
Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 231 –

Real-time Traffic Sign Recognition with Map

Fusion on Multicore/Many-core Architectures

Kerem Par, Oğuz Tosun

Computer Engineering Department, Bogaziçi University, 34342 Bebek, Istanbul,

Turkey, e-mail: k.par@ieee.org, tosuno@boun.edu.tr

Abstract: This paper presents a parallel implementation and performance analysis of a

system for traffic sign recognition with digital map fusion on emerging multicore

processors and graphics processing units (GPU). The system employs a particle filter

based localization and map matching and template-based matching for sign recognition. In

the proposed system, a GPS, odometer and camera are fused with digital map information.

The system utilizes the depth sensor of a Kinect camera for the detection of signs and

achieves high recognition rates for both day and night conditions. Tests were performed on

real data captured in the vehicle environment comprising various road and lighting

conditions. Test results show that speed increases of up to 75 times for localization and 35

times for sign recognition can be achieved on parallel GPU implementation over

sequential counterparts. As those speedups comply with real-time performance

requirements, high computational cost of using map topology information with large

number of particles in localization implementation and template based matching for sign

recognition is proven to be handled by emerging technologies. The system is unique since it

is not limited to certain sign types; it can be used in both day and night conditions and

utilizes a Kinect sensor to achieve a good price/performance.

Keywords: traffic sign recognition; particle filter; Kinect; multicore; gpu computing

1 Introduction

With the rise of multicore and many-core processors, the way of computing has

been evolving into a new era. The high computational power, energy efficiency

and programmability of these emerging general purpose processors make them a

good candidate for a unified vehicle computing platform to host advanced driving

assistance systems (ADAS) and autonomous vehicle applications by replacing

specialized hardware and/or software platforms for each application. On the other

hand, meeting the real-time performance requirements of those applications on

such a platform is a challenge. Parallelization and using parallel programming

techniques is one of the key methods to speed up applications on multicore

architectures.

K. Par et al. Real-time Traffic Sign Recognition with Map Fusion on Multicore/Many-core Architectures

 – 232 –

In this work, we present a parallel implementation and performance analysis of a

complete system for sign recognition with map fusion including localization and

map matching, both on a multicore processor using Open Multi-Processing

(OpenMP) and on a graphics processing unit (GPU) using Compute Unified

Device Architecture (CUDA).

The proposed system is unique, with many features, since it is not limited to speed

signs, uses topological features of digital maps, and shows good performance in

ambient lighting conditions. As a side contribution, the system utilizes a Kinect

sensor, which simplifies sign detection radically and lowers overall system cost.

In the area of sign recognition with map fusion, the localization and map matching

step is generally ignored and assumed as perfect. We provide a complete system,

including the map matching and localization. We use a particle filter-based

matching and localization algorithm proposed in [1] by the authors where GPS

(Global Positioning System) and odometer data is fused with the topology of the

digital map data as an additional sensor. The algorithm also generates a

probabilistic measure for the correctness of the map matching. This measure is

taken into account while using the digital map for sign recognition.

The system utilizes the depth sensor of a Kinect camera for the detection of signs.

Classification is carried out by a template matching based algorithm, where the

digital map information and vehicle position provided by the localization and map

matching module are fused.

The target architecture is a combination of a multicore CPU and a many-core

GPU, which is very likely to take place in a production vehicle environment as a

unified computing platform in the near future. Both modules run on the same

platform. The system overview can be seen in Fig. 1.

Figure 1

System overview

Both particle filter-based localization and map matching and template matching

based sign recognition are computationally intensive applications where high

success rates and real-time performance cannot both be achieved simultaneously

using sequential implementations. The proposed system achieves both targets by

employing parallelization on a hybrid multicore/many-core architecture.

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 233 –

We consider a multi-hypothesis localization and map matching algorithm where

map topology information is used in terms of route-ability as the likelihood

calculation in the particle filter to increase map matching performance, at the same

time further increasing the computational cost of the algorithm.

We first characterized the execution profile of the particle filter algorithm for the

different number of particles using a sequential implementation. Critical function

blocks in terms of execution time were identified. We also investigated the effect

of the number of particles employed by the algorithm on the error rate of

localization and map matching. We then mapped the algorithm to the multicore

CPU and the GPU platforms to accelerate bottlenecks and to see if the required

speedups are realizable.

For our template-matching based sign recognition algorithm, which can be applied

to a wide range of traffic signs, we employed a similar approach; we first observed

detection rates using the Kinect sensor and recognition rates with the map fusion,

and we also characterized the execution profile using a sequential implementation

of the algorithm. We then tested the parallel implementations on our test system

having two 6-core CPUs and two 512-core GPUs with real video and positioning

data captured in the vehicle environment under various road and lighting

conditions.

In the rest of this paper, we first give information about related work in this area.

