
Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 165 –

Modeling Synchronization Problems: From

Composed Petri Nets to Provable Linear

Sequents

Ján Perháč, Daniel Mihályi, Valerie Novitzká

Department of Computers and Informatics, Faculty of Electrical Engineering and

Informatics, Technical University of Košice, Letná 9 042 00 Košice, Slovakia

Jan.Perhac@tuke.sk, Daniel.Mihalyi@tuke.sk, Valerie.Novitzka@tuke.sk

Abstract: Component-based programming has become a popular and frequently used

method for software development, prepared from independent components by a

composition. Our paper presents an illustration of how a composition of components can

cause the emergence of new problems that should be solved, in order to obtain the desired

results. We introduce a transformation of Petri nets to corresponding provable sequents of

linear logic and then we show how a composition of simple Petri nets causes arising of

synchronization problems. Transformation to provable linear sequents that ensures a

verified behavior for such composed systems.

Keywords: linear logic; petri nets; component composition

1 Introduction

In the last decades, a new method of software development, a component-based

programming, has become very popular. It can be characterized as a construction

of program systems from working entities by their composition. There are many

publications in the area of software engineering discussing basic principles of this

method and providing practical guides for how to prepare such program systems,

e.g. [21, 22, 23, 27, 29]. Among the basic properties of components is their

independency, i.e. that they can be executed separately, can be reused, and should

satisfy rules of composition (contracts and dependencies) to ensure that the whole

system produces desired results. One of the important properties of a composition

is that after it is composed, new problems can arise. The aim of our paper is to

illustrate this situation on known examples of synchronization. We used two

formal tools; Petri nets (PNs) and linear logic. Both tools are useful and frequently

employed in modeling and behavioral description of program systems. We show

how the behavior of PNs can be expressed by provable sequents of linear logic,

and simultaneously, we show how the synchronization problems arise from the

composition of simple components.

J. Perháč et al. Modeling Synchronization Problems: from Composed Petri Nets to Provable Linear Sequents

 – 166 –

Petri nets are well-known mathematical and graphical tool for behavioral

modeling of processes. They were designed especially for modeling systems with

interacting concurrent processes [20, 30]. They are sometimes called

place/transition nets and they enable graphical expression of the system execution.

Petri nets nowadays have a wide spectrum of applications, not only in concurrent

programming, but also in business process modeling, data analysis, software

design, simulation, and many others [2, 3, 9, 10]. The expressive power of Petri

nets has been studied and compared with several other formal methods for the

specification and description of systems. Such systems include algebraic

specification in [24], which leads to the extension of the notion of tokens to

structural ones, or with B-language [11], in which the transformation of Petri nets

to B-language is defined for software development, from specification to

implementation. In our paper we would like to present another correspondence,

namely how PNs can be transform into provable linear logic sequents.

Linear logic is a logical system introduced by Jean-Yves Girard in 1987 [6, 7]. It

enables description of processes as they behave in real world. It is capable of

describing the dynamic of processes, parallelism, external and internal

nondeterminism, consecutive processes, and it is also able to handle the resources

on syntactic level. Thanks to these properties, linear logic can be considered as a

bridge between computing science and logic [15]. Propositional linear logic is

available for program systems description [1, 16], their behavior [26], and their

extension with modal operators enables modeling of knowledge achievement [17,

18] mainly in intrusion detection systems to improve network reliability [28].

Linear logic has greater expressive power than classical logic, thanks to more

connectives with special properties. Moreover, every formula of classical

propositional logic can be expressed in linear logic. One of the most important

properties of linear logic is its ability to describe the dynamic of processes. By

linear implication it is possible to express sequentiality and causality of

processes.

Another important property of linear logic is its ability to handle resources -

logical space and logical time [14, 19]. It allows us to express the internal

structure of the resources, their consumption, together with a continuation of

processes in incremental time.

In our research, we were inspired by the approach published in [5], where PNs are

defined as models of linear logic. The reverse property is in [13]. We follow up on

this approach in a way by which each significant fragment of a PN can be

described by a linear sequent. We formulate a transformation of Petri nets to

provable linear sequents. To illustrate composition problems, we define a trivial

working PN and show its behavior by corresponding provable linear sequent.

