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Abstract: This paper deals with the design of a digital sliding mode based minimum 

variance control on the basis of a discrete-time representation of the ABS model derived 

from a new type of generalized quasi-orthogonal filter. In the proposed control, the 

minimum variance enables the design of digital sliding mode control only on the basis of 

ABS outputs measurements, while sliding mode increases the ABS robustness under certain 

conditions. On the other hand, it is shown that orthogonal functions can be successfully 

used to obtain a model of a dynamical system with high accuracy. The proposed control 

scheme has been applied in the laboratory experimental setup and obtained experimental 

results show significant improvement in ABS performances. 

Keywords: sliding mode control; minimum variance control; orthogonal polynomials; anti-

lock braking system 

1 Introduction 

Nowadays, we are witnessing the tremendous growth of the automotive industry 

in the world. Unfortunately, an increasing number of traffic accidents occur due to 

improper vehicle speed, sudden braking, bad road conditions, etc. The anti-lock 

braking system (ABS) is just one of the modern electronic systems found in 

vehicles, which contributes to the reduction of these accidents. It prevents the loss 

of control over the vehicle during sudden braking by disabling the vehicle wheels 

blocking in different road conditions (ice, snow, water, sand, etc.). 

It has been shown that the ABS control problem can be solved by using different 

control approaches, starting from classical PID, through fuzzy logic and sliding 
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mode controllers up to advanced control techniques based on the use of artificial 

neural networks, machine learning, etc. Herein, an overview of the most important 

contributions in sliding mode control (SMC) of ABS is given since this paper only 

deals with this type of control. In [1], SMC based on the exponential reaching law 

for ABS is developed to maintain the optimal slip value. The authors developed a 

two-wheel vehicle model in [2] and proposed an SMC algorithm to regulate ABS. 

The objective of [3] is to modify an optimal SMC method for hydraulic ABS in 

order to achieve both robustness and optimal control performances. SMC using a 

grey system theory approach for the ABS control is considered in [4, 5]. The 

wheel slip control of the traction control system using a moving sliding surface is 

presented in [6]. One more approach of the moving sliding surface 

implementation for vehicle slip ratio control is shown in [7]. In [8], SMC on the 

basis of a two-axle vehicle model is discussed. In that paper, the authors also 

introduced the integral switching surface to cope with the chattering phenomenon. 

The similar approach of using the integral sliding surface is given in [9], but this 

time for the hybrid electric brake system. The traditional approach of the SMC 

design is applied in the control of the magnetorheological brake system in [10]. 

One more application of the traditional SMC is proposed in [11]. The second 

order sliding mode using the super-twisting technique to manipulate the braking 

torque is introduced in [12]. The quasi-continuous control for an automobile ABS 

is proposed in [13]. Therein, two controllers are developed, one to realize slip 

control and others for pressure tracking control. In [14], the same authors gave a 

more detailed analysis of the previous approach and compared the obtained results 

with the traditional SMC approach. Unlike the previous papers, where the wheel 

slip is used as a controlled variable, the authors of [15] considered a different 

approach based on the sliding mode by using the slip velocity. The latter approach 

is simulated on a “Magic formula” tire model. 

From the previous analysis, it can be concluded that the further improvement of 

ABS performances can be realized by new control algorithms. Therefore, in this 

paper, an attempt will be made to achieve the optimum slip value by applying the 

novel control law that results from the combination of the sliding mode based 

minimum variance (MV) control and ABS modelling with orthogonal functions. It 

that way, the maximal value for the road adhesion coefficient is provided leading 

to better vehicle steering characteristics. 

In the past several years the authors of this paper developed the new types of 

orthogonal filters [16], almost orthogonal filters [17, 18], improved almost 

orthogonal filters [19], quasi-orthogonal filters [20], orthogonal filters with 

complex zeros and poles [21] and generalized quasi-orthogonal filters [22]. These 

filters have proven to be a very powerful mathematical tool for modeling [18] and 

control of dynamical systems [16, 23, 24], as well as, for the approximation of real 

signals generated by industrial systems [19, 21]. These filters can be also used to 

analyze the sensitivity of models of complex dynamical systems [25]. On the other 

hand, the signals generated by the generalized quasi-orthogonal filters of k-th 
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order can be successfully applied as the activation functions of neural networks 