We then describe the particle filter-based localization and map matching

algorithm and the sign recognition approach with map fusion. We give details

about our parallel implementations for both modules. We continue with tests and

experimental results. We finish with the interpretation of those results.

1.1 Related Work

Traffic sign recognition is one of the key components of advanced driver

assistance systems and has been worked on for a long time in the intelligent

vehicles domain. Although the appearance of the traffic signs was originally

designed to be easily distinguishable from natural objects, the reliable, automated

recognition of traffic signs, especially under adverse environmental conditions,

remains a complex task.

Recent approaches tend to use a scheme of three stages: detection of sign

candidates, classification of the candidates and tracking of the sign candidates

over time. Many algorithms available in the literature generally differentiate in

using different methods in the detection and classification stages [2]-[5].

There are also some attempts to enhance the performance of visible light cameras

for sign recognition using infrared cameras [6]-[8]. They are limited to a subset of

traffic signs and use expensive hardware, and the recognition rate is lower than the

proposed system.

K. Par et al. Real-time Traffic Sign Recognition with Map Fusion on Multicore/Many-core Architectures

 – 234 –

Most of the work done in this field so far has been strictly bounded by available

computing capacity. However, recent developments in multicore and many-core

architectures present a research challenge, also in this area, to meet real-time

performance requirements with a parallel processing model. There are a very

limited number of studies in the literature for parallel implementations of traffic

sign recognition. [9] and [10] describe the detection and classification of traffic

signs on an application-specific multicore processor. A real-time template-based

approach for the recognition of speed limit signs using GPU computing is

described in [11]. A feature-based speed limit sign detection system using a GPU

is described in [12]. The studies cover only speed limit signs and do not include

map integration.

We propose a generic template-based approach which can be applied to a wide

range of traffic signs and the parallel implementation on a multicore CPU and

GPU platform. Our approach uses a new sensor (Kinect) which provides both

color and infrared images of the traffic scene, which enhances the detection stage,

and we also propose using digital map information to augment template matching

in the classification stage in order to increase the robustness of the recognition and

to contribute to real-time performance.

Kinect has become very popular in a very short time since its launch in November,

2010, not only for playing games, but also, with its relatively low price, in

robotics research for depth sensing and 3D vision. However, we have not yet

encountered an application of Kinect in intelligent vehicles research.

Our approach employs a particle filter-based localization and map matching.

Particle filters are among the principal tools for the on-line estimation of the state

of a non-linear dynamic system [13]. Particle filtering has been applied widely in

applications in tracking, navigation, detection and video-based object recognition

[14]. Although, in general, particle filtering methods yield improved results

compared to other Bayesian filters, it is difficult to achieve real time performance

as the algorithm is computationally intensive [15]. This has been a prohibitive

factor for real-time implementations for many applications of particle filtering.

A number of methods for software and hardware implementations of particle

filtering have been proposed in the literature. Special architectures [16], field-

programmable gate arrays (FPGAs) [17], and SIMD processor arrays [18] have

been utilized for various types of problems. Many of the GPU implementations

are focused on low-level stream processing or OpenGL [19].

Although emerging multicore processors and GPUs are good candidates for

parallel particle filter implementations, multicore implementations, especially

using the GPU computing concept and the platforms and tools such as NVIDIA’s

CUDA architecture, are still very recent and few. Some of the recent studies [20]-

[21] utilize the general particle filter algorithm, but they differ significantly in

their calculation of the likelihood phase. This variety also influence the approach

used in parallelization.

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 235 –

Our work is a part of a research project addressing the challenge of meeting the

real-time performance requirements of ADAS and autonomous vehicle

applications by efficiently mapping them on multicore and/or many-core

architectures, and, to our knowledge, this is the first parallelization effort of traffic

sign recognition with map fusion using Kinect sensor and a particle filter targeted

to localization and map matching using map topology.

2 Localization and Map Matching

2.1 Particle Filter

Particle Filters, also known as Sequential Monte Carlo (SMC) methods, are

iterative methods that track a number of possible state estimates, so-called

particles, across time and gauge their probability by comparing them to

measurements.

We are considering a dynamic system with state tx at a given time t. The system

model is a Markov process of the first order. We assume that the system state can

only be tracked by measurements ty , which may be influenced by noise. The

relation between measurements and system states is described by the measurement

model.

