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Abstract: This paper presents a parallel implementation and performance analysis of a 

system for traffic sign recognition with digital map fusion on emerging multicore 

processors and graphics processing units (GPU). The system employs a particle filter 

based localization and map matching and template-based matching for sign recognition. In 

the proposed system, a GPS, odometer and camera are fused with digital map information. 

The system utilizes the depth sensor of a Kinect camera for the detection of signs and 

achieves high recognition rates for both day and night conditions. Tests were performed on 

real data captured in the vehicle environment comprising various road and lighting 

conditions. Test results show that speed increases of up to 75 times for localization and 35 

times for sign recognition can be achieved on parallel GPU implementation over 

sequential counterparts. As those speedups comply with real-time performance 

requirements, high computational cost of using map topology information with large 

number of particles in localization implementation and template based matching for sign 

recognition is proven to be handled by emerging technologies. The system is unique since it 

is not limited to certain sign types; it can be used in both day and night conditions and 

utilizes a Kinect sensor to achieve a good price/performance. 

Keywords: traffic sign recognition; particle filter; Kinect; multicore; gpu computing 

1 Introduction 

With the rise of multicore and many-core processors, the way of computing has 

been evolving into a new era. The high computational power, energy efficiency 

and programmability of these emerging general purpose processors make them a 

good candidate for a unified vehicle computing platform to host advanced driving 

assistance systems (ADAS) and autonomous vehicle applications by replacing 

specialized hardware and/or software platforms for each application. On the other 

hand, meeting the real-time performance requirements of those applications on 

such a platform is a challenge. Parallelization and using parallel programming 

techniques is one of the key methods to speed up applications on multicore 

architectures. 
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In this work, we present a parallel implementation and performance analysis of a 

complete system for sign recognition with map fusion including localization and 

map matching, both on a multicore processor using Open Multi-Processing 

(OpenMP) and on a graphics processing unit (GPU) using Compute Unified 

Device Architecture (CUDA). 

The proposed system is unique, with many features, since it is not limited to speed 

signs, uses topological features of digital maps, and shows good performance in 

ambient lighting conditions. As a side contribution, the system utilizes a Kinect 

sensor, which simplifies sign detection radically and lowers overall system cost. 

In the area of sign recognition with map fusion, the localization and map matching 

step is generally ignored and assumed as perfect. We provide a complete system, 

including the map matching and localization. We use a particle filter-based 

matching and localization algorithm proposed in [1] by the authors where GPS 

(Global Positioning System) and odometer data is fused with the topology of the 

digital map data as an additional sensor. The algorithm also generates a 

probabilistic measure for the correctness of the map matching. This measure is 

taken into account while using the digital map for sign recognition. 

The system utilizes the depth sensor of a Kinect camera for the detection of signs. 

Classification is carried out by a template matching based algorithm, where the 

digital map information and vehicle position provided by the localization and map 

matching module are fused. 

The target architecture is a combination of a multicore CPU and a many-core 

GPU, which is very likely to take place in a production vehicle environment as a 

unified computing platform in the near future. Both modules run on the same 

platform. The system overview can be seen in Fig. 1. 

 

Figure 1 

System overview 

Both particle filter-based localization and map matching and template matching 

based sign recognition are computationally intensive applications where high 

success rates and real-time performance cannot both be achieved simultaneously 

using sequential implementations. The proposed system achieves both targets by 

employing parallelization on a hybrid multicore/many-core architecture. 
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We consider a multi-hypothesis localization and map matching algorithm where 

map topology information is used in terms of route-ability as the likelihood 

calculation in the particle filter to increase map matching performance, at the same 

time further increasing the computational cost of the algorithm. 

We first characterized the execution profile of the particle filter algorithm for the 

different number of particles using a sequential implementation. Critical function 

blocks in terms of execution time were identified. We also investigated the effect 

of the number of particles employed by the algorithm on the error rate of 

localization and map matching. We then mapped the algorithm to the multicore 

CPU and the GPU platforms to accelerate bottlenecks and to see if the required 

speedups are realizable. 