[22, 24]. Moreover, it has been shown in [26] that these functions can replace the 

functions inside the layer that imitates Sugeno style defuzzification in the 

traditional ANFIS network. In [27], it has been already proved that orthogonal 

models, obtained by almost orthogonal filters, can be very effective for the design 

of SMC in the continuous-time domain. Herein, a similar concept for the new type 

of quasi-orthogonal filters, specially designed for this purpose, will be 

implemented, but this time in the discrete-time domain. The advantage of the 

proposed generalized quasi-orthogonal filters of shifted Müntz-Legendre type 

comes from the fact that they have the general values for poles in a transfer 

function, which significantly expands the possibility of their applications in 

comparison to the other, previously developed filters. This filter is used for 

obtaining the model of a plant, which will be employed then as a reference model 

in the design of SMC on the basis of MV control. The similar concepts of 

obtaining several linear and nonlinear models with successful applications in 

various fields including control are presented in [28, 29, 30]. 

The main goal of the combination of the sliding mode and MV control techniques 

is to improve the individual good characteristics of two control methods and to 

suppress their main drawbacks. The MV control can provide the realization of the 

digital sliding mode control (DSMC) only on the basis of the sensed system 

outputs. On the other hand, DSMC has been introduced to improve the robustness 

of MV control under the influence of external disturbances and parameter 

perturbations. It has been shown in [31] that digital sliding mode based MV 

control with accuracy O(T2) can be obtained by introducing the relay component 

into the control law, previously filtered through a digital integrator. The presence 

of a digital integrator significantly reduces the undesirable chattering phenomenon 

[32] providing a relatively smooth control signal in that way. 

The laboratory setup of ABS is used in this paper [33]. The experimental results 

show the effectiveness of the proposed type of filters and control method in the 

field of modeling and control of ABS, respectively. The chosen laboratory 

framework proves to be very suitable for testing of different control algorithms 

[34, 35, 36]. By implementing the same control law with the previously derived 

model of ABS [27] and with the model derived in this paper, the obtained 

experimental results favour the latter control algorithm. In other words, the 

obtained orthogonal model describes the considered plant in a more efficient way 

due to the introduced parameter of imperfections in the very definition of the 

filter. From the control point of view, both experiments confirm the effectiveness 

of the proposed robust control method. The vehicle stopping time is further 

shortened with the preserved steering control, leading to the increased safety of 

the passengers. 

The paper is organized as follows. Section 2 describes a new type of quasi-

orthogonal filter. In Section 3, the basic mathematical background of the proposed 

digital sliding mode based MV control is presented. The orthogonal model of ABS 
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and modified control law in the case of ABS, are given in Section 4. The sensed 

outputs are presented and discussed in Section 5. Section 6 gives the most 

important concluding remarks. 

2 Generalized Quasi-Orthogonal Filters of Müntz-

Legendre Type 

In this section, the generalized quasi-orthogonal filters of shifted Müntz-Legendre 

type (GQOFMLT), which contain an imperfections measure   in their definition, 

are derived. This parameter actually describes imperfections of all the elements 

the system consists of, imperfections in the model, impact of the noise on the 

system output etc. [17, 22]. 

Now, let us consider a transfer function, 
   ,k

nW s


, in the form suitable for the 

practical design of the proposed k-th order filter: 
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where 
ip  represent poles of the transfer function, and K  is a gain of filter. The 

value of the constant δ is determined by performing several experiments so that it 

reflects the rate of parameters modification due to the changes in working 

temperature, humidity, etc. [19, 22]. The main idea, herein, is to use this free 

parameter for description of non-modelled dynamics of a plant, obtaining in that 

way more faithful model representation. On the other hand, the effectiveness of 

control method heavily depends on model accuracy. 

Development of (1) in partial fractions results in: 
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where the coefficients 
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By using the transformation mapping  f s s s    [16], the poles 
ip  are being 

mapped into the zeros located in the right semi plane. After applying the inverse 

Laplace transform to (2), the sequence of orthogonal rational functions in time 

domain is derived as: 

     , ,

,

0

i

n
k k p t

i n i

i

t A e
 

 



 . (4) 

By taking te  as a member x  of the polynomial, the latter relation can be 

rewritten as: 

     , ,

,

0

i

n
k k p

n n i

i

L x A x
 



 , (5) 

where 
        , ,1k k

n iL x L t
 

  represent the k-th order generalized quasi-

orthogonal polynomials of the shifted Müntz-Legendre type. 

