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Abstract: It is well known that the structure of social, organization and economic networks
have a huge effect on the behaviour of the underlying system. This structure is often consid-
ered as a network, and modelling the formation of these networks is an active research area
of complex systems. In this paper we present a simple network generation model: there is a
closed population of agents, and the agents are voting to the connections according to their
fixed preferences. These preferences are denoted by real numbers, and can be considered as
simply the desired number of connections or social capital.
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1 Introduction
Networks play a central role in determining the outcome of many social and eco-
nomic relationships as well in the effectiveness of organizations such as companies.
The fact, that we live in hierarchies [1] is a fundamental feature of our society and
one of the basic organization rule of structures such as companies, the government,
schools, army, etc. Social networks are also important in determining how diseases
spread [2] ,which products we buy [3], how we vote [4] and so on. These fields are
very interesting in their own right, but better understanding of them can have several
practical consequences. Avoiding the spreading of fake news [5], better infection
control [6], improving traffic and designing smart cities [7] are just a few examples
of many. At this point it is useful to define two crude categories where networks
are important in sociology and economy: In the first one, the network structure is a
distribution or service network, in the second, the network connects different indi-
viduals (persons, companies, countries). In the former case the structure is usually
a result of some kind of design, in the latter case however the formation of the net-
work depends on the independent and often self-interested agents. This latter case
is much more interesting for us. In case of modelling social and economic network
formation, the models come mainly from two fundamental disciplines: the first is
the theory of random networks, where the network formation is considered as a
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random process, and the second is game theory, where strategic models of how net-
works are formed are developed. The static voting model is in the random network
model family. Here we are not going to review the huge area of random networks,
but just mention some important milestones. The field of random graphs was first
introduced by the famous paper of Erdos and Rényi [8]. The Erdos-Rényi ERn(p)
random graph has n vertices and each pair of vertices is independently connected
with probability p. Despite the fact that ERn(p) is the simplest imaginable model
of a random network, it has fascinating phase transition when p varies. Looking at
many real world networks [9] such as social network, Internet, transport networks,
biological networks, etc., we can see that their degree distribution is power-law, and
they have the so called small-world property. Since the ER model has Poisson de-
gree distribution, it is not a good model of real world networks. There are many
extensions of this random graph model, for example the inhomogeneous version of
the ER model [9] that we will use later in this paper, the configuration model [9],
the generalized random graph model [9], and the most general form of the inhomo-
geneous random graphs [10] defined by kernel functions. In this paper we only deal
with static models, but we have to mention one network growth model family: the
class of preferential attachment models are such that new elements are more likely
to attach to elements with high degree compared to elements with small degree.
This phenomenon was first published by Barabási and Albert [11] and their model
is called Barabási - Albert (BA) model. Networks generated by the BA model show
power-law degree distribution. In this paper we continue and extend the work on
static edge voting models [12]. The structure of this paper is as follows: after an
introduction to the necessary notions and definitions, in Section 2 we turn to the
Inhomogeneous Random Graphs. In this section we have two main points: the
Chernoff-bounds and the fact that we can use the Gauss distribution to approximate
the distribution of the degree of a given node in the network. In Section 3 we de-
fine the static edge voting model (SEV), introduce the Mixture of Gaussians (MOG)
method to estimate the degree distribution of the graph (Subsection 3.1) and discuss
how we generate the parameters of the SEV models to be able to execute numeri-
cal tests (Subsection 3.2). In Subsections 3.3, 3.4 and 3.5 we define and analyse 3
special cases of the SEV model: the proportional, the Poission and the biased vot-
ing model. We will demonstrate the usability of the MOG approximation with the
proportional model, and in the following models we will use only this.

