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Abstract: This paper presents progress in the investigation and development of methods for 

the automatic localization, extraction, analysis and comparison/classification of the 

features in signals and their spectra. With diverse applications, different feature attributes 

turn out to be significant for the investigated phenomena. The general feature 

characteristics are morphologic and therefore suitable for a variety of algorithms focused 

on visual data processing, which we use in the automatic feature recognition. Our major 

applications were in the analysis of biological signals, and acoustic, sonar and radar 

signals; the methods presented here are applicable in other areas as well. 

Keywords: Automatic detection of spectral features; Invariants of signal features; Brain 

Computer Interface; Noise elimination in radar signals 

1 Introduction 

The automatic tracking of objects represented by signals from a variety of sensors 

(e.g. optical, infra-red, ultra violet, sonar, radar and others) generally requires 

previous application of feature determination, characterization, noise reduction, 

background reduction and automatized extraction. Object tracking in a variety of 
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sensory environments could be related to real time monitoring of the dynamic 

changes of their spectroscopic correlates. Among generally present signal features, 

some are more relevant than the others. Fourier spectroscopy with its 

developments and generalizations plays an important role in the investigation of 

signals of diverse nature. Spectral features certainly demonstrate distinguishable 

formations in time Fourier spectra, so spectrograms are of special value. Here, we 

can consider classic Fourier analysis and uniform Fourier spectroscopy based on 

other orthonormal systems. Their importance in the analysis of signals could be 

crucial, enabling accurate classification and prediction, thus providing essential 

insight into the properties of investigated phenomena and systems. One relatively 

unexplored approach to the extraction of the features from signals of various 

origins is based on image processing techniques applied to spectral analysis. 

Although different types of adaptive techniques, such as feed forward neural 

networks or genetic algorithms, can be applied to optimize parameters of image 

transformations used in this process, the goal of the presented paper is to 

demonstrate the feasibility of such an approach and to provide an overview of our 

results. 

Semantically rather distant contexts often can be treated with the same or similar 

manners of mathematical modeling and implementations, with partial or full 

automatization as one of the key aims. We have selected some interesting 

examples of such diverse relationships from our practice. Image filtering and 

enhancement techniques applied to the time spectra and their further composites 

with well distinguished features provide automatized recognition and automatized 

procedures needed in various problem solutions. Common features of the 

spectrograms and wavelet spectrograms are aggregations that have certain 

topologic characteristics, like contingency, expressed boundary and differences in 

the intensity from its nearest neighborhood, with certain time duration. On the 

opposite, there are examples where distinguishable features more resemble a 

random dot cloud with certain density aggregation. Finally, there are short lasting 

features, e.g. those corresponding to the short frequency pulses in signals, which 

are distinguishable as dots – small sized objects in the spectrograms. All these 

features are often surrounded by, or embedded in, a variety of noise and artifact 

formations from which they need to be separated/extracted during the recognition 

procedures, with a degree of fuzziness present in all important properties. From 

the methods and algorithms we have developed and implemented, here we present 

ones applicable to a variety of problems in signal analysis which are related to 

automatic object recognition. These methods are mostly applicable in signal 

analysis. The software is calibrated on synthetic and alternatively measured data. 

Our software and signals/images together with short illustrative presentations are 

partially available at http://poincare.matf.bg.ac.rs/~aljosha//GIS/GIS/sbgis.htm. 

As illustrations we use applications in biology (e.g. signals from brain implants, 

EEG/MEG, neuroacoustics, blood pressure, pharmacologic applications, 

microscopic CCD-FISH and fNMR), acoustics and radars. This mixture of diverse 

examples was chosen in order to show their invariants (invariability) to problem 

http://poincare.matf.bg.ac.rs/~aljosha/GIS/GIS/sbgis.htm
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unspecific applications; they just stress the kinematic and geometric equivalents of 

the specific system dynamics. 