Note that if the poles 
ip  in (2) have integer values, i.e., , 0,1, ,ip Ζ   i n  , 

someone can get the generalized quasi-orthogonal k-th order polynomials of 

Legendre type 
   ,k

nP x


 [22], defined with the following expression: 
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where: 
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The main difference between these two filter types lies in the fact that poles in the 

transfer function which correspond to (7) are fixed and a priori known. On the 

other hand, any real constant values for the poles can be selected in (1) causing in 

that way greater possibility of applications for the proposed type of filters. 

On the basis of (1), it is easy to obtain the structure of the first order GQOFMLT 

( 1k  ) which is very suitable for practical realization [18, 19, 20]. The general 

structure is shown in Figure 1, where Heaviside function is used as an input 

signal. 
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Figure 1 

Schematic representation of the proposed filter for the first order (k=1) 

It has been already shown that orthogonal signals 
   1,

i t


 , generated using the 

orthogonal filters, are appropriate for the analysis and synthesis of different 

technical systems [21, 22, 25]. In this case, the parameters of filter (K, pi, and ci) 

are adjusted to minimize the value of the mean squared error: 

    
2

0

1
T

S MJ y t y t dt
T

  , (8) 

where  Sy t  is a real system output and  My t  represents an output of the 

orthogonal model described by the following expression: 

     1,

0

n

M i i

i

y t c t





 . (9) 

On the basis of these plant models and their representation in the discrete-time 

domain, a digital sliding mode controller is designed in the next section. The 

model parameters are obtained by identification based on the measured ABS 

responses, using some of the optimization techniques. The procedure itself is 

briefly described in Section 4, while the entire modelling process, using genetic 

algorithms as an optimization method, is thoroughly described in [18, 19]. 

3 Digital Sliding Mode-based Minimum Variance 

Control 

Let us consider a continuous-time SISO plant model in the following form: 

       

   

,

c ,

x Ax b d

x

t t u t f t
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
 (10) 
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where        1 2x
T n

nt x t x t x t R     is a vector of state coordinates, 

 u t R  represents a plant input,  f t R  is an external disturbance,  y t R  

denotes a plant output, n  determines plant order, and matrix A  and vectors, b , 

c  and d  are with the following dimensions: A ij n n
a


    ,  

1
b = i n

b


, 
1

c = j n
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
   , 

 
1

d = i n
d


. This model can be directly derived from (9) taking into account (1)-

(4). 

The discrete-time model of (10) is given by: 
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To enhance further writing, the following notation  k kT    is accepted, where 

T denotes the sampling period. The external disturbance  f t  is supposed to be a 

bounded function, i.e., there exists a constant F    such that  f t F . On the 

basis of (11), the plant model in the z-domain can be obtained as: 

 
 

 
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1 1 1 1

1 1

D
hk k k

z B z z z
y u

A z A z

   

 
  , (13) 

where 1z  represents a delay operator, i.e., 
pTz e  (p is a complex variable), and: 

   1 det I
nA z z z   , (14) 

   1 1 adjc I
nB z z z       , (15) 

   1 1 adjD c I
nz z z      . (16) 

The main objective of the designed control is to ensure minimum variance of the 

variable: 

  1

k k ks M z y r  , (17) 
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i.e., in an ideal case 0ks  . In addition, the polynomial  1M z  is a Jury's 

polynomial, and 
kr  is a reference input signal in the k-th time period. The plant 

output in the steady state can be defined with: 

 1

s
y r

M


   . (18) 

From the last equation it can be concluded that the accuracy of the system output 

will depend only on the accuracy of the variable 
ks . Therefore, by keeping the 

smallest value of 
ks , the smallest possible tracking error will be achieved. 

To accomplish the above-mentioned control goal, the digital sliding mode based 

MV control is proposed in the following form [31]: 

   
     1 1

1 11 1

1
sgn ,

1
k k k k

T
u F z y M z r s

zE z B z

 

  

 
    

 
 (19) 

where  1E z  and  1F z  are the solutions of Diophantine equation: 

       1 1 1 1 1E z A z z F z M z      , (20) 

with assumption that 
kr  is known in advance. The digital integrator (in the front of 

sgn (sk)) in (19) should alleviate the chattering phenomenon [32, 37]. By 

substituting (19) in (13), and taking into account (17) and (20), the switching 

function dynamics can be obtained as: 

      1 1

1 1sgn ,D h hk k k k ks s T s E z z  

      (21) 

where parameter   should provide stable quasi-sliding motion and it is chosen in 

accordance with the following theorem. 