The sampling importance resampling (SIR) algorithm is one of the most widely

used sequential Monte Carlo methods. The SIR algorithm has following stages

iterated over discrete time steps:

Sampling (Prediction): To follow the state during subsequent iterations, the

system model is used to obtain a possible new state for every particle i
tx based on

its last state i
tx 1 where 1tu is measured inputs and 1tv unmeasured forces or

faults:

,111   tt
i
t

i
t vBuAxx Ni ,...,1 (1)

Importance (Update): The measurement model is evaluated for every particle and

the current measurements to determine the likelihood that the current

measurement ty matches the predicted state i
tx of the particle. The resulting

likelihood is assigned as a weight i
tw to the particle and indicates the relative

quality of the state estimation:

),|(1
i
tt

i
t

i
t xypww  Ni ,...,1 (2)

K. Par et al. Real-time Traffic Sign Recognition with Map Fusion on Multicore/Many-core Architectures

 – 236 –

At this point, when the particles are weighted, a state estimation can easily be

obtained via various techniques, such as using the highest-weighted (highest-

probability) sample, or using the weighted sum of the particles to get a mean-

equivalent, or using the average of particles within some distance from the best

particle.

 


N
i

i
t

i
tt xwx

1
ˆ (3)

Resampling: If the number of effective samples fall below a certain value,

resampling is required. Particles with comparatively high weights are duplicated

and particles with low weights are eliminated. This can be done by calculating the

number of effective particles Neff as follows:




i
i
t

eff
w

N
2)(

1
 (4)

Effective sample size (ESS) is another metric to decide if resampling is required.

2.2 Particle Filter for Localization and Map Matching

For the vehicle localization problem, state is represented as a four-dimensional

vector x = [Lon, Lat, Ɵ, L] where Lon, Lat, Ɵ and L stand for position, orientation

and link or road segment on the map database, respectively.

Basically, the new location of the vehicle is predicted using the odometer data in

the prediction stage and corrected by the GPS measurements and a map based

likelihood function in the weight update stage. The operations performed in the

main stages of the particle filter can be summarized as the following:

Prediction: The data coming from the odometer is used to measure vehicle

displacement. The new location (Lon, Lat) of the vehicle is randomly calculated

for each particle in the range of this displacement. This stage requires a high

number of random number generations for the calculation of the new values of

each state variable.

Weight Update: Weights are updated using the GPS readings first. The likelihood

function is designed so that the particles that are within the error range of the GPS

reading get higher weights. Then the weights are augmented with the map data by

multiplying them with the probabilities derived from the map:

)topology ()zone(1 ppww i
t

i
t   (5)

Two types of map attributes are used in the likelihood calculation. The first

feature is the type of area where the particle resides on the map (road segment,

building, parking area, etc.). The probability of being in a certain type of zone or

road class (e.g. motorway, major road, local road, residential road, etc.) is

calculated based on the speed of the vehicle (e.g., for a vehicle at a speed of 120

km/h, the relative probability of being on a motorway is chosen to be higher than

being on a residential road).

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 237 –

The second feature of the map is the topology. Given the previous location of a

particle, the probability of travelling to a new location on a certain road segment is

calculated using the map topology. Possible reachable roads are searched in the

road network in forward and backward directions for the distance travelled

measured from the odometer. If the predicted location of the particle is found to be

reachable, a high probability is assigned, otherwise a low probability is assigned

(e.g., due to the connectivity, direction of traffic flow, turn restrictions, etc.).

Estimation: The location component of the system state is calculated as the

weighted mean of each particle’s location information. Map matching is achieved

by selecting the road segment with highest weight as the matched link on the map.

The flow of our particle filter algorithm for localization and map matching is

shown in Fig. 2.

Figure 2

Particle filter localization and map matching

3 Sign Recognition

The proposed traffic sign recognition algorithm is implemented based on a

template matching pipeline. The Kinect camera’s depth image output is used to

determine candidate regions on the RGB image. A special color segmentation

scheme is applied to candidate regions. Template matching is employed for

classification. A distance is calculated between the candidate region in the source

image and different sizes of template images in the template database based on a

difference function. The template having the minimum distance is denoted as the

matched or recognized sign. Fig. 3 summarizes the design of the algorithm and the

following sections describe the stages of the sign recognition flow in detail.

K. Par et al. Real-time Traffic Sign Recognition with Map Fusion on Multicore/Many-core Architectures

 – 238 –

Figure 3

Sign recognition algorithm

3.1 Template Database and Map-based Probabilities

A template database is created from the sign images. Each sign template has two

versions, one with a white background, the other with a black background. When

sign recognition is carried out under night conditions, templates with black

background are needed. Templates are also converted to four colors by use of

color segmentation. Only black, white, red and blue are preserved in the image.

We used an automatic resizing function according to the size of the region of

interest found in the scene.

The localization and map matching algorithm determines the vehicle location and

the map segment. By use of the matched segment, we can calculate map based

probabilities for each sign in the database, considering different map contexts for

various sign classes. Table 1 summarizes the sign classes and their respective map

based context.

Table 1

Traffic signs and their respective map context

Sign Class Signs Map Context

Speed Signs

Road Class, Speed Limit

Manoeuvres

Manoeuvres (restrictions), One way information
and map topology

Bends

Map topology, existence of a bend in the

driving direction is checked.