The recognition of spectral features in the monitoring of cardiac parameters is 

used to reveal an approach of a serious cardiac crisis and characterizes important 

states of the system and their transitions. Spectroscopy features of electro 

encephalography (EEG) and magneto encephalography (MEG) can help to predict 

epileptic seizures. It is also used in brain-computer interfaces (BCI), which has 

attracted our attention since the early nineties. We had available EEG recordings 

of externally generated tone stimulation and imagined tones and music [1, 2]. The 

spectrograms of such recordings contain traces of imagined tones, which can be 

taken as the basis for the BCI command language. Thanks to the impressive 

achievements of the Rome group [3], the Graz group [4], the Tübingen group [5] 

and other research teams as well, BCI has become a reality recently, resulting in 

an explosion of interest in this area. Some researchers have suggested the use of 

high-frequency EEG for BCI applications [6, 7, 8], which could expand the brain 

command language capacity proportionally to the increase of the speed of changes 

of controllable brain electro-physiological states and their number [2, 9]. 

2 Method 

In automatized recognition we treat features in spectrograms, their derivates and 

composite spectrograms, including some real time features, with the image 

processing tools. The sets/manifolds in the space of <frequency, time, intensity> 

could possess some (simple) topological properties that are important in the 

characterization of investigated time spectra and related semantics, such as 

electrophysiology (Event-Related Synchronization (ERS) and Desynchronization 

(ERD) has found wide applications in the highly frequency band-specific EEG 

and MEG [10]), or kinematics. On the other hand, images as organized sets in the 

<x, y, intensity> space often have photometric aspects that essentially characterize 

objects in images. We prefer to call this two-dimensional photometry a photo 

morphology. Hence, we have sets/manifolds in both metric spaces, time-frequency 

and spatial, where topologic/geometric invariants are in the focus of investigation. 

As we usually convert dynamics to the geometry or the other way around, we can 

identify those contexts when the same or similar types of invariants are used, or 

when we have common algorithms extracting these invariants and similarity 

classification. In this way, a part of the algorithm developed for the automatized 

analysis of morphological characteristics of, for example, chromosome and radar 

images, and their similarity and classification, is applicable to the study of 

spectroscopic features of signals, some needing adaptations and expansions. We 

shall illustrate such algorithms on both classes of examples, even mixing the two: 

the time-frequency and spatial. We discuss the implementations of the key 

functions involved, including algorithms which are basically simple but whose 
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complexity grows with the variation of cases offered by experimental practice, 

thus needing increased efforts to deal with. Examples using recorded and synthetic 

signals have been selected to present problems, structures, methods, algorithms 

and solutions in a straightforward way, pointing to the aspects of interest in related 

problems; they all share the same corpus of analytic tools. 

In order to be able to automatically detect objects in spectrograms, one first needs 

to separate those objects from the noise and artifacts. There are many methods for 

the noise removal from the signals and images, from sophisticated methods based 

on the Independent Component Analysis techniques to quite specialized methods 

we have used in the microscopic image processing, clutter in radar and sonar 

signals, other acoustic signal filtering, or filtering in images from cameras of 

different types. There are simpler and more complex situations, all requiring 

sophisticated noise reduction and elimination methods. In this way we have 

automatic noise threshold reduction, as shown in Fig. 6. However, in the case 

when the essential signal components are hard to separate from the noise, like 

when they are masked by or embedded in it, the problem of noise reduction and 

elimination becomes very sensitive and application dependent, with time 

dynamics in the noise threshold definition. Then, this step has to be subjected to a 

preliminary learning and intelligent treatment. The object kinetics within the 

observed portion of the representation space often involves object tracking as 

well, which, combined with the other aspects, increases problem complexity (for 

some examples of successful solutions of the object tracking problem, see [11, 

12]). Obviously, kinetics can also be turned into a geometric form, so the tracked 

objects are related to their trajectories. Thus, the moving of the objects in space 

and the moving of the spectrogram features in time are tightly related. 

We present aspects related to the feature structural morphology first, generalizing 

our methods for the analysis of microscopic image analysis; further on, we present 

adaptations of algorithms developed for the automatic object tracking and noise 

elimination based on the marine radar imaging. 