Composing two and five trivial PNs causes new problems to arise, namely

synchronization problems of mutual exclusion, and deadlock. These problems are

similar to the ones in the process of component composition in component-based

systems. The examples of synchronization problems appear frequently in

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 167 –

textbooks or papers concerning with Petri nets [9, 11, 20, 25]. To illustrate the

transformation from PNs to linear logic together with the appearance of

synchronization problems in component composition, is our main aim that is not

published yet in scientific publications.

2 Principles of Petri Nets

A Petri net is a known formal tool used mainly for modeling the behavior of

concurrent systems as state-transition systems. Their advantage is that these

models can be represented graphically, by directed bipartite graphs. A PN graph

has two types of nodes: places and transitions. Places are represented by circles

and transitions by arrows (arcs). Places express possible states of a system, and

transitions represent changes of states, i.e. events. Places can contain special

marks called tokens. A transition is enabled, i.e. it can be fired, if all places of

input arcs contain required number of tokens. When a transition is fired, it

produces tokens in all places on output arcs. Generally, execution of a PN is

nondeterministic: when more than one transition is enabled, any of them can be

fired. Any distribution of tokens over places represents a configuration of a given

PN called marking. For any place p of a PN its marking is a function 𝑚: 𝑃 → ℕ0

returning a number of tokens in p. ℕ0 denotes the set of natural numbers with

zero. A marking of a PN is defined as a tuple

𝑚 = (𝑚(𝑝1), … , 𝑚(𝑝𝑛)) (1)

of markings of all places in a PN.

A PN has two functions: pre and post. The 𝑝𝑟𝑒 function for each place and

transition returns a number of arcs from a given place to a given transition. The

𝑝𝑜𝑠𝑡 function for each place and transition returns a number of arcs outgoing from

a given transition to a given place. Formally, a Petri net is defined as a tuple

𝑃𝑁 = (𝑃, 𝑇, 𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡, 𝑚0) , (2)

where 𝑃 = {𝑝1, … , 𝑝𝑛} is a finite set of places, 𝑇 = {𝑡1, … , 𝑡𝑛} is a finite set of

transitions, 𝑝𝑟𝑒: 𝑃 × 𝑇 → ℕ0 and 𝑝𝑜𝑠𝑡: 𝑇 × 𝑃 → ℕ0 are pre- resp. post-

conditions and 𝑚0 is initial marking before a PN starts its execution.

The execution of a PN is based on following two rules:

 enabling rule formulates the condition under which a transition is

allowed to be fired. A transition can be fired if each of its input

places contains a number of tokens greater or equal than the given

threshold

 firing rule defines modification of a marking caused by firing a

transition. When a transition 𝑡 is fired, a token from each input place

is deleted, and to each output place a token is added

J. Perháč et al. Modeling Synchronization Problems: from Composed Petri Nets to Provable Linear Sequents

 – 168 –

A behavior of a PN can be described as a sequence of markings reached during

the execution of PN.

3 Basic Concepts of Linear Logic

Linear logic belongs to the new logical systems that are useful for describing and

verifying of real systems. It facilitates the formulation of dynamic processes,

nondeterminism, concurrency, and handling of resources such as time and space

on syntactic level [12]. In this section we introduce the basic definitions of logical

connectives and the deduction system of linear logic. Elementary propositions of

linear logic can be considered as actions or resources.

Let 𝑃𝑟𝑜𝑝 = {𝑝1, 𝑝2, … } be a countable set of elementary propositions. In this

paper we use the following syntax of linear formulas:

𝜑 ∷= 𝑝| 𝟏| 𝟎 |⊤| 𝜑 ⊗ 𝜓 | φ ⊕ ψ | 𝜑 & 𝜓 | 𝜑 𝜓 | 𝜑⊥ (3)

where

 𝜑 ⊗ 𝜑 is the multiplicative conjunction with neutral element 𝟏. This

formula expresses that both actions perform simultaneously or both

resources are available at once.

 𝜑 & 𝜓 is the additive conjunction with neutral element ⊤. This

formula expresses that only one of the actions performs, but we can

deduce which one from the environment. Additive conjunction

describes external nondeterminism.