Junctions

Map topology, existence of a junction and type

of junction is checked

School

POI, existence of a school is checked.

Parking

Road Class

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 239 –

3.2 ROI Detection with Kinect Sensor

The Kinect camera’s depth sensor consists of an infrared laser projector combined

with a monochrome CMOS sensor, which captures video data in 3D under any

ambient light conditions. When used in outdoor environment, we end up with a

very effective function of Kinect; it detects reflective surfaces (signs in traffic)

and thus makes region of interest (ROI) detection very easy and robust. Fig. 4 (a)

and (b) show the RGB image and the depth image coming from Kinect camera for

the same scene. The depth image shows the region of interest in the RGB image.

(a) Input RGB Image

(b) Depth Image

(c) Initial and Enhanced ROIs

(d) Color Segmented ROIs

Figure 4

ROI detection with Kinect sensor

The initial bounding boxes are created by following the neighboring pixels within

a given pixel tolerance. As seen in the Fig. 4 (c), the initial bounding boxes

(green) are not perfect. There are several reasons for this. The IR camera and the

RGB camera of the Kinect sensor have different fields of view and focal lengths.

The RGB camera has a wider field of view. This is why, when objects get closer

to the image edge, the difference in pixel locations increases. The two cameras are

separated from each other by 2.5 cm. Sometimes the pixel image coming from the

IR camera does not cover the whole sign. Sometimes the two signs are so close

(their distance is smaller than the pixel tolerance when calculating the bounding

boxes) that only one bounding box is found for two signs. There may be some

small bounding boxes caused by reflections coming from other surfaces. An

algorithm has been developed to overcome these errors. The initial and enhanced

ROIs are shown in Fig. 4 (c) in green and yellow rectangles, respectively.

K. Par et al. Real-time Traffic Sign Recognition with Map Fusion on Multicore/Many-core Architectures

 – 240 –

3.3 Template Matching

For a better matching, color segmentation is applied to the regions of interest first.

All the colors in the image are segmented in four colors: red, blue, white and

black. An example of color segmentation can be seen in Fig. 4 (d). After color

segmentation, the templates are matched against the region of interests by

computing the sum of the differences between pixel color values. For each region

of interest, templates are resized based on the size of the bounding box before

matching. Several template sizes with different aspect ratios are tried. Starting

from corner of the region of interest, the difference between the template and the

region of interest is calculated. The difference value is normalized according to

the template size. The template with the lowest difference value is selected as the

match.

3.4 Map Fusion

Template matching generates a likelihood measure for each sign. This measure is

the distance between the template image and the camera image. Since we

successfully detect the location of the sign on the camera image, the sign with the

lowest distance value can be selected as the matched sign most of the time. But

some of the signs are very similar to each other. Also, even if we find the location

of the sign successfully, the camera image may not be clear. As a result of this, the

algorithm returns very close likelihood results. When we fuse this information

with the probabilities coming from the map, the correct sign can be selected. The

recognition performance of our algorithm increases radically. Fig. 5 shows two

examples of template matching results, with and without map fusion.

Template Matching

without Map Fusion

Template Matching

with Map Fusion

0,70 0,67 0,52 0,90

Template Matching

without Map Fusion

Template Matching

with Map Fusion

0,78 0,77 0,66 0,97

Figure 5

Sign recognition with map fusion

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 241 –

4 Parallel Implementations

4.1 Localization and Map Matching

Before attempting parallel implementations, we first characterized the execution

profile of the particle filter algorithm for different number of particles using a

sequential implementation. We see that the prediction and update sections

dominate the execution time by a large margin. Therefore, those sections were

selected as the first targets of parallelization in both platforms.

Particle filters heavily use random number generation. Our implementation uses

the Mersenne-Twister random number generation algorithm. An existing

implementation has been adopted for both the CPU and GPU platforms.

4.1.1 Multicore (OpenMP) Implementation

We used OpenMP programming model [22] for the parallelization of the predict

and update sections of the particle filter on a multicore CPU. Since the same

operations are repeated for all the particles in a loop for both the predict and

update sections and the particles can be processed independently of each other, the

iterations (effectively the particles) have been distributed among the cores. Each

core therefore performs the prediction and update steps on a subset of particles.

The static scheduling mechanism of OpenMP is used for the predict part and

dynamic scheduling has been employed for the update part, in order to have a

better workload distribution among the cores since the complexity of map based

operations for each particle in the update step can be different.

4.1.2 GPU (CUDA) Implementation

In our GPU implementation, we used the CUDA programming model [23]-[24].

This actually represents a hybrid (CPU+GPU) implementation of particle filter.