2.1 Aspects Related to Feature Morphology 

In Fourier spectroscopy, depending on the application, various criteria for 

minimum spectral stability are used, i.e. localization of sets of high/low intensity 

spots and lines in consecutive spectra, with topologic invariants that would 

distinguish them as features against e.g. smaller granular objects or random dot 

clouds, or all the way around. The key parameters must be determined before the 

application and usually involve prior knowledge of the underlying processes that 

are generating signals. For example, the shortest music tonal feature which is 

localized lasts around 0.1 s. Before the application of any further steps, all time 

spectrograms need to be recalibrated, unless the time spectra were initially 

WYSIWYG (“what you see is what you get”), when the recalibration is not 

needed. Similarly, constant features need no recalibration, except for the relative 



Acta Polytechnica Hungarica Vol. 10, No. 2, 2013 

 – 157 – 

magnitude corrections. Generally, this is a rather complex problem. In [13] is 

described one partial solution which introduces some time delay, which is a 

method for spectrogram recalibration based on the geometry of the morphology of 

simple features as those present in many acoustic examples. In short, the above 

observations form the basis for further normalizations and for the measurement of 

similarity with the etalon objects and posterior feature classification with the 

context dependent criteria. Such procedures often need to be automatized as well. 

Simplified, feature localization and structure representation can be performed as 

follows. If we denote a spectrogram or an image in resolution     with  , then 

for each row  , first select    and      such that                     and 

                      (                is a static, statistic, dynamic or 

learned parameter); repeating the same while      , would provide entry and 

exit points for each intersection of a contour with row  ; similarly for all rows. In 

this way we obtain a simple localization of all contours in  . If artifacts are 

discerned by size or frequency range, they can be removed easily. After feature 

localization, contour stabilization-smoothing is applied if necessary, for example 

by removing the single convex pixels or by interpolation of the single concave 

pixels. Next, the topology of features is traced (Fig. 1) by two alternative 

processes. First, geodesy of the embedded isophotic (closed) curves determines 

the density gradients around feature local extremes and defines the dominant 

“meridian” of the feature. Alternatively, orthogonal vectors on points of the 

contour provide geodesic lines of the curved coordinate system, tailored to the 

topology of the feature. The results of the two methods are compared, providing a 

better contour tracing. 

 

Figure 1 

Feature curved coordinate system 

Figure 1 shows a feature curved coordinate system tailoring and invariant 

capturing: positioning of the central meridian (black) and diameters perpendicular 

to it, determining positions of flexion points and flexion angles in the central 

meridian. 

In the case of tonal, music or acoustic examples, the detected meridian curve 

possesses the information on the tonal time changes with all present dynamics 

(e.g. speed changes of detected vessels in submarine acoustic spectrograms, while 

in the case of inner music patterns or chromosomal morphologic invariants, these 

meridians organize the distribution of local extremes of photo density functions). 

Then, within tunable, reasonable approximation, the feature local extremes and 
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contour local extremes are marked in the feature curved coordinate system. The 

central meridian is often curved and, together with flexion points and curvature in 

these points (the angle between the incoming and outgoing meridian fragments in 

the given point), presents an important feature invariant. The Fishbone demo at 

our web site illustrates the algorithm with normalization performed to the total 

feature rectification (activation of the step-by-step rectification is also available). 

Together with longitudinal and coordinate-wise expansion/compression factors, 

this can provide a good way of feature structural comparison (rectifying the 

corresponding features, calculating the corresponding flexure angle differences, 

with comparisons of corresponding segment lengths and relative positions of local 

extremes best fit). For the branching features, similar branch invariants could be 

taken into comparison considerations. 

In [14] we described the similarity measures of objects in images based on 

geodesic (photomorphic) structural invariants (basically, the distributions of local 

extremes), implemented as a distance – metrics in the space of 3D manifolds. The 

same method can be used to characterize individual spectrogram patterns and 

measure their similarity using their photomorphic structural invariants. For two 

normalized spectrogram features   ,    with meridians    and   , one way to 

define the morphology reflecting similarity of features, as a distance of their 

reasonable representations, can be 

                ∫|                |  

 

           

where   is a contraction,   a translation parameter,   an amplitude fitting 

parameter, or similar with some meridian simplifications. This also can be 

extended to the relative positions of local extremes, with the flexure angle 

differences as the second distance index. There are other ways to define 

combinatorial similarity of involved features, which are basically application 

dependent. Some examples of the real time spectrograms with the types of 

features we are dealing with including different common processing aspects 

generally applicable are shown below, with the purpose of the method details 

illustration. We have developed systems for the real time (RT) acquisition and real 

time analysis of a large number of signals. 