For our template-matching based sign recognition algorithm, which can be applied 

to a wide range of traffic signs, we employed a similar approach; we first observed 

detection rates using the Kinect sensor and recognition rates with the map fusion, 

and we also characterized the execution profile using a sequential implementation 

of the algorithm. We then tested the parallel implementations on our test system 

having two 6-core CPUs and two 512-core GPUs with real video and positioning 

data captured in the vehicle environment under various road and lighting 

conditions. 

In the rest of this paper, we first give information about related work in this area. 

We then describe the particle filter-based localization and map matching 

algorithm and the sign recognition approach with map fusion. We give details 

about our parallel implementations for both modules. We continue with tests and 

experimental results. We finish with the interpretation of those results. 

1.1 Related Work 

Traffic sign recognition is one of the key components of advanced driver 

assistance systems and has been worked on for a long time in the intelligent 

vehicles domain. Although the appearance of the traffic signs was originally 

designed to be easily distinguishable from natural objects, the reliable, automated 

recognition of traffic signs, especially under adverse environmental conditions, 

remains a complex task. 

Recent approaches tend to use a scheme of three stages: detection of sign 

candidates, classification of the candidates and tracking of the sign candidates 

over time. Many algorithms available in the literature generally differentiate in 

using different methods in the detection and classification stages [2]-[5]. 

There are also some attempts to enhance the performance of visible light cameras 

for sign recognition using infrared cameras [6]-[8]. They are limited to a subset of 

traffic signs and use expensive hardware, and the recognition rate is lower than the 

proposed system. 



K. Par et al. Real-time Traffic Sign Recognition with Map Fusion on Multicore/Many-core Architectures 

 – 234 – 

Most of the work done in this field so far has been strictly bounded by available 

computing capacity. However, recent developments in multicore and many-core 

architectures present a research challenge, also in this area, to meet real-time 

performance requirements with a parallel processing model. There are a very 

limited number of studies in the literature for parallel implementations of traffic 

sign recognition. [9] and [10] describe the detection and classification of traffic 

signs on an application-specific multicore processor. A real-time template-based 

approach for the recognition of speed limit signs using GPU computing is 

described in [11]. A feature-based speed limit sign detection system using a GPU 

is described in [12]. The studies cover only speed limit signs and do not include 

map integration. 

We propose a generic template-based approach which can be applied to a wide 

range of traffic signs and the parallel implementation on a multicore CPU and 

GPU platform. Our approach uses a new sensor (Kinect) which provides both 

color and infrared images of the traffic scene, which enhances the detection stage, 

and we also propose using digital map information to augment template matching 

in the classification stage in order to increase the robustness of the recognition and 

to contribute to real-time performance. 

Kinect has become very popular in a very short time since its launch in November, 

2010, not only for playing games, but also, with its relatively low price, in 

robotics research for depth sensing and 3D vision. However, we have not yet 

encountered an application of Kinect in intelligent vehicles research. 

Our approach employs a particle filter-based localization and map matching. 

Particle filters are among the principal tools for the on-line estimation of the state 

of a non-linear dynamic system [13]. Particle filtering has been applied widely in 

applications in tracking, navigation, detection and video-based object recognition 

[14]. Although, in general, particle filtering methods yield improved results 

compared to other Bayesian filters, it is difficult to achieve real time performance 

as the algorithm is computationally intensive [15]. This has been a prohibitive 

factor for real-time implementations for many applications of particle filtering. 

A number of methods for software and hardware implementations of particle 

filtering have been proposed in the literature. Special architectures [16], field-

programmable gate arrays (FPGAs) [17], and SIMD processor arrays [18] have 

been utilized for various types of problems. Many of the GPU implementations 

are focused on low-level stream processing or OpenGL [19]. 