 𝜑 ⊕ 𝜑 is the additive disjunction with neutral element 𝟎. This

formula expresses that only one of the actions performs but we

cannot anticipate which one. Additive disjunction describes internal

nondeterminism.

 𝜑⊥ is the linear negation and it describes a reaction of an action 𝜑 or

a consumption of a resource 𝜑. Linear negation has the property of

involution, i.e. (𝜑⊥)⊥ ≡ 𝜑.

 𝜑 𝜓 is the linear implication. This formula describes that the

first action 𝜑 is a cause of the second (re)action 𝜓 or in the case of

resources it expresses that the first resource is consumed after linear

implication.

For linear formulas, we use sequent calculus. A sequent has the form

Γ├ 𝜑, (4)

that expresses that a formula 𝜑 is deducible from the formulas in the context

Γ = 𝜑1, … , 𝜑𝑛 . The formulas on the left side of a sequent are assumptions,

therefore we consider them as multiplicative conjunction ⊗. The formula 𝜑 on

the right side is deducible from the assumptions.

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 169 –

The sequent deduction system consists of basic rules, rules for the connectives,

rules for neutral elements and structural rules:

1. Basic rule:

𝜑 ⊢ 𝜑
 (𝑖𝑑)

2. Rule for linear negation:

 𝜑⊥ ≡ 𝜑 ⊥ (()⊥)

3. Rules for neutral elements:

Γ ⊢ ⊤
 (⊤−𝑟)

Γ, 0 ⊢ 𝜑
 (0−𝑙)

 Γ ⊢ 𝜑

Γ, 1 ⊢ 𝜑
 (1−𝑙)

 ⊢ 1
 (1−𝑟)

4. Rules for connectives:

Γ1 ⊢ 𝜑1 Γ2, 𝜑2 ⊢ 𝜓

Γ1, 𝜑1 𝜑2, Γ2 ⊢ 𝜓
 (−𝑙)

 Γ, 𝜑1 ⊢ 𝜑2

Γ ⊢ 𝜑1 𝜑2

 (−𝑟)

Γ, 𝜑1, 𝜑2 ⊢ 𝜓

Γ, 𝜑1 ⊗ 𝜑2 ⊢ 𝜓
 (⊗−𝑙)

 Γ1 ⊢ 𝜑1 Γ2 ⊢ 𝜑2

Γ1, Γ2 ⊢ 𝜑1 ⊗ 𝜑2

 (⊗−𝑟)

Γ, 𝜑1 ⊢ 𝜓

Γ, 𝜑1 & 𝜑2 ⊢ 𝜓
 (&−𝑙1)

Γ, 𝜑2 ⊢ 𝜓

Γ, 𝜑1 & 𝜑2 ⊢ 𝜓
 (&−𝑙2)

 Γ, 𝜑1 ⊢ 𝜓 Γ, 𝜑2 ⊢ 𝜓

Γ, 𝜑1 & 𝜑2 ⊢ 𝜓
 (⊕−𝑙)

 Γ ⊢ 𝜑1 Γ ⊢ 𝜑2

Γ ⊢ 𝜑1 & 𝜑2

 (&−𝑟)

Γ, ⊢ 𝜑1

Γ ⊢ 𝜑1 ⊗ 𝜑2

 (⊗−𝑟1)
Γ ⊢ 𝜑2

Γ ⊢ 𝜑1 ⊗ 𝜑2

 (⊗−𝑟2)

5. Structural rules:

Γ, 𝜑1, 𝜑2 ⊢ 𝜓

Γ, 𝜑2, 𝜑1 ⊢ 𝜓
 (𝑒𝑥𝑐ℎ)

 Γ1 ⊢ 𝜑 Γ2 ⊢ 𝜑

Γ1, Γ2 ⊢ 𝜓
 (⊗−𝑟)

The basic rule is the axiom of identity, linear negation is expressed as linear

implication. The rules of connectives introduce connectives on the left or on the

right part of a sequent. The only structural rules are exchange and cut rules. We

note that in linear logic it is important which resources and how many of them we

have. Therefore, the obvious structural rules of weakening and contraction are not

allowed, only in controlled way using special unary connectives, exponentials. In

this paper, we do not use exponentials; their definition together with

J. Perháč et al. Modeling Synchronization Problems: from Composed Petri Nets to Provable Linear Sequents

 – 170 –

corresponding deduction rules is in [8]. A proof in sequent calculus is a tree,

where the root is a proven sequent, and every step is the application of an

appropriate deduction rule. A sequent is provable if all of the leaves of its proof

tree are identities.