Example 1 

In Fig. 2 we present acoustic recordings suitable for automatic recognition. 
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Figure 2 

Examples of spectrogram features 

The image on the left contains a spectrogram of a humpback whale song; the large 

structures correspond to melodious patterns, which are changing in both frequency 

and rhythm. On the right we have spectrogram of Die Kunst der Fuge, with all the 

tonal features of Bach’s monumental music structure, in the last minute of 

performance by H. Walcha. Submarine sonar spectrograms can be rather similar to 

the ones presented above. Clearly, in the case when the percepted and imagined 

music tones are the same, we should expect spectrograms of a similar type and 

complexity, with spectrogram features of the imagined tones and music having 

similar properties as those of the acoustic origin, obviously with other features 

corresponding to the brain activity. We can distinguish inner tones, which are 

stable in frequency and thus flat in spectrograms, creating strong contrasts 

between high C versus low A as BCI signals, and tones with variable frequencies, 

with a kind of linear or nonlinear frequency inclination. Such features are in fact 

additional specialized filters detecting salient characteristics of the signal, as for 

example phonemic structures are detected in speech. The segments of the 

spectrograms of brain signals from different experiments with BCI are shown in 

Figs. 3 and 4. 

 

Figure 3 

EEG spectral features 

The left and center images in Fig. 3 show composite spectrograms of four EEG 

experiments exhibiting different types of imagined features prepared for automatic 

recognition with sporadic artifacts; the feature in the top right corner is lasting and 

stable in frequency, while the other three spectrograms exhibit the presence of 

dominant short lasting pulses; vertical - frequency range of 15 Hz, time scale of 10 

s. The right image shows the fragments of real time spectrograms of EEG, 
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containing features corresponding to the traces of inner tones. Vertically - 

frequency intervals; horizontally, time scale of 10 s. In Fig. 4, improved 

signal/noise provides object recognition directly, using partial linear dependence 

of two sources (spectrograms): the noise (random) is of a local nature while the 

signal components are present in both. These time spectra contain features related 

to imagined – inner tones, but these spectra show the presence of features 

corresponding to other processes in the brain as well. Searching for invariant 

structures in the spectrograms, we can obtain spectrograms containing only 

relevant features that will filter out all spectrogram structures not related to the 

inner tones. Before the similarity matching and measurements, in the case of inner 

tone classifier, we need to perform feature aggregation and disintegration. This 

process is application dependent: geometrically close objects should be aggregated 

into a single structure. On the other hand, features with a frequency inclination can 

be fragmented into individual tones (step functions) so that they can be subjected 

to matching with the set of calibration fuzzy tones. 

 

Figure 4 

EEG recordings of inner music. Left: Parts of spectrograms of EEG channels with recording of inner 

(imagined) d2 tone; right: extracted inner tone in the right window in a composite spectrogram, shown 

enhanced bottom - right. 

The automatic fuzzy classifier measures the degree of similarity with the pre-

calibrated fuzzy tones, picking the best match (presented in [9, 13]). The method, 

based on local linear dependence and comparison to the set of special calibrated 

sets of adjustable fuzzy filters for more general application, is being further 

developed. Here, we have fuzziness at both modeling and intelligence levels. For 

some applications smoothing/roughening of the features is needed; these 

operations correspond to a variety of defuzzyfications. 

Example 2 

In the following important examples of the arterial blood pressure (BP), we have 

further feature invariant determination; spectrogram features with relevant details 

are shown in Fig. 5. The exhibited morphology provides for different ways of 

capturing the characteristics of relevant features (the steps described above). In the 

top left picture, we can see tracing of the linear inclination of the high frequency 
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feature whose non-homogenous morphology is shown in the lower window. 

Second order spectrum of the top feature longitudinal section is its essential 

invariant. On the right is displayed a BP spectrogram of features with their 

photometric representations, demonstrating the level of the noise surrounding 

these features and the problems related to the contour definition. These important 

patterns need a mathematically precise definition and characterization. Again, the 

(second order) spectrogram of the top left structure longitudinal section is its 

essential invariant, identical to the same invariant of the feature on the right. Here, 

pattern similarity matching is available as matching of the dominant lines in the 

corresponding second order power spectra. 