Although emerging multicore processors and GPUs are good candidates for 

parallel particle filter implementations, multicore implementations, especially 

using the GPU computing concept and the platforms and tools such as NVIDIA’s 

CUDA architecture, are still very recent and few. Some of the recent studies [20]-

[21] utilize the general particle filter algorithm, but they differ significantly in 

their calculation of the likelihood phase. This variety also influence the approach 

used in parallelization. 
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Our work is a part of a research project addressing the challenge of meeting the 

real-time performance requirements of ADAS and autonomous vehicle 

applications by efficiently mapping them on multicore and/or many-core 

architectures, and, to our knowledge, this is the first parallelization effort of traffic 

sign recognition with map fusion using Kinect sensor and a particle filter targeted 

to localization and map matching using map topology. 

2 Localization and Map Matching 

2.1 Particle Filter 

Particle Filters, also known as Sequential Monte Carlo (SMC) methods, are 

iterative methods that track a number of possible state estimates, so-called 

particles, across time and gauge their probability by comparing them to 

measurements. 

We are considering a dynamic system with state tx at a given time t. The system 

model is a Markov process of the first order. We assume that the system state can 

only be tracked by measurements ty , which may be influenced by noise. The 

relation between measurements and system states is described by the measurement 

model. 

The sampling importance resampling (SIR) algorithm is one of the most widely 

used sequential Monte Carlo methods. The SIR algorithm has following stages 

iterated over discrete time steps: 

Sampling (Prediction): To follow the state during subsequent iterations, the 

system model is used to obtain a possible new state for every particle i
tx  based on 

its last state i
tx 1  where 1tu  is measured inputs and 1tv  unmeasured forces or 

faults: 

,111   tt
i
t

i
t vBuAxx    Ni ,...,1  (1) 

Importance (Update): The measurement model is evaluated for every particle and 

the current measurements to determine the likelihood that the current 

measurement ty  matches the predicted state i
tx  of the particle. The resulting 

likelihood is assigned as a weight i
tw  to the particle and indicates the relative 

quality of the state estimation: 
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At this point, when the particles are weighted, a state estimation can easily be 

obtained via various techniques, such as using the highest-weighted (highest-

probability) sample, or using the weighted sum of the particles to get a mean-

equivalent, or using the average of particles within some distance from the best 

particle. 

 
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Resampling: If the number of effective samples fall below a certain value, 

resampling is required. Particles with comparatively high weights are duplicated 

and particles with low weights are eliminated. This can be done by calculating the 

number of effective particles Neff as follows: 


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Effective sample size (ESS) is another metric to decide if resampling is required. 

2.2 Particle Filter for Localization and Map Matching 

For the vehicle localization problem, state is represented as a four-dimensional 

vector x = [Lon, Lat, Ɵ, L] where Lon, Lat, Ɵ and L stand for position, orientation 

and link or road segment on the map database, respectively. 

Basically, the new location of the vehicle is predicted using the odometer data in 

the prediction stage and corrected by the GPS measurements and a map based 

likelihood function in the weight update stage. The operations performed in the 

main stages of the particle filter can be summarized as the following: 

Prediction: The data coming from the odometer is used to measure vehicle 

displacement. The new location (Lon, Lat) of the vehicle is randomly calculated 

for each particle in the range of this displacement. This stage requires a high 

number of random number generations for the calculation of the new values of 

each state variable. 

Weight Update: Weights are updated using the GPS readings first. The likelihood 

function is designed so that the particles that are within the error range of the GPS 

reading get higher weights. Then the weights are augmented with the map data by 

multiplying them with the probabilities derived from the map: 

)topology ()zone(1 ppww i
t

i
t    (5) 

Two types of map attributes are used in the likelihood calculation. The first 

feature is the type of area where the particle resides on the map (road segment, 

building, parking area, etc.). The probability of being in a certain type of zone or 

road class (e.g. motorway, major road, local road, residential road, etc.) is 

calculated based on the speed of the vehicle (e.g., for a vehicle at a speed of 120 

km/h, the relative probability of being on a motorway is chosen to be higher than 

being on a residential road). 
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The second feature of the map is the topology. Given the previous location of a 

particle, the probability of travelling to a new location on a certain road segment is 

calculated using the map topology. Possible reachable roads are searched in the 

road network in forward and backward directions for the distance travelled 

measured from the odometer. If the predicted location of the particle is found to be 

reachable, a high probability is assigned, otherwise a low probability is assigned 

(e.g., due to the connectivity, direction of traffic flow, turn restrictions, etc.). 

