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Abstract: Component-based programming has become a popular and frequently used 

method for software development, prepared from independent components by a 

composition. Our paper presents an illustration of how a composition of components can 

cause the emergence of new problems that should be solved, in order to obtain the desired 

results. We introduce a transformation of Petri nets to corresponding provable sequents of 

linear logic and then we show how a composition of simple Petri nets causes arising of 

synchronization problems. Transformation to provable linear sequents that ensures a 

verified behavior for such composed systems. 
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1 Introduction 

In the last decades, a new method of software development, a component-based 

programming, has become very popular. It can be characterized as a construction 

of program systems from working entities by their composition. There are many 

publications in the area of software engineering discussing basic principles of this 

method and providing practical guides for how to prepare such program systems, 

e.g. [21, 22, 23, 27, 29]. Among the basic properties of components is their 

independency, i.e. that they can be executed separately, can be reused, and should 

satisfy rules of composition (contracts and dependencies) to ensure that the whole 

system produces desired results. One of the important properties of a composition 

is that after it is composed, new problems can arise. The aim of our paper is to 

illustrate this situation on known examples of synchronization. We used two 

formal tools; Petri nets (PNs) and linear logic. Both tools are useful and frequently 

employed in modeling and behavioral description of program systems. We show 

how the behavior of PNs can be expressed by provable sequents of linear logic, 

and simultaneously, we show how the synchronization problems arise from the 

composition of simple components. 
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Petri nets are well-known mathematical and graphical tool for behavioral 

modeling of processes. They were designed especially for modeling systems with 

interacting concurrent processes [20, 30]. They are sometimes called 

place/transition nets and they enable graphical expression of the system execution. 

Petri nets nowadays have a wide spectrum of applications, not only in concurrent 

programming, but also in business process modeling, data analysis, software 

design, simulation, and many others [2, 3, 9, 10]. The expressive power of Petri 

nets has been studied and compared with several other formal methods for the 

specification and description of systems. Such systems include algebraic 

specification in [24], which leads to the extension of the notion of tokens to 

structural ones, or with B-language [11], in which the transformation of Petri nets 

to B-language is defined for software development, from specification to 

implementation. In our paper we would like to present another correspondence, 

namely how PNs can be transform into provable linear logic sequents. 

Linear logic is a logical system introduced by Jean-Yves Girard in 1987 [6, 7]. It 

enables description of processes as they behave in real world. It is capable of 

describing the dynamic of processes, parallelism, external and internal 

nondeterminism, consecutive processes, and it is also able to handle the resources 

on syntactic level. Thanks to these properties, linear logic can be considered as a 

bridge between computing science and logic [15]. Propositional linear logic is 

available for program systems description [1, 16], their behavior [26], and their 

extension with modal operators enables modeling of knowledge achievement [17, 

18] mainly in intrusion detection systems to improve network reliability [28]. 

Linear logic has greater expressive power than classical logic, thanks to more 

connectives with special properties. Moreover, every formula of classical 

propositional logic can be expressed in linear logic. One of the most important 

properties of linear logic is its ability to describe the dynamic of processes. By 

linear implication   it is possible to express sequentiality and causality of 

processes.  

Another important property of linear logic is its ability to handle resources - 

logical space and logical time [14, 19]. It allows us to express the internal 

structure of the resources, their consumption, together with a continuation of 

processes in incremental time.  

In our research, we were inspired by the approach published in [5], where PNs are 

defined as models of linear logic. The reverse property is in [13]. We follow up on 

this approach in a way by which each significant fragment of a PN can be 

described by a linear sequent. We formulate a transformation of Petri nets to 

provable linear sequents. To illustrate composition problems, we define a trivial 

working PN and show its behavior by corresponding provable linear sequent. 