 

Figure 5 

Recording of the blood pressure – BP; Features in the spectrograms with their photometric 

representations 

Example 3 

Illustrations of the performance of discussed steps in the automatic feature 

recognition are shown in Figs. 6-8. For the investigation of some dynamic feature 

characteristics, e.g. those related to both time/rhythmic and frequency changes, or 

metric invariants, or those involving second order spectra, the analysis of features 

in their original shape, are necessary, together with some normalized form. Figure 

6 shows an example of the step-by-step background noise elimination on the left. 

The automatic algorithm is based on threshold optimization: increasing the 

threshold until the image is fragmented into objects with larger than a parametric 

diameter and surface, subsequently reducing the threshold to enlarge detected 

objects till the level of surrounding noise increases above a parameter, while 

zeroing noncontiguous dot clusters. The automatic object contour definition is 

shown on the right, followed by the topology tracings of individual objects, which 

in turn is followed by the normalization based on its topologic structure. The 

normalization is necessary for the invariants determination and comparisons-

matching. Originally developed for the structural study of microscopic images of 

chromosomes, this algorithm is adapted for time spectral feature localization, 

extraction and some normalization with feature comparison. 
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Figure 6 

Left: background noise elimination; right: Automatic object contour definition 

 

Figure 7 

Left: The feature normalization and automatic comparison. Right: Feature step by step normalization 

with longitudinal sections exhibiting changes in morphology - dynamics. 

Example 4 

One example of an acoustic spectrogram with locally well-defined and well-

separated features, which are processed through the steps described above, is 

given in Fig. 8. 

 

Figure 8 

An automatic real time feature recognition; Synthetic spectrogram 
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Left: The real time spectrogram of a simple melody (deccg) with the automatic 

feature recognition; defuzzification was applied first, followed by normalization 

and the measurement of flexure angles and object extraction (lower). On the right, 

we have the same spectrogram enriched with a number of contiguous curved 

structures, non-constant in frequency, subjected to the same algorithm for the 

automatized feature recognition and classification, an adaptation of algorithm 

originally developed for automatic recognition of chromosomes in CCD-

microscopic images. 

2.2 Small Object Recognition 

In this section we will give a brief overview of an alternative method for the 

efficient recognition of smaller, dot-like objects with the diameter < 10 pixels. 

Method can be applied to both matrices and vectors. Short frequency pulses are an 

important example of these. Spectral features which are stable and narrow in 

frequency might be examples of such sorts of vectors. Previously, we developed 

procedures for small object recognition and filtering by size based on the intensity 

discrimination (intensity of considered pixels). The method we present here is an 

improved Tomasi, Shi, Kanade procedure for the extraction of the characteristic 

features from a bitmap image (see [11] and [15]). It is robust and proved to be 

efficient, possessing all highly desirable properties, as illustrated in the subsequent 

figures. As an input we have a simple monochrome (0 = white, 255 = black) 

bitmap (matrix)   of a fixed format (here presented with         pixel 

resolution). The components of   signal amplitude values, or e.g. spectrogram 

intensities, will be denoted by       , where   indicates the corresponding row 

and   indicates the corresponding column. Spatial  -wise and  -wise differences 

   and    are defined as follows: 

   
                 

 
         

                 

 
            

The matrix   of sums of spatial square differences is defined by 

                                       ∑  

     

       

∑ [
  

     

      
 ]  

     

       

                                       

where       is the width of the integration window (the best results are 

obtained with values between 2 and 4), while    and    are the indices 

corresponding to the indices   and   such that the formula (2) is defined; 

therefore, all inner pixels (i.e. pixels for which    and    can be defined) are 

included in the computation. We rewrite   in the more compact form as 

                                                               [
  
  

]                                                             

Using the above compact form (3) of   we can compute its eigenvalues as 
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√          

 
                                             

Furthermore, for each inner pixel with coordinates (x, y) we define        by 

                                                 (               )                                              

Finally, for the given lower threshold     , the parameter      (in our examples 

     is equal to 255) set the value 

               |                                                 (6) 

We define the extraction matrix   by 

       {

    

    
             

    

    
              

                             
    

    
             

                     (7) 

When two images or spectrograms are available (two consecutive shots or two 

significantly linearly independent channels) we obtain a solution in an even harder 

case for automatic extraction. Let   and   be two images where every pixel is 

contaminated with noise which has a normal Gaussian distribution, in which a 

stationary signal is injected, objects at coordinates                     all with 

an intensity of e.g. m (within [0, 255] interval) and fluctuation parameter  ; we 

generate the new binary image   in two steps: 

                                                                                               (8) 

        If          then            

                              else         ; 

The above simple discrimination reduces random noise significantly and reveals 

the signals together with residual noise. By performing the procedure defined by 

the equations (1) thru (7), we obtain the filtered image with extracted signals. The 

method is adaptable, using two parameter optimization (minimax): the 

minimalization of the integral surface of detected objects, then the maximization 

of the number of the small objects. 