1.1 Notations and definitions
We denote the set {1, ...,n} with [n]. In our models there are only simple graphs. A
G simple graph is given by a pair: G = (V (G),E(G)), where V (G) is the vertex set
of the G graph and E(G) contains the edges of the graph. The vertices are marked
with integer numbers, so the vertex set of the graph with n vertices is V = [n]. The
degree of a node in the graph is definded as the number of neighbours of the node.
For a given a ∈ V we denote the degree of a by d(a) or simply by da. We can
enumerate the degrees of all the nodes in a sequence: (d1, ...,dn). This sequence is
called the degree sequence of the G graph. We define the degree distribution of the
G graph as the distribution of d(U), where U is a randomly and uniformly chosen
node. Therefore d(U) is a random variable even in case of a deterministic graph.
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In deterministic case we can express P(d(U) = k) as #{a|a ∈ V,da = k}/n. If G
is random we can handle da as a random variable, and we refer to the distribution
of da as the distribution of the degree of the node a. We will use the abbreviation:
Vi = V \ {i}. Now we define the inhomogeneous random graphs (IRG) as it is de-
fined in [9]. Lets denote P = {pi j}, 1 ≤ i < j ≤ n, the edge probabilities in the
graph, and IRGn(P) for the inhomogeneous random graph for which the edges are
drawn independently, and the probability that the edge {i, j} is present in the graph
equals pi j. All the models in this paper have an equivalent IRG representation, and
we will use either the original definition or the equivalent IRGn(P) depending on
which one is more suitable.
In order to compare discrete probability distributions, we use two methods: to-
tal variation distance [9] and Jensen-Shannon divergence [13]. In general, for two
probability measures µ and ν , the total variation distance is defined as:

dTV (µ,ν) = sup
A
|µ(A)−ν(A)|

For discrete probability distributions with the same X support (px)x∈X and (qx)x∈X,
these measures are given by µ(A) = ∑a∈A pa and ν(A) = ∑a∈A qa. In this case it
becomes:

dTV (p,q) =
1
2 ∑

x
|px−qx|

The Jensen-Shannon divergence is the symmetrized and smoothed version of the
Kullback–Leibler divergence, so first we have to define it. For discrete probability
distributions (px)x∈X and (qx)x∈X defined on the same probability space:

KL(p,q) = ∑
x∈X

px log
(

px

qx

)
The Kullback–Leibler divergence is defined only if for all x, qx = 0 implies that px =
0. Whenever px is zero the contribution of the corresponding term is interpreted as
zero. The KL divergence is not symmetric. To make it symmetric define the Jensen-
Shannon divergence as:

JS(p,q) =
1
2

KL(p,m)+
1
2

KL(q,m)

where the (mx)x∈X distribution is defined as: mx =
1
2 (px +qx)

2 Properties of Inhomogeneous Random graphs
It would be worthwhile to know the distribution of the di degree of an arbitrary i
vertex in the IRG model. However, computationally it is very expensive to compute
the proper distribution. Generally:

P(di = k) = ∑
S⊆Vi,|S|=k

∏
j∈S

pi j ∏
j∈Vi\S

(1− pi j) (1)
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In our preliminary paper [12] we have formalized the following proposition, and the
proof is also given there. This is not a new theorem, but only the reformulation of
the Chernoff bound [9] for the case of inhomogeneous random graphs.

Proposition 1. If given a IRGn(P) model where P = {pi j}, i≤ i < j ≤ n, and di is
the degree of the vertex i, then for all D ∈ N:

P(di ≥ D)≤ e−tDMi(t) for all t > 0

and

P(di ≤ D)≤ e−tDMi(t) for all t < 0

where

Mi(t) = ∏
[n]\i

(pi jet +1− pi j)

Now, we prove the following corollary of Proposition 1:

Corollary 1. If given a IRGn(P) model where P = {pi j}, i≤ i < j ≤ n, and di the
degree of the vertex i, then for all D ∈ N:

P(di ≥ D)≤ (L(D))n−1 if D > (n−1)pi (2)

and

P(di ≤ D)≤ (L(D))n−1 if D < (n−1)pi (3)

where:

L(D) = pi

(
(1− pi)