We implemented most of the main steps of the filter in C using CUDA Toolkit

3.2. The Prediction, Update, Estimation, and ComputeESS parts were

implemented as kernels to run on GPU (device), where resampling part is run on

CPU (host). The CUDA implementation flow is illustrated in Fig. 6.

Since the prediction and update parts of a particle filter work on particles

independently, a separate thread is created for each particle on the GPU for the

predict and update kernels. This is accomplished by using the appropriate

execution configuration parameters, when the kernels are launched. Each thread

determines which particle it should process via built-in variables, the thread block

index, the thread index within its block, and the block size.

The states of particles are stored in the global memory, and during initialization

both host and device memory are allocated for particles, and the initial particle

data are copied to the device. The global memory is used to pass on data from one

K. Par et al. Real-time Traffic Sign Recognition with Map Fusion on Multicore/Many-core Architectures

 – 242 –

kernel to the next. Map data is also transferred to the device memory during

initialization. Each thread is enabled to use its own random number generator

instance. Initial Twister states for the maximum possible number of threads are

created on the host and transferred to the device memory at the initialization.

For the update kernel, measurement values are passed as parameters at the kernel

launch for each iteration. The estimation part consists of the summation and

normalization of the weights and the calculating weighted mean of the state

variables. This part is divided into three separate kernels: summation,

normalizeWeights and mean kernels. The division of the workload into separate

kernels was necessary due to the fact that the only way to enforce synchronization

between all concurrent CUDA threads in a grid is to wait for all kernels running

on that grid to exit.

Figure 6

CUDA implementation of particle filter localization and map matching

For the summation kernel, the parallel prefix sum technique is used to calculate

the partial sums within each block, and these partial sums are added to the global

sum by using global atomicAdd operations. The normalizeWeight kernel is

implemented similar to the predict and update kernels. Each thread adjusts its

weight independently by using the sum value which is passed to it as a parameter

at the kernel launch. The mean kernel and the computeESS kernel also use the

parallel reduction technique similar to the summation kernel. After the estimation

is completed, the estimated state variables are transferred to the host.

The amount of data transfers between the host and device has been kept very

small for the iterations where resampling is not required. If resampling is required,

the current weights of the particles are transferred to the host, and the surviving

particles are calculated on the host.

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 243 –

4.2 Sign Recognition

The execution time profile of the sequential implementation shows that the

template matching process has the highest computational cost, more than 98

percent of the total execution time. This has been chosen as the target for

parallelization. The matching process for each video frame involves the following

parameters:

r number of ROIs detected in the frame

n number of templates in the template database

m number of different sizes for each template to be used for matching

s number of different starting positions for matching in each ROI

w width of template in pixels

h height of template in pixels

Assuming (x,y) denotes the starting search image coordinates and (i,j) denotes the

template image coordinates, the time required for the matching process for each

frame can be defined as the following:

  


h
i

w
j

jijyixDiffsmnrt
0 0

),,,((6)

Three parallel implementations have been developed for multicore CPU, single

GPU and multi GPU architectures. For all cases, the detection stage is performed

on the host sequentially, which is performed very fast with the help of the Kinect

camera.

4.2.1 Multicore (OpenMP) Implementation

The multicore CPU implementation is performed using the OpenMP programming

model. The matching operations for each template are distributed among the

multiple CPU threads. The number of threads is determined by the maximum

number of cores in the system. For each region of interest, the work is distributed

on a templates basis.

4.2.2 GPU (CUDA) Implementation

The GPU implementation is performed using CUDA. The pixel level matching

operations are designed to run on GPU in parallel. A kernel (matching kernel) has

been implemented to perform the matching of a ROI to a resized template and

produce the sum of differences (SAD) values. A separate thread is created for

each pixel operation when the kernel is launched. Initially, all memory allocations

are done for RGB images, resized templates and SAD values on both host and

device. For each video frame, detection is performed on the host and ROIs are

found. If at least one ROI is found in the depth image, the RGB image is copied to

the device memory. Each ROI found in the frame is matched against different

sizes and starting positions of all the templates by calling the matching kernel.

K. Par et al. Real-time Traffic Sign Recognition with Map Fusion on Multicore/Many-core Architectures

 – 244 –

Resizing is done on the host, each template is resized based on the size of ROI,

and resized templates are copied to the device memory before launching the

matching kernel. Since the RGB image and the resized templates are already in

the device, the kernel is then called with only the corner positions of the region of

interest, the template number and the size of the template.

Since the number of pixels in region of interests are relatively small (e.g. 49x48)

compared to whole images (640x480), to be able to achieve maximum occupancy

of GPU cores, the matching kernel is designed to compute SAD values for all

different starting positions (4x5) of a resized template each time it is launched. So

each launch of the matching kernel performs 20 matching operations in parallel at

the template level in addition to the pixel level parallelism (e.g., for a 44x40 pixel

region of interest, 35200 threads are created instead of 1760, corresponding to 138

blocks instead of 7 blocks, respectively).