Estimation: The location component of the system state is calculated as the 

weighted mean of each particle’s location information. Map matching is achieved 

by selecting the road segment with highest weight as the matched link on the map. 

The flow of our particle filter algorithm for localization and map matching is 

shown in Fig. 2. 

 

Figure 2 

Particle filter localization and map matching 

3 Sign Recognition 

The proposed traffic sign recognition algorithm is implemented based on a 

template matching pipeline. The Kinect camera’s depth image output is used to 

determine candidate regions on the RGB image. A special color segmentation 

scheme is applied to candidate regions. Template matching is employed for 

classification. A distance is calculated between the candidate region in the source 

image and different sizes of template images in the template database based on a 

difference function. The template having the minimum distance is denoted as the 

matched or recognized sign. Fig. 3 summarizes the design of the algorithm and the 

following sections describe the stages of the sign recognition flow in detail. 
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Figure 3 

Sign recognition algorithm 

3.1 Template Database and Map-based Probabilities 

A template database is created from the sign images. Each sign template has two 

versions, one with a white background, the other with a black background. When 

sign recognition is carried out under night conditions, templates with black 

background are needed. Templates are also converted to four colors by use of 

color segmentation. Only black, white, red and blue are preserved in the image. 

We used an automatic resizing function according to the size of the region of 

interest found in the scene. 

The localization and map matching algorithm determines the vehicle location and 

the map segment. By use of the matched segment, we can calculate map based 

probabilities for each sign in the database, considering different map contexts for 

various sign classes. Table 1 summarizes the sign classes and their respective map 

based context. 

Table 1 

Traffic signs and their respective map context 

Sign Class Signs Map Context 

Speed Signs 
 

Road Class, Speed Limit 

Manoeuvres 
 

Manoeuvres (restrictions), One way information 
and map topology 

Bends 
 

Map topology, existence of a bend in the 

driving direction is checked. 

Junctions 
 

Map topology, existence of a junction and type 

of junction is checked 

School  
 

POI, existence of a school is checked.  

Parking 
 

Road Class 
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3.2 ROI Detection with Kinect Sensor 

The Kinect camera’s depth sensor consists of an infrared laser projector combined 

with a monochrome CMOS sensor, which captures video data in 3D under any 

ambient light conditions. When used in outdoor environment, we end up with a 

very effective function of Kinect; it detects reflective surfaces (signs in traffic) 

and thus makes region of interest (ROI) detection very easy and robust. Fig. 4 (a) 

and (b) show the RGB image and the depth image coming from Kinect camera for 

the same scene. The depth image shows the region of interest in the RGB image. 

 
(a) Input RGB Image 

 
(b) Depth Image 

 
(c) Initial and Enhanced ROIs 

 
(d) Color Segmented ROIs 

Figure 4 

ROI detection with Kinect sensor 

The initial bounding boxes are created by following the neighboring pixels within 

a given pixel tolerance. As seen in the Fig. 4 (c), the initial bounding boxes 

(green) are not perfect. There are several reasons for this. The IR camera and the 

RGB camera of the Kinect sensor have different fields of view and focal lengths. 

The RGB camera has a wider field of view. This is why, when objects get closer 

to the image edge, the difference in pixel locations increases. The two cameras are 

separated from each other by 2.5 cm. Sometimes the pixel image coming from the 

IR camera does not cover the whole sign. Sometimes the two signs are so close 

(their distance is smaller than the pixel tolerance when calculating the bounding 

boxes) that only one bounding box is found for two signs. There may be some 

small bounding boxes caused by reflections coming from other surfaces. An 

algorithm has been developed to overcome these errors. The initial and enhanced 

ROIs are shown in Fig. 4 (c) in green and yellow rectangles, respectively. 
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3.3 Template Matching 

For a better matching, color segmentation is applied to the regions of interest first. 