Composing two and five trivial PNs causes new problems to arise, namely 

synchronization problems of mutual exclusion, and deadlock. These problems are 

similar to the ones in the process of component composition in component-based 

systems. The examples of synchronization problems appear frequently in 
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textbooks or papers concerning with Petri nets [9, 11, 20, 25]. To illustrate the 

transformation from PNs to linear logic together with the appearance of 

synchronization problems in component composition, is our main aim that is not 

published yet in scientific publications. 

2 Principles of Petri Nets 

A Petri net is a known formal tool used mainly for modeling the behavior of 

concurrent systems as state-transition systems. Their advantage is that these 

models can be represented graphically, by directed bipartite graphs. A PN graph 

has two types of nodes: places and transitions. Places are represented by circles 

and transitions by arrows (arcs). Places express possible states of a system, and 

transitions represent changes of states, i.e. events. Places can contain special 

marks called tokens. A transition is enabled, i.e. it can be fired, if all places of 

input arcs contain required number of tokens. When a transition is fired, it 

produces tokens in all places on output arcs. Generally, execution of a PN is 

nondeterministic: when more than one transition is enabled, any of them can be 

fired. Any distribution of tokens over places represents a configuration of a given 

PN called marking. For any place p of a PN its marking is a function  𝑚: 𝑃 →  ℕ0 

returning a number of tokens in p. ℕ0 denotes the set of natural numbers with 

zero. A marking of a PN is defined as a tuple 

𝑚 = (𝑚(𝑝1 ), … , 𝑚(𝑝𝑛))       (1) 

of markings of all places in a PN. 

A PN has two functions: pre and post. The 𝑝𝑟𝑒 function for each place and 

transition returns a number of arcs from a given place to a given transition. The  

𝑝𝑜𝑠𝑡 function for each place and transition returns a number of arcs outgoing from 

a given transition to a given place. Formally, a Petri net is defined as a tuple 

𝑃𝑁 = (𝑃, 𝑇, 𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡, 𝑚0) ,      (2) 

where 𝑃 = {𝑝1, … , 𝑝𝑛} is a finite set of places, 𝑇 = {𝑡1, … , 𝑡𝑛} is a finite set of 

transitions, 𝑝𝑟𝑒: 𝑃 ×  𝑇 →  ℕ0 and 𝑝𝑜𝑠𝑡: 𝑇 ×  𝑃 →  ℕ0 are pre- resp. post- 

conditions and 𝑚0 is initial marking before a PN starts its execution.  

The execution of a PN is based on following two rules: 

 enabling rule formulates the condition under which a transition is 

allowed to be fired. A transition can be fired if each of its input 

places contains a number of tokens greater or equal than the given 

threshold 

 firing rule defines modification of a marking caused by firing a 

transition. When a transition 𝑡 is fired, a token from each input place 

is deleted, and to each output place a token is added 
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A behavior of a PN can be described as a sequence of markings reached during 

the execution of PN. 

3 Basic Concepts of Linear Logic 

Linear logic belongs to the new logical systems that are useful for describing and 

verifying of real systems. It facilitates the formulation of dynamic processes, 

nondeterminism, concurrency, and handling of resources such as time and space 

on syntactic level [12]. In this section we introduce the basic definitions of logical 

connectives and the deduction system of linear logic. Elementary propositions of 

linear logic can be considered as actions or resources. 

Let 𝑃𝑟𝑜𝑝 = {𝑝1, 𝑝2, … } be a countable set of elementary propositions. In this 

paper we use the following syntax of linear formulas: 

𝜑 ∷= 𝑝| 𝟏| 𝟎 |⊤| 𝜑 ⊗ 𝜓 | φ ⊕ ψ | 𝜑 & 𝜓 | 𝜑   𝜓 | 𝜑⊥    (3) 

where  

 𝜑 ⊗  𝜑 is the multiplicative conjunction with neutral element 𝟏. This 

formula expresses that both actions perform simultaneously or both 

resources are available at once. 

 𝜑 & 𝜓 is the additive conjunction with neutral element ⊤. This 

formula expresses that only one of the actions performs, but we can 

deduce which one from the environment. Additive conjunction 

describes external nondeterminism.  