4 Transformation of Petri Net Patterns to Linear

Logic Sequents

In this section we define transformations of some parts, the patterns of PNs, to the

corresponding linear formulas. We select several significant patterns that occur in

synchronization PNs and we define corresponding linear logic sequents. All other

patterns can be transformed similarly using this idea.

We introduce the following notation. A place 𝑝 of a PN containing one token, i.e.

with the marking 𝑚(𝑝) = 1, we denote by the elementary proposition 𝑝 of linear

logic. Marking expressing that a place 𝑝1 contains one token and a place 𝑝2

contains two tokens, can be denoted using multiplicative conjunction:

𝑝1 ⊗ 𝑝2 ⊗ 𝑝2 (5)

For describing of a PN transition by linear formula we use linear implication .

The premise of the implication is a marking that makes a transition 𝑡 to be enabled

and the conclusion is the marking that arises after firing of 𝑡. Linear implication

expresses change of a state, caused by firing a transition together with the

consumed resources (tokens) on the left side and the produced resources (tokens)

on the right side of implication [4]. For instance, if 𝑡 is a transition enabled when

the places 𝑝1 and 𝑝2 have both one token and after firing 𝑡 the place 𝑝3 obtains a

token, then this transition can be denoted by the following linear implication:

𝑡 ≡ 𝑝1 ⊗ 𝑝2 𝑝3 (6)

A behavior of a PN is described by the sequents of linear logic in the form:

𝑚, 𝑙 ├ 𝑚′, (7)

where

 𝑚 is a marking before firing a transition

 𝑙 is a list of enabled transitions expressed by linear implications

defined above

 𝑚′ is a marking after firing a transition

Such sequents express that the marking 𝑚′ is produced from a marking 𝑚 by

firing a transition from 𝑙.

Now, we consider the characteristic fragments of PNs representing their possible

structure and we formulate the corresponding linear formulas and sequents.

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 171 –

Precisely:

 places of a PN are transformed into linear formulas

 transitions of a PN are transformed into linear implications

We choose a sequence illustrated in Figure 1 as the first pattern. The transition 𝑡 is

enabled if the place 𝑝1 contains at least one token. After firing 𝑡, the place 𝑝2

obtains one token.

Figure 1

Sequence

This pattern can be transformed to the following sequent:

𝑝1, 𝑡├ 𝑝2, (8)

where 𝑡 ≡ 𝑝1 𝑝2. We call this sequent causality, because 𝑝1 is a cause of 𝑝2.

The pattern in Figure 2 depicts a situation of furcation:

Figure 2

Furcation

This pattern has one transition 𝑡 that is enabled if at least one token is in 𝑝1. Firing

of 𝑡 produces one token in both 𝑝2 and 𝑝3, simultaneously. Therefore, the

corresponding sequent expresses concurrency:

𝑝1, 𝑡├ 𝑝2 ⊗ 𝑝3 (9)

J. Perháč et al. Modeling Synchronization Problems: from Composed Petri Nets to Provable Linear Sequents

 – 172 –

The pattern in Figure 3 illustrates a situation of rendezvous. To be 𝑡 enabled the

places 𝑝1 and 𝑝2 have to have a token and after firing 𝑡 one token is produced in

𝑝3.

Figure 3

Rendezvous

We transform this pattern to the following sequent expressing synchronization:

𝑝1, 𝑝2, 𝑡├ 𝑝3 (10)

Up to now, all patterns were deterministic because they have only one enabled

transition.

The next two patterns express nondeterministic behavior. The first of them in

Figure 4 is free choice. Either 𝑡1 or 𝑡2 are enabled but we cannot decide which of

them.

