (∂yu1 − ∂yu2)

2
e−c(u1+u2) = 0,

since by the supposition the functions ui depends only on time, ∂x(u1−u2) =
∂xu1 − ∂xu2 = 0. So, we have shown that (u1 ⊕ u2, p1 ⊕ p2) is a solution of
the equation (19).

Changing ui with vi, i = 1, 2 in the previous proof we can prove that
(v1 ⊕ v2, p1 ⊕ p2) is solution of the equation (20), and then s1 ⊕ s2 is a
solution of (19).

Now we shall prove that u1 ⊕ u2 is a solution of the equation (21). In
fact, from (23) and (24), we get

div(u1 ⊕ u2) = ∂x(u1 ⊕ u2) + ∂y(v1 ⊕ v2) =

∂xu1e
−cu1

U
+
∂xu2e

−cu2

U
+
∂yv1e

−cu1

U
+
∂yv2e

−cu2

U
= 0.

As regards the product �, we note that ∂x(a + u) = ∂xu, and so on, so also
a� u is solution of (19) and (21). 2
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7 Conclusion

In this paper it was proven the pseudo-linear superposition principle for the
Euler, Navier-Stokes and Stokes equations. In order to achieve this principle
for the first two equations we used the monotonicity of the velocity.

The obtained results will serve in the future for different applications,
e.g., [23], and as a base for the construction of the general weak solutions as
in [8, 11, 14, 17], which are in a wider class than previously considered class
of monotone functions, and allow movement also in harder structures than
fluid, see [9].
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