 𝜑 ⊕ 𝜑 is the additive disjunction with neutral element 𝟎. This 

formula expresses that only one of the actions performs but we 

cannot anticipate which one. Additive disjunction describes internal 

nondeterminism.  

 𝜑⊥ is the linear negation and it describes a reaction of an action 𝜑 or 

a consumption of a resource 𝜑. Linear negation has the property of 

involution, i.e.  (𝜑⊥)⊥ ≡ 𝜑. 

 𝜑   𝜓 is the linear implication. This formula describes that the 

first action 𝜑 is a cause of the second (re)action 𝜓 or in the case of 

resources it expresses that the first resource is consumed after linear 

implication.  

For linear formulas, we use sequent calculus. A sequent has the form  

Γ├ 𝜑,          (4) 

that expresses that a formula  𝜑 is deducible from the formulas in the context 

Γ = 𝜑1, … , 𝜑𝑛 . The formulas on the left side of a sequent are assumptions, 

therefore we consider them as multiplicative conjunction ⊗. The formula 𝜑 on 

the right side is deducible from the assumptions. 
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The sequent deduction system consists of basic rules, rules for the connectives, 

rules for neutral elements and structural rules: 

1. Basic rule:  

𝜑 ⊢ 𝜑
 (𝑖𝑑) 

 

2. Rule for linear negation: 

 𝜑⊥ ≡ 𝜑  ⊥ (( )⊥) 

 

3. Rules for neutral elements: 

 
 

Γ ⊢ ⊤
 (⊤−𝑟)     

 

Γ, 0 ⊢ 𝜑
 (0−𝑙)    

 Γ ⊢ 𝜑

Γ, 1 ⊢ 𝜑
 (1−𝑙)     

 

 ⊢ 1
 (1−𝑟) 

 

4. Rules for connectives: 

 
Γ1 ⊢ 𝜑1               Γ2, 𝜑2 ⊢ 𝜓

Γ1, 𝜑1   𝜑2, Γ2 ⊢ 𝜓
 ( −𝑙)          

 Γ, 𝜑1 ⊢ 𝜑2

Γ ⊢ 𝜑1  𝜑2

 ( −𝑟) 

 
Γ, 𝜑1, 𝜑2 ⊢ 𝜓

Γ, 𝜑1 ⊗ 𝜑2 ⊢ 𝜓
 (⊗−𝑙)                    

 Γ1 ⊢ 𝜑1               Γ2 ⊢ 𝜑2

Γ1, Γ2 ⊢ 𝜑1 ⊗  𝜑2

 (⊗−𝑟) 

 
Γ, 𝜑1 ⊢ 𝜓

Γ, 𝜑1 & 𝜑2 ⊢ 𝜓
 (&−𝑙1)                                      

Γ, 𝜑2 ⊢ 𝜓

Γ, 𝜑1 & 𝜑2 ⊢ 𝜓
 (&−𝑙2) 

 
 Γ, 𝜑1 ⊢ 𝜓         Γ, 𝜑2 ⊢ 𝜓

Γ, 𝜑1 & 𝜑2 ⊢ 𝜓
 (⊕−𝑙)              

 Γ ⊢ 𝜑1          Γ ⊢ 𝜑2

Γ ⊢ 𝜑1 & 𝜑2

 (&−𝑟) 

 
Γ, ⊢ 𝜑1

Γ ⊢ 𝜑1 ⊗ 𝜑2

 (⊗−𝑟1)                                          
Γ ⊢ 𝜑2

Γ ⊢ 𝜑1 ⊗ 𝜑2

 (⊗−𝑟2) 

 

5. Structural rules: 

 
Γ, 𝜑1, 𝜑2 ⊢ 𝜓

Γ, 𝜑2, 𝜑1 ⊢ 𝜓
 (𝑒𝑥𝑐ℎ)                             