Figure 4

Free choice

We transform this pattern to the sequent using additive disjunction ⊕ between

formulas describing enabled transitions on the left side, because only one of 𝑡1 or

𝑡2 can be fired, but we do not know which one. It expresses internal

nondeterminism. Producing tokens on the right side is expressed by linear formula

by additive conjunction because a token can be obtained either in 𝑝2 or in 𝑝3

depending on previous action:

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 173 –

𝑝1, 𝑡1 ⊕ 𝑡2├ 𝑝2& 𝑝3. (11)

The last pattern that we consider is dependent choice in Figure 5. Dependent or

environmental choice expresses the situation when only one transition of 𝑡1 or 𝑡2

can be fired, but it depends on the occurence of a token either in 𝑝1 or in 𝑝2. In the

other words, this choice depends on the given environment. Firing any of

transition 𝑡1 or 𝑡2 produces one token in the place 𝑝3.

Figure 5

Dependent choice

We transform this pattern to the linear sequent with additive conjunction

describing transitions on the left side, because firing of 𝑡1 or 𝑡2 depends on the

situation in 𝑝1 or 𝑝2, respectively:

𝑝1 & 𝑝2, 𝑡1 & 𝑡2├ 𝑝3 (12)

5 Synchronization Problems Arising from PNs

Composition and Verifying by Proofs

In this section, we present the main aim of our paper. First, we define a trivial PN

that works, i.e. its transitions can be enabled and fired. Considering a trivial PN as

a component, when we compose two such PNs a new problem arises, that is

known as mutual exclusion. We transform such composed PN into linear sequent

and verify it by a proof. Second, we compose five trivial PNs that lead to arising

of a known case of dining philosophers, i.e. deadlock problem. Again, we

transform this composed PN into linear sequent and verify it by a proof. To

summarize, we illustrate not only transformation of PNs to corresponding linear

sequents, but also that composition of components together can cause arising of

new problems that have to be solved in order to reach desired system behavior.

We start with a trivial PN in Figure 6. It is clear that this PN works and its

behavior is deterministic. With a little imagination, we can call this PN, a dining

philosopher.

J. Perháč et al. Modeling Synchronization Problems: from Composed Petri Nets to Provable Linear Sequents

 – 174 –

Figure 6

A dining philosopher

This trivial PN consists of three places, where 𝑓1 and 𝑓2 represent forks and 𝑝1𝑒

represents an eating philosopher. This PN has two transitions 𝑡1𝑒 and 𝑡1𝑓 and its

initial marking is 𝑚0 = (1,0,1). If both forks 𝑓1 and 𝑓2 are available, i.e. both

corresponding places have a token, the transition 𝑡1𝑓 is enabled and after firing,

the place 𝑝1𝑒 obtains a token, i.e. the philosopher is eating. In this state the

transition 𝑡1𝑓 is enabled and after firing, the philosopher releases the forks and

starts to think.

The behavior of this PN can be expressed by the linear sequent:

𝑓2, 𝑓1, (𝑓2 ⊗ 𝑓1) 𝑝1𝑒 , 𝑝1𝑒(𝑓2 ⊗ 𝑓1) ├ 𝑓2 ⊗ 𝑓1 (13)

with the following proof in the Figure 7:

Figure 7

Proof of dining philosopher

Now we consider the previous PN in Figure 6 as a component. By composing two

such components (Fig. 8), we get the well-known problem of mutual exclusion

(mutex). The interaction between the components is represented by the place 𝑓2.

The principle of mutex is that only one of the processes can be executed in one

moment, in other words, if one philosopher is eating (i.e. he possesses his left and

right forks), the second is thinking and vice versa. Let the initial marking of this

PN be 𝑚0 = (1,0,1,0,1).