Theorem: Let us consider the system described by (13) and (19), where the 

switching function and its dynamic is given by (17) and (21), respectively. If the 

parameter   is chosen to satisfy: 

    1 1

1max D h hk kT E z z  

  , (22) 

then the control (19) forces a system phase trajectory to reach the quasi-sliding 

manifold S determined by: 

     1 1

1: max D h hk k k kS s s T E z z  

    , (23) 

in finite time and keeps it on it for every 
0k K , where  0 0 0K K s  is a positive 

number. 

The detailed proof of this Theorem could be found in [38]. 
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4 A Case Study: Anti-Lock Braking System 

As a case study, a laboratory ABS, presented in Figure 2 has been chosen, because 

it is suitable for the practical verification of the proposed modelling and control 

approaches due to its strong nonlinear nature [39, 40, 41]. 

 

Figure 2 

Laboratory test setup of ABS 

The complete mathematical and physical description of this system can be found 

in our earlier papers [24, 42] and it is derived on the basis of graphical 

representation of ABS setup presented in Figure 3. 
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Figure 3 

Schematic diagram of the experimental setup 
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Based on this first-order nonlinear model, the DSMC has been designed in [42]. 

In [43], it has been shown that the dynamics of ABS can be represented well 

enough by the second-order transfer function with finite zero: 

  1 0

2

1 0

b s b
W s

s a s a




 
 (27) 

where wheel slip and braking moment are used as system output and input, 

respectively. In order to control such minimum-phase plant, the starting model 

(27) is transformed into the controllable canonical form first and then divided into 

two subspaces [44]: 

1 11 1 12 2

2 21 1 22 2

1

,

,

,

x d x d x ku

x d x d x

y x

  

 



 (28) 

On the basis of the latter model, SMC is designed for the upper subsystem (28) of 

the first order in [27]. Notice that the control approaches presented so far use the 

first-order model of ABS for design purposes. It should be expected that the use of 

the second-order model of ABS in controller design would give better results. 

In this paper, several real-time experiments have been performed and wheel slip 

for different values of braking moment has been recorded. After that, the 

parameters of the second-order model (27) have been identified by using the 

classical approach as 
0a =0.7708, 

1a =74.3301, 0b =0.0059, and 1b =0.6840. This 

model will be used further for the validation purposes of the proposed control 

approach. The same experimental results are used to obtain the suggested 

orthogonal model parameters. Based on the plant response, it has been concluded 

that the ABS model can be described by proposed GQOFMLT with two sections 

according to (1), (4), and (8). As mentioned earlier, for parameters adjustment of 

filter ( K , 
1p , 

2p , 
0c , 

1c , and 
2c ) the genetic algorithm [19, 21, 22] can be used. 

Herein, the genetic algorithm has a chromosome consisting of 6 parameters coded 

by real numbers (filter parameters) and fitness function (8). After the parameters 

adaptation procedure, K=0.0065, p1=76.9230, p2=0.0103, c0=0.00000047, 

c1=109.44429, c2=0.0000120548, Jmin =2.312654·10-8 are obtained. Simulation 

time is 20s. The value of parameter δ has been chosen to be 1.002837. The 

parameter c0 can be neglected because its value is very close to zero. 

Now, the state-space model of ABS can be obtained in the form (10), where: 
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 
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Using (12) the discrete-time ABS model can be derived in the form (11) with: 
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and, finally, the ABS model in the form of discrete-time transfer function is: 

 
 

1 1

11k k

z B z
M

A z


 


 , (31) 

where the coefficients of the polynomials  1A z  and  1B z  are 
0 1a  , 

1 1.4861a   , 
2 0.5055a  , 

0 0.008b   and 
1 0.0015b   for T=10 ms. 

In the case of ABS, the digital sliding mode based MV control (19) is given by: 

   
     1 1

1 1 11 1

1
sgn ,

1

ref

k k k k

T
M F z M z s

zE z B z


  

  

 
    

 
 (32) 

The proposed control algorithm should provide zero value of the switching 

function: 

  1 ref

k k ks M z    , (33) 

with  1 1 2

1 2oM z m m z m z      where 
0 1m  , 

1 1.0670m   , 
2 0.2846m  . 