 Γ1 ⊢ 𝜑               Γ2 ⊢ 𝜑

Γ1, Γ2 ⊢ 𝜓
 (⊗−𝑟) 

 

The basic rule is the axiom of identity, linear negation is expressed as linear 

implication. The rules of connectives introduce connectives on the left or on the 

right part of a sequent. The only structural rules are exchange and cut rules. We 

note that in linear logic it is important which resources and how many of them we 

have. Therefore, the obvious structural rules of weakening and contraction are not 

allowed, only in controlled way using special unary connectives, exponentials. In 

this paper, we do not use exponentials; their definition together with 
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corresponding deduction rules is in [8]. A proof in sequent calculus is a tree, 

where the root is a proven sequent, and every step is the application of an 

appropriate deduction rule. A sequent is provable if all of the leaves of its proof 

tree are identities. 

4 Transformation of Petri Net Patterns to Linear 

Logic Sequents 

In this section we define transformations of some parts, the patterns of PNs, to the 

corresponding linear formulas. We select several significant patterns that occur in 

synchronization PNs and we define corresponding linear logic sequents. All other 

patterns can be transformed similarly using this idea. 

We introduce the following notation. A place 𝑝 of a PN containing one token, i.e. 

with the marking 𝑚(𝑝) =  1, we denote by the elementary proposition 𝑝 of linear 

logic. Marking expressing that a place 𝑝1 contains one token and a place 𝑝2 

contains two tokens, can be denoted using multiplicative conjunction: 

𝑝1 ⊗ 𝑝2 ⊗ 𝑝2         (5) 

For describing of a PN transition by linear formula we use linear implication . 

The premise of the implication is a marking that makes a transition 𝑡 to be enabled 

and the conclusion is the marking that arises after firing of 𝑡. Linear implication 

expresses change of a state, caused by firing a transition together with the 

consumed resources (tokens) on the left side and the produced resources (tokens) 

on the right side of implication [4]. For instance, if 𝑡 is a transition enabled when 

the places 𝑝1 and 𝑝2 have both one token and after firing 𝑡 the place 𝑝3 obtains a 

token, then this transition can be denoted by the following linear implication: 

𝑡 ≡  𝑝1 ⊗ 𝑝2  𝑝3        (6) 

A behavior of a PN is described by the sequents of linear logic in the form: 

𝑚, 𝑙 ├ 𝑚′,         (7) 

where 

 𝑚 is a marking before firing a transition 

 𝑙 is a list of enabled transitions expressed by linear implications 

defined above 

 𝑚′ is a marking after firing a transition 

Such sequents express that the marking 𝑚′ is produced from a marking 𝑚 by 

firing a transition from 𝑙.  

Now, we consider the characteristic fragments of PNs representing their possible 

structure and we formulate the corresponding linear formulas and sequents. 
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Precisely: 

 places of a PN are transformed into linear formulas 

 transitions of a PN are transformed into linear implications 

We choose a sequence illustrated in Figure 1 as the first pattern. The transition 𝑡 is 

enabled if the place 𝑝1 contains at least one token. After firing 𝑡, the place 𝑝2 

obtains one token. 

 

Figure 1 

Sequence 

This pattern can be transformed to the following sequent: 

𝑝1, 𝑡├ 𝑝2,         (8) 

where  𝑡 ≡  𝑝1 𝑝2. We call this sequent causality, because 𝑝1 is a cause of  𝑝2.  

The pattern in Figure 2 depicts a situation of furcation: 

 

Figure 2 

Furcation 

This pattern has one transition 𝑡 that is enabled if at least one token is in 𝑝1. Firing 

of 𝑡 produces one token in both 𝑝2 and 𝑝3, simultaneously. Therefore, the 

corresponding sequent expresses concurrency: 

𝑝1, 𝑡├ 𝑝2 ⊗  𝑝3         (9) 
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The pattern in Figure 3 illustrates a situation of rendezvous. To be 𝑡 enabled the 

places 𝑝1 and 𝑝2 have to have a token and after firing 𝑡 one token is produced in 

𝑝3. 