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 175 –

Figure 8

Mutual exclusion

There are two possibilities how this PN works:

 either 𝑡2𝑓 is fired, which corresponds to the linear logic sequent:

𝑓3, 𝑓2, 𝑓1, (𝑓3 ⊗ 𝑓2) 𝑝2𝑒├ 𝑝2𝑒 ⊗ 𝑓1 (14)

 or 𝑡1𝑓 is fired, this case is expressed by linear logic sequent:

𝑓3, 𝑓2, 𝑓1, (𝑓2 ⊗ 𝑓1) 𝑝1𝑒├ 𝑝1𝑒 ⊗ 𝑓3 (15)

The behavior of mutex can be described by the following linear logic sequent:

𝑓3, 𝑓2, 𝑓1, ((𝑓2 ⊗ 𝑓1) 𝑝1𝑒) ⊕ ((𝑓3 ⊗ 𝑓2) 𝑝2𝑒)├(𝑝1𝑒 ⊗ 𝑓3)&(𝑝2𝑒 ⊗ 𝑓1),

where we use internal nondeterminism on the left side, i.e. additive disjunction ⊕

between transitions 𝑡2𝑓 and 𝑡1𝑓 . On the right side of this sequent, we use additive

conjunction & between tokens, because they depend on which of the transitions

𝑡2𝑓 and 𝑡1𝑓 was actually fired. This sequent is provable and we present a left

branch of this proof tree depicted in the Figure 9.

Figure 9

Proof of mutual exclusion

J. Perháč et al. Modeling Synchronization Problems: from Composed Petri Nets to Provable Linear Sequents

 – 176 –

The right branch of the proof tree can be constructed similarly. Provability of this

sequent ensures that we have a solution of mutual exclusion.

Now, we compose five trivial PNs (components) together and here a new problem

arises, known as the problem of five dining philosophers, i.e. deadlock problem

(Figure 10).

Figure 10

Problem of five dining philosophers

If we assume the order of places 𝑝1𝑒 , 𝑝2𝑒 , 𝑝3𝑒 , 𝑝4𝑒, 𝑝5𝑒 , 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, then the

initial marking is 𝑚0 = (0, 0, 0, 0, 0, 1, 1, 1, 1, 1). If a place 𝑝𝑖 , 𝑖 = 1, … , 5 has a

token, the philosopher 𝑖 is eating, if it is empty, he is thinking. The places

𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5 serve for forks, the places 𝑝1𝑒 , 𝑝2𝑒 , 𝑝3𝑒 , 𝑝4𝑒 , 𝑝5𝑒 mean that

corresponding philosophers eat.

This system works if every philosopher can eat, i.e. each process in a system can

be executed. The problem occurs, when each philosopher takes its right fork and

then they are waiting forever for the second fork; or in other words, if each

process needs a certain resource to be executed, but any of them cannot release

resources before finishing their execution. This problem is known as deadlock.

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 177 –

From the previous ideas it is clear that either one philosopher can eat, or two not

neighbor philosophers can eat at one moment. We describe one of the possible

solutions of this problem.

Consider that in the first step one philosopher, e.g. 𝑝1𝑒 is eating. That means, he

takes both forks 𝑓1 and 𝑓2 and the transition 𝑡1𝑓 is fired. Figure 11 illustrates the

system after firing 𝑡1𝑓.

Figure 11

Single dining philosopher

We describe this action by the linear sequent

𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓1 ⊗ 𝑓2 𝑝1𝑒├ 𝑓5 ⊗ (𝑓4 ⊗ (𝑝1𝑒 ⊗ 𝑓3)) (16)

together with its (fragment of) proof depicted in the Figure 12:

J. Perháč et al. Modeling Synchronization Problems: from Composed Petri Nets to Provable Linear Sequents

 – 178 –

Figure 12

Proof of single dining philosopher sequent

We again omit the left branches of this proof consisting of identities 𝑓5├ 𝑓5 and

𝑓4├ 𝑓4.

After finishing his work (eating), 𝑝1𝑒 releases both forks, i.e. 𝑡1𝑒 is fired and we

get the initial marking of PN, which is described by the sequent:

𝑓3, 𝑓4, 𝑓5, 𝑝1𝑒 , 𝑝1𝑒 (𝑓2 ⊗ 𝑓1)├ 𝑓5 ⊗ (𝑓4 ⊗ (𝑓3 ⊗ (𝑓2 ⊗ 𝑓1))), (17)

and proven by the following (fragment of) proof in Figure 13:

Figure 13

Proof of single dining philosopher after finishing work

Again, the missing left branches of the proof denoted by … contain identities for

𝑓5, 𝑓4 and 𝑓3.