All the colors in the image are segmented in four colors: red, blue, white and 

black. An example of color segmentation can be seen in Fig. 4 (d). After color 

segmentation, the templates are matched against the region of interests by 

computing the sum of the differences between pixel color values. For each region 

of interest, templates are resized based on the size of the bounding box before 

matching. Several template sizes with different aspect ratios are tried. Starting 

from corner of the region of interest, the difference between the template and the 

region of interest is calculated. The difference value is normalized according to 

the template size. The template with the lowest difference value is selected as the 

match. 

3.4 Map Fusion 

Template matching generates a likelihood measure for each sign. This measure is 

the distance between the template image and the camera image. Since we 

successfully detect the location of the sign on the camera image, the sign with the 

lowest distance value can be selected as the matched sign most of the time. But 

some of the signs are very similar to each other. Also, even if we find the location 

of the sign successfully, the camera image may not be clear. As a result of this, the 

algorithm returns very close likelihood results. When we fuse this information 

with the probabilities coming from the map, the correct sign can be selected. The 

recognition performance of our algorithm increases radically. Fig. 5 shows two 

examples of template matching results, with and without map fusion. 

 

Template Matching 

without Map Fusion 

Template Matching 

with Map Fusion 

    

0,70 0,67 0,52 0,90 

 

Template Matching 

without Map Fusion 

Template Matching 

with Map Fusion 

    

0,78 0,77 0,66 0,97 

Figure 5 

Sign recognition with map fusion 
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4 Parallel Implementations 

4.1 Localization and Map Matching 

Before attempting parallel implementations, we first characterized the execution 

profile of the particle filter algorithm for different number of particles using a 

sequential implementation. We see that the prediction and update sections 

dominate the execution time by a large margin. Therefore, those sections were 

selected as the first targets of parallelization in both platforms. 

Particle filters heavily use random number generation. Our implementation uses 

the Mersenne-Twister random number generation algorithm. An existing 

implementation has been adopted for both the CPU and GPU platforms. 

4.1.1 Multicore (OpenMP) Implementation 

We used OpenMP programming model [22] for the parallelization of the predict 

and update sections of the particle filter on a multicore CPU. Since the same 

operations are repeated for all the particles in a loop for both the predict and 

update sections and the particles can be processed independently of each other, the 

iterations (effectively the particles) have been distributed among the cores. Each 

core therefore performs the prediction and update steps on a subset of particles. 

The static scheduling mechanism of OpenMP is used for the predict part and 

dynamic scheduling has been employed for the update part, in order to have a 

better workload distribution among the cores since the complexity of map based 

operations for each particle in the update step can be different. 

4.1.2 GPU (CUDA) Implementation 

In our GPU implementation, we used the CUDA programming model [23]-[24]. 

This actually represents a hybrid (CPU+GPU) implementation of particle filter. 

We implemented most of the main steps of the filter in C using CUDA Toolkit 

3.2. The Prediction, Update, Estimation, and ComputeESS parts were 

implemented as kernels to run on GPU (device), where resampling part is run on 

CPU (host). The CUDA implementation flow is illustrated in Fig. 6. 

Since the prediction and update parts of a particle filter work on particles 

independently, a separate thread is created for each particle on the GPU for the 

predict and update kernels. This is accomplished by using the appropriate 

execution configuration parameters, when the kernels are launched. Each thread 

determines which particle it should process via built-in variables, the thread block 

index, the thread index within its block, and the block size. 

The states of particles are stored in the global memory, and during initialization 

both host and device memory are allocated for particles, and the initial particle 

data are copied to the device. The global memory is used to pass on data from one 
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kernel to the next. Map data is also transferred to the device memory during 

initialization. Each thread is enabled to use its own random number generator 

instance. Initial Twister states for the maximum possible number of threads are 

created on the host and transferred to the device memory at the initialization. 

For the update kernel, measurement values are passed as parameters at the kernel 

launch for each iteration. The estimation part consists of the summation and 

normalization of the weights and the calculating weighted mean of the state 

variables. This part is divided into three separate kernels: summation, 

normalizeWeights and mean kernels. The division of the workload into separate 

kernels was necessary due to the fact that the only way to enforce synchronization 

between all concurrent CUDA threads in a grid is to wait for all kernels running 

on that grid to exit. 