D
n−1

pi(1− D
n−1 )

)1− D
n−1

+(1− pi)

(
(1− pi)

D
n−1

pi(1− D
n−1 )

)− D
n−1

(4)

and

pi =
1

n−1 ∑
j∈Vi

pi j

Proof. Using the notations of Proposition 1:

Mi(t) =

(∏
[n]\i

(pi jet +1− pi j)

) 1
n−1
n−1

Applying the inequality (∏xi)
1
n ≤ 1

n ∑xi and rearranging the terms, we have:

e−tDMi(t)≤ (L(D, t))n−1
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where:

L(D, t) = e−t D
n−1
(

piet +1− pi
)

∂L(D, t)
∂ t

=− D
n−1

e−t D
n−1
(

piet +1− pi
)
+ e−t D

n−1 piet =

= et(1− D
n−1 )pi

(
1− D

n−1

)
+(pi−1)

D
n−1

e−t D
n−1

And the second derivative:

∂ 2L(D, t)
∂ 2t

= et(1− D
n−1 )pi

(
1− D

n−1

)2

− (pi−1)
(

D
n−1

)2

e−t D
n−1

Since ∂ 2L(D,t)
∂ 2t is positive for all t therefore L(D, t) is convex for any fixed D, so

L(D, t) has a unique minimum, what we can get solving ∂L(D,t)
∂ t = 0 for t:

t∗ = argmintL(D, t) = ln

(
(1− pi)

D
n−1

pi(1− D
n−1 )

)
After substitution back to L(D, t):

L(D) = L(D, t∗) = pi

(
(1− pi)

D
n−1

pi(1− D
n−1 )

)1− D
n−1

+(1− pi)

(
(1− pi)

D
n−1

pi(1− D
n−1 )

)− D
n−1

We still have to show that in case of (2) t∗ > 0 and similarly in case of (3) t∗ < 0.
Lets start with (2) and assume that D

n−1 > pi

t∗ = ln

(
(1− pi)

D
n−1

pi(1− D
n−1 )

)
> 0

if and only if

(1− pi)
D

n−1
> pi

(
1− D

n−1

)
After rearrange the terms, we get:

D
n−1

> pi

Similarly, if we assume that D
n−1 < pi we can see that t∗ < 0 in the same way.

Corollary 1 is a less strict, but easier to use theorem when L(D) < 1 holds. In
ref [12], we showed that we can find an approximation of the degree distribution of
node i with the N (µ,σ) Gauss distribution, setting the parameters to µ = E[di] =

∑ j∈Vi pi j and σ2 =Var[di] = ∑ j∈Vi pi j(1− pi j). The Lyapunov variant of the central
limit theorem [14] gives the theoretical background for this. In this paper we refer
to this approximation method as the Gauss approximation of the degree distribution
of the nodes.
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3 The static edge voting model
We divide the set of agents to disjoint groups: V = [N] = S0∪ ...∪SM , and suppose
that the behaviour of the agents belonging to a group is the same. Denote Vab a
random variable that means the vote of the a node to the {a,b} edge. For all a ∈ Si
and b ∈ Sb, Vab has the same probability distribution. For any different nodes a and
b the probability that there will be an edge between the nodes a and b in the graph is
up to the incoming votes and it is equal to s(Vab,Vba), where s is the edge probability
function.

Definition 1. Denote SEVN( {S0, ...,SM}, {Fi j|i, j ∈ {0, ...,M}}, s) the static edge
voting model, where:

• N is the number of agents and V = [N] is the set of agents.

• {S0, ...,SM} is a partition of the V set and M is the number of groups in the
partition. (Here we allow empty sets in the partition.)

• Denote Vab the random variable that means the vote of the a node to the {a,b}
edge candidate.

• {Fi j|i, j ∈ {0, ...,M}} is a set of probability distributions. For all a ∈ Si and
b ∈ Sb the law of Vab is Fi j.