The second step is to enable two philosophers, e.g. 𝑝2 and 𝑝4, to eat as it is in

Figure 15. In this step two transitions 𝑡2𝑓 and 𝑡4𝑓 can be fired simultaneously,

because 𝑝2𝑒 and 𝑝4𝑒 have available both forks 𝑓2, 𝑓3 and 𝑓4, 𝑓5, respectively.

The corresponding linear logic formula:

𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, (𝑓3 ⊗ 𝑓2 𝑝2𝑒) ⊗ (𝑓5 ⊗ 𝑓4 𝑝4𝑒)├ 𝑓1 ⊗ (𝑝4𝑒 ⊗ 𝑝2𝑒),(18)

and its proof can be constructed in similar way as the proofs above depicted in

Figure 14.

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 179 –

Figure 14

Proof of two dining philosophers

After finishing their dinner, the philosophers 𝑝2𝑒 and 𝑝4𝑒 release their forks, i.e.

the transition 𝑡2𝑒 and 𝑡4𝑒 are fired simultaneously. The corresponding linear logic

sequent and its proof can be constructed as above.

As the last step we consider that remaining philosophers 𝑝3 and 𝑝5 will eat. The

corresponding linear sequent and its proof can be constructed similarly as in the

previous steps. Now we have the solution of PN, because all philosophers had

their dinner and we translated the behavior into corresponding provable linear

sequents.

Figure 15

Two dining philosophers

J. Perháč et al. Modeling Synchronization Problems: from Composed Petri Nets to Provable Linear Sequents

 – 180 –

Conclusions

In this paper, we presented an illustration on how the actual problem of

component composition, used in component-based systems, can cause the advent

of new problems. These problems need to be identified and solved. For achieving

this aim, we apply a method of Petri nets transformation to the corresponding

provable linear sequents. The proofs of constructed sequents ensure the

correctness, they can be used as a specification of a system and they can help in

achieving reliable software products. In our examples, we are concerned with only

one kind of such problems, namely synchronization problems of mutual exclusion

and deadlock that appear after the compositions of trivial working Petri nets. Our

approach enables to formulate the solutions by corresponding provable sequents.

We hope that our approach can be useful for education purposes, because it is

simple, uses known concepts of PNs and linear logic, and is illustrative to

comprehend component composition.

There are several open problems and possible ideas for solving them, by extending

our approach. One of the advantages of linear logic is its resource character. First,

we would like to formulate a transformation of timed Petri nets to linear formulas

using polarization and focalization of the proof steps enabling to express time

incrementally. After further study of Girard’s theory of Ludics and its handling

another resource, a space, we would like to transform explicit information about

data types in colored Petri nets to linear logic proofs.

It is a challenge for us to work out our approach also for colored Petri nets, i.e. to

define transformation from Petri nets, to the sequents of linear logic and illustrate

it on significant examples.

The main result of our work is a systematically, worked out solution, for practical

programmers, respectively, for students, on how different various known formal

tools can be combined and proved, together with an illustration of component

composition.

References

[1] Abramsky S.: Computational interpretations of linear logic, Technical

Report 90/20, Department of Computing, Imperial College, London, pp. 1-

15, 1990

[2] Aalst W. M. P., van der, Hee, K. M., van: Workflow management: models,

methods, and systems, MIT Press, Cambridge, MA, 2002

[3] Aalst W. M. P., van der: The application of Petri nets to workflow

management, J. of Circuits, Systems and Computations 8 (1), pp. 21-66,

1998

[4] Demeterová, E., Mihályi, D., Novitzká, V.: Component composition using

linear logic and Petri nets, proceedings of the IEEE 2015 International

Scientific Conference on Informatics, Poprad, pp. 91-96, 2015

Acta Polytechnica Hungarica Vol. 14, No. 8, 2017

 – 181 –

[5] Engberg U., Glynn W.: Petri nets as models of linear logic, LNCS 431, pp.