 

Figure 6 

CUDA implementation of particle filter localization and map matching 

For the summation kernel, the parallel prefix sum technique is used to calculate 

the partial sums within each block, and these partial sums are added to the global 

sum by using global atomicAdd operations. The normalizeWeight kernel is 

implemented similar to the predict and update kernels. Each thread adjusts its 

weight independently by using the sum value which is passed to it as a parameter 

at the kernel launch. The mean kernel and the computeESS kernel also use the 

parallel reduction technique similar to the summation kernel. After the estimation 

is completed, the estimated state variables are transferred to the host. 

The amount of data transfers between the host and device has been kept very 

small for the iterations where resampling is not required. If resampling is required, 

the current weights of the particles are transferred to the host, and the surviving 

particles are calculated on the host. 



Acta Polytechnica Hungarica Vol. 9, No. 2, 2012 

 – 243 – 

4.2 Sign Recognition 

The execution time profile of the sequential implementation shows that the 

template matching process has the highest computational cost, more than 98 

percent of the total execution time. This has been chosen as the target for 

parallelization. The matching process for each video frame involves the following 

parameters: 

r number of ROIs detected in the frame 

n number of templates in the template database 

m number of different sizes for each template to be used for matching 

s number of different starting positions for matching in each ROI 

w width of template in pixels 

h height of template in pixels 

Assuming (x,y) denotes the starting search image coordinates and (i,j) denotes the 

template image coordinates, the time required for the matching process for each 

frame can be defined as the following: 

  


h
i

w
j

jijyixDiffsmnrt
0 0

),,,(  (6) 

Three parallel implementations have been developed for multicore CPU, single 

GPU and multi GPU architectures. For all cases, the detection stage is performed 

on the host sequentially, which is performed very fast with the help of the Kinect 

camera. 

4.2.1 Multicore (OpenMP) Implementation 

The multicore CPU implementation is performed using the OpenMP programming 

model. The matching operations for each template are distributed among the 

multiple CPU threads. The number of threads is determined by the maximum 

number of cores in the system. For each region of interest, the work is distributed 

on a templates basis.  

4.2.2 GPU (CUDA) Implementation 

The GPU implementation is performed using CUDA. The pixel level matching 

operations are designed to run on GPU in parallel. A kernel (matching kernel) has 

been implemented to perform the matching of a ROI to a resized template and 

produce the sum of differences (SAD) values. A separate thread is created for 

each pixel operation when the kernel is launched. Initially, all memory allocations 

are done for RGB images, resized templates and SAD values on both host and 

device. For each video frame, detection is performed on the host and ROIs are 

found. If at least one ROI is found in the depth image, the RGB image is copied to 

the device memory. Each ROI found in the frame is matched against different 

sizes and starting positions of all the templates by calling the matching kernel. 
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Resizing is done on the host, each template is resized based on the size of ROI, 

and resized templates are copied to the device memory before launching the 

matching kernel. Since the RGB image and the resized templates are already in 

the device, the kernel is then called with only the corner positions of the region of 

interest, the template number and the size of the template. 

Since the number of pixels in region of interests are relatively small (e.g. 49x48) 

compared to whole images (640x480), to be able to achieve maximum occupancy 

of GPU cores, the matching kernel is designed to compute SAD values for all 

different starting positions (4x5) of a resized template each time it is launched. So 

each launch of the matching kernel performs 20 matching operations in parallel at 

the template level in addition to the pixel level parallelism (e.g., for a 44x40 pixel 

region of interest, 35200 threads are created instead of 1760, corresponding to 138 

blocks instead of 7 blocks, respectively). 

Kernels for each different size of the same template are launched concurrently 

using different streams. Concurrent kernels is a scheduling convenience allowing 

different streams of the same context to run simultaneously. It enables to increase 

the efficiency if there are inefficient low block count kernels, mostly by reducing 

idle streaming multiprocessor count while kernels are finishing up. The maximum 

number of concurrent kernels that can be executed on a Fermi GPU is 16. The 

number of different sizes (4x4) to be matched for each template is also 16 in our 

implementation. This enables the matching of all different sizes of a template to 

be launched concurrently. SAD values are accumulated in the global memory by 

using AtomicAdd operations. For each template, after calling the kernels for all 

variations, the SAD values are copied back from the device to host, and for each 

region of interest, the SAD values are processed to determine the result of 

recognition. The flow of the implementation is shown in Fig. 7. 