Kernels for each different size of the same template are launched concurrently

using different streams. Concurrent kernels is a scheduling convenience allowing

different streams of the same context to run simultaneously. It enables to increase

the efficiency if there are inefficient low block count kernels, mostly by reducing

idle streaming multiprocessor count while kernels are finishing up. The maximum

number of concurrent kernels that can be executed on a Fermi GPU is 16. The

number of different sizes (4x4) to be matched for each template is also 16 in our

implementation. This enables the matching of all different sizes of a template to

be launched concurrently. SAD values are accumulated in the global memory by

using AtomicAdd operations. For each template, after calling the kernels for all

variations, the SAD values are copied back from the device to host, and for each

region of interest, the SAD values are processed to determine the result of

recognition. The flow of the implementation is shown in Fig. 7.

Figure 7

CUDA implementation of sign recognition algorithm

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 245 –

4.2.2 Multi GPU Implementation

The multi GPU solution can be used with any number of GPUs. This is also a

hybrid implementation. Five CPU threads are used. The detection thread gets the

depth, and RGB image frames, perform the detection phase, for each ROI found in

the depth image, resizes the templates based on the size of ROI and puts the

related data into a queue to be passed to a GPU to perform the matching. The

Dispatcher thread keeps track of the availability of GPUs and determines the

target GPU that will process the next ROI data and assigns the device number to

the data slot in the queue. Each GPU has to be controlled by one CPU thread in

multi GPU programming with CUDA Toolkit 3.2. Two matching threads are

responsible for controlling the GPUs, including sending the required data (i.e.

RGB image, ROI boundary, resized templates) to the device, launching the

matching kernels concurrently, receiving the SAD values from the device and

storing them into the results queue. The recognition thread processes the SAD

values and determines the sign recognized for each ROI. The implementation

details are depicted in Fig. 8.

Figure 8

Multi GPU sign recognition implementation

5 Experiments

We have tested performance of our parallel implementations using real video,

GPS and odometer data captured in six test routes comprising various road

(highways, urban traffic, etc.) and lighting conditions (night/day, sunny/cloudy).

Parallelization tests were performed on our test platform, a dual processor HP
®

Z800 workstation having two Intel
®
 Xeon

®
 5660 6-core processors running at

2.80 GHz and two NVIDIA
®
 GeForce GTX580 graphics processing units.

The GTX580 GPU has NVIDIA’s new generation CUDA architecture called

Fermi and has 16 streaming multiprocessors, each having 32 streaming

processors, and thus in total has 512 processing cores. Hence, it is capable of

running 512 threads simultaneously. Each core runs at 1.544GHz. Each streaming

multiprocessor has 64KB configurable L1 cache. All cores shares a 768MB L2

unified cache and a 1512MB global memory.

K. Par et al. Real-time Traffic Sign Recognition with Map Fusion on Multicore/Many-core Architectures

 – 246 –

5.1 Localization and Map Matching

We used one 6-core CPU and one 512-core GPU in our tests. Tests were repeated

on each platform for different number of particles ranging from 256 to 128K. For

the multicore CPU tests, we ran the OpenMP implementation with 6 threads. For

the CPU+GPU tests, the block size was chosen as 256.

The OpenMP implementation provided approximately a 4.7x speedup with a

theoretical maximum increase of 5.4x on a 6-core CPU. We observed similar

speedups after the number of particles exceeds 4096.

With the CUDA implementation, we achieved increasing speedups of up to 75x

when the number of particles reached 128K. We see that the performance of GPU

is better exploited when the number of particles or threads is increased. The

relatively low speedups for the smaller number of particles are mainly due to the

low occupancy of streaming multiprocessors. Fig. 9 shows the execution times of

sequential, multicore CPU and GPU implementations for different number of

particles and the relative speedups.

Figure 9

Execution time and speedup comparisons of sequential and parallel implementations

When we examine performance of kernels separately, we see that speedups can be

as high as 150x for the predict kernel, where there are no data dependencies

among threads and operations performed are almost identical for all threads. We

see 100x speedups for the update kernel, where we observe the negative effect of

branching and divergence on the performance since road network is traversed to a

new location for some particles which causes different execution paths for threads.

We see speedups around 10x for the estimation and computeESS kernels, where

synchronization requirements within blocks and global atomic operations reduce

speedups. However, overall speedups achieved are sufficient for real-time

localization and map matching using a high number of particles.

We examined the sensitivity of the localization and map matching performance to

the number of particles to determine the optimum number. The error rate is

calculated as the ratio of the number of wrong map matches to the total number of

positions on the test routes. We see that the error rate decreases significantly until

the number of particles exceeds 32K. Fig. 10 shows the error rates for two

different routes.