147-161, 1990

[6] Girard J.-Y.: Linear logic, Theoretical Computer Science, Vol. 50, pp. 1-

102, 1987

[7] Girard J.-Y.: Linear logic: Its syntax and semantics, Cambridge University

Press, 2003

[8] Girard J.-Y., Taylor P., Lafont Y.: Proofs and types, Cambridge University

Press, New York, NY, USA, 1989

[9] Girault C., Valk R.: Petri nets for systems engineering - a guide to

modeling, verification, and applications, Springer, 2003

[10] Korečko, Š., Marcinčin, J., Slodičák, V.: A tool for management of

networked simulations, Lecture Notes in Computer Science: Application

and Theory of Petri Nets. Vol. 7347, pp. 408-417, 2012

[11] Korečko, Š., Sobota, B.: Petri nets to B-language transformation in

software development, Acta Polytechnica Hungarica Vol. 11, No. 6, pp.

187-206, 2014

[12] Lincoln P.: Linear logic, SRI and Stanford University, 1992

[13] Martí-Oliet, N., Meseguer, J.: From Petri Nets to Linear Logics through

Categories: A survey, World Scientific Publishing Company, International

Journal of Foundations of Computer Science, Vol. 2, No. 4, pp. 297-399,

1991

[14] Novitzká V., Mihályi D.: Resource-oriented programming based on linear

logic, Acta Polytechnica Hungarica, Vol. 4, No. 2, 2007, pp. 157-166

[15] Mihályi D., Novitzká V.: What about linear logic in computer science?,

Department of Computers and Informatics, Technical University of Košice,

Acta Polytechnica Hungarica, Vol.~10, No. 4, 2013, pp. 147-160

[16] Novitzká V. Mihályi D., Slodičák V.: Linear logical reasoning on

programming, Acta Electrotechnica et Informatica, No. 3, Vol. 6, pp. 34-

39, 2006

[17] Mihályi D., Novitzká V., Towards the knowledge in coalgebraic model of

IDS, Computing and Informatics, Vol. 33, No. 1, 2014, pp. 61-78

[18] Perháč J., Mihályi D., Novitzká V.: Between syntax and semantics of

resource oriented logic for IDS behavior description, Journal of Applied

Mathematics and Computational Mechanics. Vol. 15, No. 2, pp. 105-118,

2016

[19] Perháč J., Mihályi D.: Intrusion Detection System Behavior as Resource-

Oriented Formula, Acta Electrotechnica et Informatica. Roč. 15, No. 3, pp.

9-13, 2015

J. Perháč et al. Modeling Synchronization Problems: from Composed Petri Nets to Provable Linear Sequents

 – 182 –

[20] Peterson, James L.: Petri theory and the modeling of systems, Englewood

Cliffs, N.J.: Prentice-Hall, 1981

[21] Pietriková, E., Chodarev, S. Profile-driven source code exploration

Proceedings of the 2015 Federated Conference on Computer Science and

Information Systems, FedCSIS 2015: Lodz, Poland, pp. 929-934, 2015

[22] Polberger, D.: Component technology in an embedded system, Lund

University, USA, 2009

[23] Raclet, J. B.: A modal interface theory for component-based design,

Fundam. Informatics, Vol. 108, No. 1-2, 2011, pp.119-149

[24] Reisig, W.: Petri nets and algebraic specifications, Theoretical Computer

Science 80 (1), pp. 1-34, 1991

[25] Riemann, R. C.: Structural and Semantical Methods in the High Level Petri

Net Calculus, Herbert Utz Verlag, 1999

[26] Slodičák, V., Macko, P.: The role of linear logic in coalgebraical approach

of computing, Journal of Information and Organizational Sciences. Vol. 35,

No. 2, pp. 197-213, 2011

[27] Szyperski, C., Gruntz, D., Murer, S.: Component software beyond object-

oriented programming, ACM Press, New York, 2002

[28] Vokorokos, L., Adám, N.: Secure web server system resources utilization,

Acta Polytechnica Hungarica Vol. 12, No. 2, pp. 5-19, 2015

[29] Wang, A., Qian, K.: Component-oriented programming, Wiley-

Interscience, 2005

[30] Winskel, G., Nielsen, M.: Models of Concurrency, In: Handbook of Logic

and the Foundation of Computer Science, Vol. 4, 1993, pp.1-148