 

Figure 3 

Rendezvous 

We transform this pattern to the following sequent expressing synchronization: 

𝑝1, 𝑝2, 𝑡├ 𝑝3                    (10) 

Up to now, all patterns were deterministic because they have only one enabled 

transition.  

The next two patterns express nondeterministic behavior. The first of them in 

Figure 4 is free choice. Either 𝑡1 or 𝑡2 are enabled but we cannot decide which of 

them. 

 

Figure 4 

Free choice 

We transform this pattern to the sequent using additive disjunction ⊕ between 

formulas describing enabled transitions on the left side, because only one of  𝑡1 or 

𝑡2 can be fired, but we do not know which one. It expresses internal 

nondeterminism. Producing tokens on the right side is expressed by linear formula 

by additive conjunction because a token can be obtained either in 𝑝2 or in 𝑝3 

depending on previous action: 
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𝑝1, 𝑡1 ⊕  𝑡2├ 𝑝2& 𝑝3.                   (11) 

The last pattern that we consider is dependent choice in Figure 5. Dependent or 

environmental choice expresses the situation when only one transition of 𝑡1 or 𝑡2 

can be fired, but it depends on the occurence of a token either in 𝑝1 or in 𝑝2. In the 

other words, this choice depends on the given environment. Firing any of 

transition 𝑡1 or 𝑡2 produces one token in the place 𝑝3. 

 

Figure 5 

Dependent choice 

We transform this pattern to the linear sequent with additive conjunction 

describing transitions on the left side, because firing of 𝑡1 or 𝑡2 depends on the 

situation in 𝑝1 or 𝑝2, respectively: 

𝑝1 & 𝑝2, 𝑡1 & 𝑡2├ 𝑝3                   (12) 

5 Synchronization Problems Arising from PNs 

Composition and Verifying by Proofs 

In this section, we present the main aim of our paper. First, we define a trivial PN 

that works, i.e. its transitions can be enabled and fired. Considering a trivial PN as 

a component, when we compose two such PNs a new problem arises, that is 

known as mutual exclusion. We transform such composed PN into linear sequent 

and verify it by a proof. Second, we compose five trivial PNs that lead to arising 

of a known case of dining philosophers, i.e. deadlock problem. Again, we 

transform this composed PN into linear sequent and verify it by a proof. To 

summarize, we illustrate not only transformation of PNs to corresponding linear 

sequents, but also that composition of components together can cause arising of 

new problems that have to be solved in order to reach desired system behavior.  

We start with a trivial PN in Figure 6. It is clear that this PN works and its 

behavior is deterministic. With a little imagination, we can call this PN, a dining 

philosopher.  
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Figure 6 

A dining philosopher 

This trivial PN consists of three places, where 𝑓1 and 𝑓2 represent forks and 𝑝1𝑒  

represents an eating philosopher. This PN has two transitions 𝑡1𝑒 and 𝑡1𝑓 and its 

initial marking is 𝑚0 =  (1,0,1). If both forks 𝑓1 and 𝑓2 are available, i.e. both 

corresponding places have a token, the transition 𝑡1𝑓 is enabled and after firing, 

the place 𝑝1𝑒  obtains a token, i.e. the philosopher is eating. In this state the 

transition 𝑡1𝑓 is enabled and after firing, the philosopher releases the forks and 

starts to think. 

The behavior of this PN can be expressed by the linear sequent: 

𝑓2, 𝑓1, (𝑓2 ⊗  𝑓1)  𝑝1𝑒 , 𝑝1𝑒(𝑓2 ⊗  𝑓1) ├ 𝑓2 ⊗  𝑓1               (13) 

with the following proof in the Figure 7: 

 

Figure 7 

Proof of dining philosopher  

Now we consider the previous PN in Figure 6 as a component. By composing two 

such components (Fig. 8), we get the well-known problem of mutual exclusion 

(mutex). The interaction between the components is represented by the place 𝑓2. 