 

Figure 7 

CUDA implementation of sign recognition algorithm 
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4.2.2 Multi GPU Implementation 

The multi GPU solution can be used with any number of GPUs. This is also a 

hybrid implementation. Five CPU threads are used. The detection thread gets the 

depth, and RGB image frames, perform the detection phase, for each ROI found in 

the depth image, resizes the templates based on the size of ROI and puts the 

related data into a queue to be passed to a GPU to perform the matching. The 

Dispatcher thread keeps track of the availability of GPUs and determines the 

target GPU that will process the next ROI data and assigns the device number to 

the data slot in the queue. Each GPU has to be controlled by one CPU thread in 

multi GPU programming with CUDA Toolkit 3.2. Two matching threads are 

responsible for controlling the GPUs, including sending the required data (i.e. 

RGB image, ROI boundary, resized templates) to the device, launching the 

matching kernels concurrently, receiving the SAD values from the device and 

storing them into the results queue. The recognition thread processes the SAD 

values and determines the sign recognized for each ROI. The implementation 

details are depicted in Fig. 8. 

  

Figure 8 

Multi GPU sign recognition implementation 

5 Experiments 

We have tested performance of our parallel implementations using real video, 

GPS and odometer data captured in six test routes comprising various road 

(highways, urban traffic, etc.) and lighting conditions (night/day, sunny/cloudy). 

Parallelization tests were performed on our test platform, a dual processor HP
®
 

Z800 workstation having two Intel
®
 Xeon

®
 5660 6-core processors running at 

2.80 GHz and two NVIDIA
®
 GeForce GTX580 graphics processing units. 

The GTX580 GPU has NVIDIA’s new generation CUDA architecture called 

Fermi and has 16 streaming multiprocessors, each having 32 streaming 

processors, and thus in total has 512 processing cores. Hence, it is capable of 

running 512 threads simultaneously. Each core runs at 1.544GHz. Each streaming 

multiprocessor has 64KB configurable L1 cache. All cores shares a 768MB L2 

unified cache and a 1512MB global memory. 
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5.1 Localization and Map Matching 

We used one 6-core CPU and one 512-core GPU in our tests. Tests were repeated 

on each platform for different number of particles ranging from 256 to 128K. For 

the multicore CPU tests, we ran the OpenMP implementation with 6 threads. For 

the CPU+GPU tests, the block size was chosen as 256. 

The OpenMP implementation provided approximately a 4.7x speedup with a 

theoretical maximum increase of 5.4x on a 6-core CPU. We observed similar 

speedups after the number of particles exceeds 4096. 

With the CUDA implementation, we achieved increasing speedups of up to 75x 

when the number of particles reached 128K. We see that the performance of GPU 

is better exploited when the number of particles or threads is increased. The 

relatively low speedups for the smaller number of particles are mainly due to the 

low occupancy of streaming multiprocessors. Fig. 9 shows the execution times of 

sequential, multicore CPU and GPU implementations for different number of 

particles and the relative speedups. 

  

Figure 9 

Execution time and speedup comparisons of sequential and parallel implementations 

When we examine performance of kernels separately, we see that speedups can be 

as high as 150x for the predict kernel, where there are no data dependencies 

among threads and operations performed are almost identical for all threads. We 

see 100x speedups for the update kernel, where we observe the negative effect of 

branching and divergence on the performance since road network is traversed to a 

new location for some particles which causes different execution paths for threads. 

We see speedups around 10x for the estimation and computeESS kernels, where 

synchronization requirements within blocks and global atomic operations reduce 

speedups. However, overall speedups achieved are sufficient for real-time 

localization and map matching using a high number of particles. 