The coefficients of the polynomial  1M z  are calculated by using 

   
21 exp( 2 )cM z z f T     where 10Hzcf   is a cut-off frequency. According 

to (20), the polynomials  1E z  and  1F z  are defined in this case as: 

 1 0

0

0

m
E z e

a

   , (34) 
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 1 1

0 1

0 1 0 1

1 2 0 2

,

,

.

F z f f z

f m e a

f m e a

  

 

 

 (35) 

In order to compare the results obtained by using the proposed control approach 

based on the ABS orthogonal model, the same control law (32)-(35) has been 

implemented by using the discrete-time representation of (27) in the form of (31). 

5 Experimental Results 

To verify the effectiveness of the proposed type of filters and control algorithm 

designed on the basis of sliding mode and MV, two experiments have been done 

on ABS experimental setup [33]. First, one has been performed by using the 

digital sliding mode based MV control (32) designed on the basis of the discrete-

time representation (13) of ABS model (27) and its results are shown in Figure 4. 

The second experiment has been realized by using the proposed control law (32) 

developed by using the discrete-time representation (31) of ABS orthogonal 

model (29) described with GQOFMLT, and the obtained results are presented in 

Figure 5. In this way, by implementing the same control law and different referent 

models in their design, it can be concluded whose model better describes the ABS 

dynamics. In both cases, the run time is 2.7 s, the sampling period T=10 ms, the 

reference wheel slip 
1

0.2
k

ref

  [45], and the controller parameter   is chosen to 

be 1. 

 

Figure 4 

ABS responses with the control law (32) derived from the ABS model (27) 
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Figure 5 

ABS responses with the control law (32) derived from ABS orthogonal model 

In both Figures, there are three subplots representing the vehicle and wheel 

speeds, wheel slip and braking moment, respectively. These three system 

responses are enough for the valuation of control algorithm. As it can be seen 

from Figures, the proposed control law suppresses the chattering phenomenon due 

to the presence of a discrete-time filter in the front of the relay component. In this 

way, the control law does not lead to excitation of non-modeled high-frequency 

system dynamics and does not cause deterioration of the mechanical parts of the 

system. 

To make the analysis of the obtained results much easier to explain, the 

comprehensive index I is introduced as: 

1 stop 2 32I k T k N k E   , (36) 

where 
1 2 3, ,k k k  represent the real constant coefficients, stopT  is a stopping time, N 

is a total number of changes in the control law, and E is an error calculated as 

 
2

0

1 sN
ref

k k

is

E
N

 


  , where Ns is a number of samples. It is obvious that all of 

these values should be as small as possible. The obtained results for the 

coefficients 
1 0.1984k  , 

2 0.0038k  , 
3 0.0421k   are presented in Table 1. 

These values of coefficients provide the normalization of the considered 

parameters. 
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Table 1 

Analysis of the obtained experimental results 

Model reference Tstop N E I 

Discrete-time 

model 

2.59 147 14.56 2.20 

Orthogonal 

model 

2.45 113 9.19 1.79 

As it can be seen, the stopping time was slightly shortened when the orthogonal 

model is used in the controller design. From the tracking point of view, better 

experimental results are obtained using the orthogonal model, due to a smaller 

deviation between the current and referent values of wheel slip. In this way, the 

maximum value for the friction force is constantly ensured leading to the better 

steering characteristics of the vehicle. A more faithful representation of the plant 

dynamics comes from the introduced parameter δ, which successfully describes 

the imperfections in the form of the noise presence, parameter variations, and 

additional limitation of the control signal to [0.2, 0.4] (to avoid the saturation). 

Conclusions 

In this paper, a new sliding mode based minimum variance control algorithm 

designed on the basis of a model obtained by using a new type of orthogonal 

filters is presented. After giving the necessary background of the used theory, the 

proposed control law is applied in the anti-lock braking system control. 

Experimental results have shown that the stopping time, the number in changes in 

the control law and the tracking error are lesser than in the case where the 

proposed control is designed on the basis of previously developed ABS model. 

Having that in mind, it can be concluded that the orthogonal model represents 

much better system dynamics due to the introduced parameter δ, which 

characterizes all the imperfections in the system. From the control point of view, 

both experiments confirm the effectiveness of the proposed robust control method. 
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