The principle of mutex is that only one of the processes can be executed in one 

moment, in other words, if one philosopher is eating (i.e. he possesses his left and 

right forks), the second is thinking and vice versa. Let the initial marking of this 

PN be 𝑚0 =  (1,0,1,0,1). 
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Figure 8 

Mutual exclusion 

There are two possibilities how this PN works:  

 either 𝑡2𝑓 is fired, which corresponds to the linear logic sequent: 

𝑓3, 𝑓2, 𝑓1, (𝑓3 ⊗  𝑓2)  𝑝2𝑒├ 𝑝2𝑒 ⊗  𝑓1               (14) 

 

 or 𝑡1𝑓 is fired, this case is expressed by linear logic sequent: 

𝑓3, 𝑓2, 𝑓1, (𝑓2 ⊗  𝑓1)  𝑝1𝑒├ 𝑝1𝑒 ⊗  𝑓3               (15) 

The behavior of mutex can be described by the following linear logic sequent: 

𝑓3, 𝑓2, 𝑓1, ((𝑓2 ⊗  𝑓1)  𝑝1𝑒) ⊕  ((𝑓3 ⊗  𝑓2)  𝑝2𝑒)├(𝑝1𝑒 ⊗  𝑓3)&(𝑝2𝑒 ⊗  𝑓1), 

 

where we use internal nondeterminism on the left side, i.e. additive disjunction ⊕ 

between transitions 𝑡2𝑓 and 𝑡1𝑓 . On the right side of this sequent, we use additive 

conjunction & between tokens, because they depend on which of the transitions 

𝑡2𝑓 and 𝑡1𝑓 was actually fired. This sequent is provable and we present a left 

branch of this proof tree depicted in the Figure 9. 

 

Figure 9 

Proof of mutual exclusion 
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The right branch of the proof tree can be constructed similarly. Provability of this 

sequent ensures that we have a solution of mutual exclusion. 

Now, we compose five trivial PNs (components) together and here a new problem 

arises, known as the problem of five dining philosophers, i.e. deadlock problem 

(Figure 10). 

 

Figure 10 

Problem of five dining philosophers 

If we assume the order of places 𝑝1𝑒 , 𝑝2𝑒 , 𝑝3𝑒 , 𝑝4𝑒, 𝑝5𝑒 , 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, then the 

initial marking is 𝑚0 =  (0, 0, 0, 0, 0, 1, 1, 1, 1, 1). If a place 𝑝𝑖 , 𝑖 =  1, … , 5 has a 

token, the philosopher 𝑖 is eating, if it is empty, he is thinking. The places 

𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5 serve for forks, the places  𝑝1𝑒 , 𝑝2𝑒 , 𝑝3𝑒 , 𝑝4𝑒 , 𝑝5𝑒  mean that 

corresponding philosophers eat. 

This system works if every philosopher can eat, i.e. each process in a system can 

be executed. The problem occurs, when each philosopher takes its right fork and 

then they are waiting forever for the second fork; or in other words, if each 

process needs a certain resource to be executed, but any of them cannot release 

resources before finishing their execution. This problem is known as deadlock. 
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From the previous ideas it is clear that either one philosopher can eat, or two not 

neighbor philosophers can eat at one moment. We describe one of the possible 

solutions of this problem. 

Consider that in the first step one philosopher, e.g. 𝑝1𝑒  is eating. That means, he 

takes both forks 𝑓1 and 𝑓2 and the transition 𝑡1𝑓 is fired. Figure 11 illustrates the 

system after firing  𝑡1𝑓. 

 

Figure 11 

Single dining philosopher 

We describe this action by the linear sequent   

𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓1 ⊗  𝑓2  𝑝1𝑒├ 𝑓5 ⊗ (𝑓4 ⊗ (𝑝1𝑒 ⊗  𝑓3))               (16) 

together with its (fragment of) proof depicted in the Figure 12: 
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Figure 12  

Proof of single dining philosopher sequent 

We again omit the left branches of this proof consisting of identities 𝑓5├ 𝑓5  and 

𝑓4├ 𝑓4. 