We examined the sensitivity of the localization and map matching performance to 

the number of particles to determine the optimum number. The error rate is 

calculated as the ratio of the number of wrong map matches to the total number of 

positions on the test routes. We see that the error rate decreases significantly until 

the number of particles exceeds 32K. Fig. 10 shows the error rates for two 

different routes. 
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Figure 10 

Effect of number of particles on the error rate of map matching algorithm 

5.2 Sign Recognition 

Since detection of ROIs are handled by the the Kinect camera, detection is 

successful even in very bad lighting conditions. We have observed that the system 

can detect signs that can hardly be seen by human eye. Fig. 11 shows an example 

of a successful recognition at night. Table 2 summarizes success rates of detection 

and recognition for different route types. We see that map fusion improves 

recognition performance dramatically especially under night conditions. 

 

(a) Input RGB Image 

 

(b) Recognized signs 

Figure 11 

Successful recognition at night conditions 

Table 2 

Detection and recognition rates for traffic signs using Kinect camera 

Route Type 
Detection 

Rate 

Without 

map fusion 

With map 

fusion 
Improvement 

Cloudy, Residential Roads - Urban 93% 84% 92% 9% 

Sunny, Residential Roads - Urban 89% 71% 85% 20% 

Cloudy, Main Roads 91% 71% 86% 20% 

Cloudy, Connecting Roads- Rural 95% 50% 83% 66% 

Night, Main Roads 94% 55% 88% 60% 

Night, Residential Roads 92% 40% 80% 100% 

Multicore CPU and GPU implementations were tested on the same platform. The 

average processing time for frames was measured and the execution time of 

sequential implementation was taken as a reference in the speedup calculations. 

For each ROI, 16 (4x4) different starting positions, and for each template, 20 

(4x5) different sizes, were used. Tests were performed with a template database 

having 52 templates. The recognition of each ROI involved 16,640 matchings. 
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Multicore CPU implementation were tested with different numbers of threads, 

ranging from 1 to 24. Speedups of up to 10.6x were achieved. We observed 

linearly increasing speedups until the number of threads reached the number of 

cores in the system. After that point, we observed that the speedups were not 

improved with the increasing number of threads, but rather stayed in the range 

between 8.7 and 9.7. The execution time at the maximum speedup was around 

250ms corresponding to 4 frames per second. The linear speedups show that we 

can further increase frame rates when we have a higher number of cores in the 

system. 

Speedups up to 18.1x and 35.2x were achieved on a single GPU and multi GPU 

tests, respectively. The execution times at the maximum speedups approximately 

correspond to 7 and 13 frames per second. For GPU tests, we used 256 threads as 

the block size. We observed that 100% occupancy was achieved. Speedups and 

execution times for all implementations are shown in Fig. 12. 

 
 

Figure 12 

Execution time and speedup comparisons of sequential and parallel implementations 

Conclusions 

We introduced a real-time traffic sign recognition system with digital map fusion, 

and we examined parallel implementations and performance analysis on emerging 

multicore CPUs and GPUs. Test results show that up to 75 times speedups can be 

achieved for particle filter based localization and map matching on GPU over 

sequential implementation, and real-time performance is possible in the case of 

high computational cost of using map topology information. We showed that 

success of localization and map matching can be increased by employing a high 

number of particles where real-time performance can be achieved only by 

parallelization. 

The speedups achieved for our sign recognition system show that the template 

matching based recognition approach with map augmentation, which is a simple 

but computationally intensive technique, can be used with real-time performance 

in the vehicle environment. We observed detection rates over 90% using the 

Kinect sensor and recognition rates over 80% for various road and lighting 

conditions. Test results show that the system performs very well even in night 

conditions. The proposed system is unique since it is not limited to certain sign 

types, can be used for recognition of wide range of traffic signs, can be used in 
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any lighting conditions, utilizes the Kinect sensor to achieve a good 

price/performance, and runs on commercially available parallel hardware. Our 

future work will include investigating the co-scheduling of other tasks that can run 

simultaneously on the same platform with sign recognition and localization while 

delivering required throughput and minimal affordable latency. 
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