An alternative method for the detection/extraction of small features is based on a 

bank of Kalman filters. After the construction of the initial sequence of images, 

  , the bank of one-dimensional simplified Kalman filters (see e.g. [16]) is 

defined using the iterative procedure as follows: 

                                                
           

             
                                               

 ̂        ̂                           ̂          

                                   



Acta Polytechnica Hungarica Vol. 10, No. 2, 2013 

 – 165 – 

Initially,          ̂                  , where   is the covariance of 

the noise in the target signal and   is the covariance of the noise of the 

measurement. Depending on the dynamics of the problem we put: the output 

filtered image in  th
 iteration is the matrix  ̂ , the last of which is input in the 

procedure described by equations (1) to (7), finally generating the image with the 

extracted objects. 

This method shows that it is not necessary to know the signal level if we can 

estimate the statistical parameters of noise and statistics of measured signal to 

some extent. In the general case, we know that its mean is somewhere between 0 

and 255 and that it is contaminated with noise with the unknown variance. 

The method of small object recognition, originally developed for the marine radar 

object tracking, works with vectors equally well. It is applicable to the automatic 

extraction of signals which are embedded in the noise and imperceptible (also in 

the spectra) in the case when we can provide at least two sources which are 

sufficiently linearly independent (their linear dependence on the signal 

components is essential for the object filtering – extraction), or in the situations 

when the conditions for application of Kalman filters are met. 

Example 5 

In this example, we have introduced several dots (useful signals) with an 

amplitude of      , and we have contaminated the image with random and 

cloudlike noise. The image on the left in Fig. 9 shows a bitmap with random 

contamination of the signal – dots. The image on the right in the same figure 

shows the resulting bitmap after the application of the procedure for noise 

reduction. After the initial setting          and         , the extraction 

procedure yields the image shown below in Fig. 10. 

The image on the left in Fig. 11 shows a similar example of the signal – dots 

contaminated with a cloudy noise containing granular elements which are similar 

in size and intensity to the signal. The image on the right shows the results of the 

reduction of noise: some new dots belonging to the noise cannot be distinguished 

from the signal – top and low right. 

 

Figure 9 

Reduction of noise 
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Figure 10 

left: signal – dots, contaminated with cloudy noise; right: extraction of signal. 

Note that the amplitude of the target signal is lower than the chosen lower 

threshold (images in Figs. 9 to 11). 

 

Figure 11 

Signal extraction 

Example 6 

Here we illustrate the application of the method of small feature extraction with 

two independent sources, shown in Fig. 12, with the signals embedded in the noise 

and the process of signal extraction. 

 

Figure 12 

Two Gaussian noise images with the injected small objects below threshold 
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Figure 13 

Left: Extraction of the objects based on simple discrimination. Note the presence of residual noise – 

smaller dots. Right: after application of the above method to the binary image on the left, the noise is 

completely reduced, yielding fully automatic small object recognition. 

Example 7 

The application of Kalman filters in small object extraction. In the experiment 

shown, the initial sequence of images,   , of the size         pixels is 

generated as follows. First, in each image we have introduced noise by         
             here       " generates random numbers in the interval         
using Gaussian distribution with     and     . Then, in every image we 

injected 10 objects (useful signals) at the same positions, each of them of a size 

around 10 pixels, with random (Gaussian) fluctuation of intensity around value 

120. After the construction of the initial sequence of images, the bank of     
          one-dimensional simplified Kalman filters is defined using the 

iterative procedure as above. The process of noise elimination and feature 

extraction is shown in the images in Fig. 15. 

 

Figure 14 

Left: Injected signal; Right: The image on the left injected with the Gaussian noise contamination. 
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Figure 15 

Left: The result of processing after the 21st iteration of Kalman filter banks: Center: The result of 

processing after 34 iterations; Right: The result of processing after 36 iterations and application of the 

method described by formulae 1- 8, providing a complete object extraction. 