After finishing his work (eating), 𝑝1𝑒  releases both forks, i.e. 𝑡1𝑒 is fired and we 

get the initial marking of PN, which is described by the sequent: 

𝑓3, 𝑓4, 𝑓5, 𝑝1𝑒 , 𝑝1𝑒   (𝑓2 ⊗  𝑓1)├ 𝑓5 ⊗ (𝑓4 ⊗ (𝑓3 ⊗  (𝑓2 ⊗  𝑓1))),             (17) 

and proven by the following (fragment of) proof in Figure 13:  

 

Figure 13 

Proof of single dining philosopher after finishing work  

Again, the missing left branches of the proof denoted by  …  contain identities for 

𝑓5, 𝑓4 and 𝑓3. 

The second step is to enable two philosophers, e.g. 𝑝2 and 𝑝4, to eat as it is in 

Figure 15. In this step two transitions  𝑡2𝑓 and 𝑡4𝑓 can be fired simultaneously, 

because 𝑝2𝑒 and 𝑝4𝑒 have available both forks 𝑓2, 𝑓3 and 𝑓4, 𝑓5, respectively. 

The corresponding linear logic formula:  

𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, (𝑓3 ⊗  𝑓2  𝑝2𝑒) ⊗   (𝑓5 ⊗  𝑓4  𝑝4𝑒)├ 𝑓1 ⊗ (𝑝4𝑒 ⊗  𝑝2𝑒),(18) 

and its proof can be constructed in similar way as the proofs above depicted in 

Figure 14. 
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Figure 14 

Proof of two dining philosophers 

After finishing their dinner, the philosophers 𝑝2𝑒 and 𝑝4𝑒 release their forks, i.e. 

the transition 𝑡2𝑒 and 𝑡4𝑒 are fired simultaneously. The corresponding linear logic 

sequent and its proof can be constructed as above. 

As the last step we consider that remaining philosophers 𝑝3 and 𝑝5 will eat. The 

corresponding linear sequent and its proof can be constructed similarly as in the 

previous steps. Now we have the solution of PN, because all philosophers had 

their dinner and we translated the behavior into corresponding provable linear 

sequents. 

 

Figure 15 

Two dining philosophers 
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Conclusions 

In this paper, we presented an illustration on how the actual problem of 

component composition, used in component-based systems, can cause the advent 

of new problems. These problems need to be identified and solved. For achieving 

this aim, we apply a method of Petri nets transformation to the corresponding 

provable linear sequents. The proofs of constructed sequents ensure the 

correctness, they can be used as a specification of a system and they can help in 

achieving reliable software products. In our examples, we are concerned with only 

one kind of such problems, namely synchronization problems of mutual exclusion 

and deadlock that appear after the compositions of trivial working Petri nets. Our 

approach enables to formulate the solutions by corresponding provable sequents. 

We hope that our approach can be useful for education purposes, because it is 

simple, uses known concepts of PNs and linear logic, and is illustrative to 

comprehend component composition. 

There are several open problems and possible ideas for solving them, by extending 

our approach. One of the advantages of linear logic is its resource character. First, 

we would like to formulate a transformation of timed Petri nets to linear formulas 

using polarization and focalization of the proof steps enabling to express time 

incrementally. After further study of Girard’s theory of Ludics and its handling 

another resource, a space, we would like to transform explicit information about 

data types in colored Petri nets to linear logic proofs. 

It is a challenge for us to work out our approach also for colored Petri nets, i.e. to 

define transformation from Petri nets, to the sequents of linear logic and illustrate 

it on significant examples. 

The main result of our work is a systematically, worked out solution, for practical 

programmers, respectively, for students, on how different various known formal 

tools can be combined and proved, together with an illustration of component 

composition.  
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