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 247 –

Figure 10

Effect of number of particles on the error rate of map matching algorithm

5.2 Sign Recognition

Since detection of ROIs are handled by the the Kinect camera, detection is

successful even in very bad lighting conditions. We have observed that the system

can detect signs that can hardly be seen by human eye. Fig. 11 shows an example

of a successful recognition at night. Table 2 summarizes success rates of detection

and recognition for different route types. We see that map fusion improves

recognition performance dramatically especially under night conditions.

(a) Input RGB Image

(b) Recognized signs

Figure 11

Successful recognition at night conditions

Table 2

Detection and recognition rates for traffic signs using Kinect camera

Route Type
Detection

Rate

Without

map fusion

With map

fusion
Improvement

Cloudy, Residential Roads - Urban 93% 84% 92% 9%

Sunny, Residential Roads - Urban 89% 71% 85% 20%

Cloudy, Main Roads 91% 71% 86% 20%

Cloudy, Connecting Roads- Rural 95% 50% 83% 66%

Night, Main Roads 94% 55% 88% 60%

Night, Residential Roads 92% 40% 80% 100%

Multicore CPU and GPU implementations were tested on the same platform. The

average processing time for frames was measured and the execution time of

sequential implementation was taken as a reference in the speedup calculations.

For each ROI, 16 (4x4) different starting positions, and for each template, 20

(4x5) different sizes, were used. Tests were performed with a template database

having 52 templates. The recognition of each ROI involved 16,640 matchings.

K. Par et al. Real-time Traffic Sign Recognition with Map Fusion on Multicore/Many-core Architectures

 – 248 –

Multicore CPU implementation were tested with different numbers of threads,

ranging from 1 to 24. Speedups of up to 10.6x were achieved. We observed

linearly increasing speedups until the number of threads reached the number of

cores in the system. After that point, we observed that the speedups were not

improved with the increasing number of threads, but rather stayed in the range

between 8.7 and 9.7. The execution time at the maximum speedup was around

250ms corresponding to 4 frames per second. The linear speedups show that we

can further increase frame rates when we have a higher number of cores in the

system.

Speedups up to 18.1x and 35.2x were achieved on a single GPU and multi GPU

tests, respectively. The execution times at the maximum speedups approximately

correspond to 7 and 13 frames per second. For GPU tests, we used 256 threads as

the block size. We observed that 100% occupancy was achieved. Speedups and

execution times for all implementations are shown in Fig. 12.

Figure 12

Execution time and speedup comparisons of sequential and parallel implementations

Conclusions

We introduced a real-time traffic sign recognition system with digital map fusion,

and we examined parallel implementations and performance analysis on emerging

multicore CPUs and GPUs. Test results show that up to 75 times speedups can be

achieved for particle filter based localization and map matching on GPU over

sequential implementation, and real-time performance is possible in the case of

high computational cost of using map topology information. We showed that

success of localization and map matching can be increased by employing a high

number of particles where real-time performance can be achieved only by

parallelization.

The speedups achieved for our sign recognition system show that the template

matching based recognition approach with map augmentation, which is a simple

but computationally intensive technique, can be used with real-time performance

in the vehicle environment. We observed detection rates over 90% using the

Kinect sensor and recognition rates over 80% for various road and lighting

conditions. Test results show that the system performs very well even in night

conditions. The proposed system is unique since it is not limited to certain sign

types, can be used for recognition of wide range of traffic signs, can be used in

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 249 –

any lighting conditions, utilizes the Kinect sensor to achieve a good

price/performance, and runs on commercially available parallel hardware. Our

future work will include investigating the co-scheduling of other tasks that can run

simultaneously on the same platform with sign recognition and localization while

delivering required throughput and minimal affordable latency.

Acknowledgement

This research was supported by Bogazici University Research Fund, contract No.

5522.