Example 8 

Localization and extraction of the small size features in spectrograms of diverse 

origin. In Fig. 16 left and center, we show examples from [17] (similar examples 

are widely distributed in literature), which are used in brain connectivity pattern 

detection. The resolution here is: pix = 2 Hz *0.5 s; 2*1; 2*2. Note the size of the 

granulae in the shown spectrograms. The great majority of the important features 

are within 6x6 pix, and the method of small object recognition performs very well 

even with some noise contamination. In Figure 16, on the right is shown our RT 

reproduction (whistling) of the melody used by A. Ioannidis in his impressive 

presentation of MEG tomography, with the same melody stimulation (available on 

his site as well); all spectrogram granulae are within 4x4 pix size (Easy to 

generate with the available DEMO at our site). Good examples for the application 

of this method are spectrograms in the second, third and fourth quadrant in Fig. 3 

left and center; in the presented context this method can be performed 

concurrently with the method from section 2.1 for parallel recognition of larger 

structures, as are those shown in the first quadrants of these images and features in 

the image on the right. The same is true in the case when both types of structures 

are overlapping, as in Fig. 17 with FISH signals. The extraction of the small 

objects within the cloudy structures in conjunction with the earlier described 

method based on the contour detection provides a means for the automated and 

concurrent detection of small and large structural components independently. 
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Figure 16 

Left and center: brain connectivity relevant spectrograms from [17]: frequency range 50 Hz, time 35 s, 

granular dimensions easy readable, Resolution: pix = 20 Hz *4 s; a number of small size spectrogram 

objects are in the size of up to 5x5 pixels. Right: RT reproduction of A. Ioannides MEG example with 

spectrogram consisting of small features. 

 

Figure 17 

Extraction of FISH signals from chromosomes with the same method 

 

Conclusion and Discussion 

This paper addresses the problem of the automatized recognition of features in 

signals and their Fourier or wavelet spectra and spectrograms. The algorithms 

presented use techniques developed for image processing and are suitable for 

morphologic investigations. These algorithms are able to localize and extract 

features and to determine their topologic and geometric characteristic invariants, 

which are used to represent and to classify the objects by applying subtle 

similarity measures. Small object recognition in cases of heavy contamination by 
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noise of mainly random nature is successfully performed in rather general 

circumstances. This is applied well to the automatic recognition of short frequency 

pulses in the spectrograms. The methods presented are useful even for 

semiautomated or manual cases, when for example their automated application is 

limited because of some of the discussed reasons and can be applied for a detailed 

structural inspection and comparison of the features. Due to a modest complexity, 

all are real time (RT) applicable, even without the enhanced hardware. 

Obviously, the real experimental practice always offers nice counterexamples that 

do not fit well into the predefined conceptual scheme, such as parts of the features 

in the BP spectrograms at the top of Fig. 5 (or granular noise indistinguishable 

from the objects – dots in Fig. 15). Photo morphology revealing the lower feature 

contour is very fuzzy. The left part of the top structure can hardly be called a 

feature at all, but rather a random cloud of dots. But the complete set of the dots is 

definitely functionally related. We have the appearance of a feature out of the 

randomness, which characterizes some micro-phenomena that are still not 

semantically bound at the macroscopic scale. This is a kind of reality where the 

method presented here might exhibit some problems. In circumstances like this, 

one should search for transformations that are able to convert information in the 

signal into simpler topological or geometrical structures. Nevertheless, our 

approach can be well applied to a variety of different cases of real time 

spectrogram features. Similarity and pattern classification in the continuous 

domains is properly modeled with metrics in the classic metric spaces, and the 

majority of our implemented similarity measures are of this kind. There are many 

other approaches. One mentioned earlier is the recognition of bumps in EEG 

spectra [18], which is done in the similar spirit as the perspective of this paper. 

The brain is investigated with nonlinear analysis methods too. The chaos theory is 

applied in the analysis of brain activity; the estimation of the fractal dimension in 

time domain gives a measure of signal complexity. It has been successfully used 

with some brain injuries [19]. 

Finally, it is worth mentioning that the theoretical development and steadily 

growing applications of pseudo-analysis are giving alternative methods for the 

mathematical design of the extraction criteria, automatic threshold design and so 

on; see for instance [20, 21]. 
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