References

[1] K. Par, and O. Tosun, “Parallelization of Particle Filter Based Localization

and Map Matching Algorithms on Multicore/Manycore Architectures”,

Intelligent Vehicles Symposium (IV), 2011 IEEE, pp. 820-826, June 2011

[2] B. Hoferlin and K. Zimmermann, “Towards Reliable Traffic Sign

Recognition”, IEEE Intelligent Vehicles Symposium, pp. 324-329, June

2009

[3] A. de la Escalera, J. Ma Armingol, M. Mata, “Traffic sign recognition and

analysis for intelligent vehicles”, Image and Vision Computing, pp. 247-

258, Vol. 21, 2003

[4] C. Bahlmann et al., “A System for Traffic Sign-Detection, Tracking and

Recognition Using Color, Shape and Motion Information”, IEEE Intelligent

Vehicles Symposium (IV), pp. 255-260, June 2005

[5] J. Ban, M. Feder, M. Oravec, and J. Pavlovicova, “Non-Conventional

Approaches to Feature Extraction for Face Recognition”, Acta

Polytechnica Hungarica, Vol. 8, No. 4, pp. 75-90, 2011

[6] Weijie Liu, and Maruya, K., “Detection and Recognition of Traffic Signs in

Adverse Conditions”, IEEE Intelligent Vehicles Symposium, pp. 335-340,

June 2009

[7] Tsz-Ho Yu, Yiu-Sang Moon, Jiansheng Chen, Hung-Kwan Fung, Hoi-Fung

Ko, Ran Wang, “An Intelligent Night Vision System for Automobiles”,

IAPR Conference on Machine Vision Applications, May 2009

[8] B. Kuljic, J. Simon, and T. Szakall, “Pathfinding Based on Edge Detection

and Infrared Distance Measuring Sensor”, Acta Polytechnica Hungarica,

Vol. 6, No. 1, pp. 103-116, 2009

[9] R. Ach, N. Luth, A. Techmer, “Real-Time Detection of Traffic Signs on a

Multi-Core Processor”, IEEE Intelligent Vehicles Symposium, pp. 307-

312, June 2008

[10] R. Ach, N. Luth, A. Techmer, A. Walther, “Classification of Traffic Signs

in Real-Time on a Multi-Core Processor”, IEEE Intelligent Vehicles

Symposium (IV), pp. 313-318, June 2008

K. Par et al. Real-time Traffic Sign Recognition with Map Fusion on Multicore/Many-core Architectures

 – 250 –

[11] V. Glavtchev, P. Muyan-Ozcelik, J. M. Ota, and J. D. Owens, “Feature-

based Speed Limit Sign Detection Using a Graphics Processing Unit”,

Intelligent Vehicles Symposium (IV), 2011 IEEE, pp. 195-200, June 2011

[12] P. Muyan-Ozcelik, V. Glavtchev, J. M. Ota, and J. D. Owens, “A

Template-based Approach for Real-Time Speed-Limit Sign Recognition on

an Embedded System Using GPU Computing”, Proceedings of the 32
nd

DAGM conference on Pattern recognition, pp. 162-171, 2010

[13] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “A Novel Approach to

Nonlinear/Non-Gaussian Bayesian State Estimation,” IEE Proceedings on

Radar and Signal Processing, Vol. 140, No. 2, pp. 107-113, 1993

[14] F. Gustafsson, F. Gunnarson, N. Bergman, U. Forssell, J. Jansson, R.

Karlsson, and P. Nordlund, “Particle Filters for Positioning, Navigation and

Tracking”, IEEE Transactions on Signal Processing, Vol. 50, No. 2, pp.

425-437, February 2002

[15] D. Kocur, J. Gamec, M. Svecova, M. Gamcova and J. Rovnakova,

“Imaging Method: An Efficient Algorithm for Moving Target Tracking by

UWB Radar”, Acta Polytechnica Hungarica, Vol. 7, No. 3, pp. 6-24, 2010

[16] Bolic, M., “Architectures for Efficient Implementation of Particle Filters”,

PhD Dissertation, Stony Brook University, August 2004

[17] M. Happe, E. Lübbers, and M. Platzner, “A Multithreaded Framework for

Sequential Monte Carlo Methods on CPU/FPGA Platforms”, Proceedings

of the 5
th

 Inte Workshop on Reconfigurable Computing: Architectures,

Tools and Applications, pp. 380-385, 2009

[18] H. Mederios, J. Park, and A. Kak, “A Parallel Implementation of the Color-

based Particle Filter for Object Tracking”, IEEE Computer Society

Conference on Computer Vision and Pattern Recognition Workshops, pp.

1-8, June 2008

[19] G. Hendeby, R. Karlsson, and F. Gustafsson, “Particle Filtering: The Need

for Speed”, EURASIP Journal on Advances in Signal Processing, 2010

[20] J. F. Ferreira, J. Lobo, and J. Dias, “Bayesian Real-time Perception

Algorithms on GPU”, J. Real-Time Image Proc., Springer, 2010

[21] M. A. Goodrum, M. J. Trotter, A. Aksel, S. T. Acton, and K. Skadron,

“Parallelization of Particle Filter Algorithms”, Proc. of 3
rd

 Workshop on

Emerging Applications and Many-core Architecture (EAMA), 2010

[22] B. Chapman, G. Jost, and R. van der Pas, “Using OpenMP, Portable Shared

Memory Parallel Programming”, The MIT Press, 2007

[23] J. Nickolls, W. J. Dally, “The GPU Computing Era”, IEEE Micro, pp. 56-

69, March-April 2010

[24] NVIDIA CUDA Programming Guide 3.2, 2010