• s :R×R 7→ [0,1] is the edge probability function, a non-decreasing integrable
function in both arguments. Every {a,b} (a 6= b) node pair will be part of the
graph with probability s(Vab,Vba).

We proved in [12] the following simple proposition:

Proposition 2. Given a SEVN( {S0, ...,SM}, {Fi j|i, j ∈ {0, ...,M},s} static edge vot-
ing model the expected value of the da degree of the a node, if a ∈ Si:

E[da|a ∈ Si] =
M

∑
j=0

k jE[s(Vab,Vba)|b ∈ S j]−E[s(Vab,Vba)|b ∈ Si,a 6= b]

where ki = |Si|

3.1 Approximation of the degree distribution
It is clear that the equivalent IRGn(P) of the SEVN( {S0, ...,SM}, {Fi j|i, j∈{0, ...,M}},
s) is the IRG with edge probabilities:

Pab = P({a,b} ∈ E)

We can use the total probability rule to express the degree distribution of the SEVN
random network:

P(d(U) = k) =
M

∑
i=0

P(U ∈ Si)P(d(U) = k|U ∈ Si) (5)
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We can get P(U ∈ Si) =
#Si
N directly from the SEVN model, and we can compute

P(d(U) = k|U ∈ Si) directly using the equivalent IRGn(P) model and equation (2).
However, the direct use of equation (2) is computationally very expensive. In spite
of this, we can use the Mixture of Gaussian’s (MOG) model: apply the Gauss ap-
proximation of P(d(U) = k|U ∈ Si) as defined in Section 2. For arbitrary a ∈ V
denote µa = ∑

N
b=1 Pab and σ2

a = ∑
N
b=1 (Pab(1−Pab)). It is easy to see that for a

fixed Si and for arbitrary a,b ∈ Si, Pac = Pbc for all c ∈V . Therefore the µa and σ2
a

values are the same for all a ∈ Si, that we denote by µSi σ2
Si

. We use the estimation
P(d(U) = k|U ∈ Si)≈ F(k+0.5; µSi ,σ

2
Si
)−F(k−0.5; µSi ,σ

2
Si
), where F(x; µSi ,σ

2
Si
)

is the cumulative distribution function of the Gauss distribution with parameters µSi

and σ2
Si

. Plugging these back to equation (5), we have

P(d(U) = k)≈
N−1

∑
i=0

P(U ∈ Si)
(
F(k+0.5; µSi ,σ

2
Si
)−F(k−0.5; µSi ,σ

2
Si
)
)

(6)

3.2 Degree sequences
In the rest of the paper we would like to present numerical examples, and for this,
we need to generate D = (D1, ...,Dn) degree sequences. We use four methods to
generate these sequences: constant, uniform, binomial and lognormal. The constant
degree sequence is the simplest: we just create a N-length sequence of constant val-
ues: ConstSeq(C,N) = (C, ...,C). The second method is the uniform. We denote
this with Uni f ormSeq(MIN,MAX ,N), where MIN, MAX and N are the minimum,
the maximum and the size of the sequence. The last two are the binomial and log-
normal, denoted by BinomSeq(p,N) and LognormalSeq(µ,σ2,N), where p and N
are the parameters of the binomial distribution and N is the length of the sequence
at the same time, while µ and σ2 are the parameters of the lognormal distribu-
tion. We omit here the algorithm what we used generating these sequences. The
main point here is that the values in the generated sequences are approximately
obey the uniform, lognormal and binomial laws. After the degree sequence gen-
eration, we computed the empirical distribution of each sequence. In case of the
sequences BinomSeq(0.1,25), LognormalSeq(1.7,0.4,25), BinomSeq(0.1,1000),
LognormalSeq(4,0.6,1000) the result distributions are plotted on Figure 1. Note
that except the constant sequence case, the empirical distributions of the sequences
are just the approximations of the source distributions.

3.3 The proportional edge voting model
The static proportional edge voting model is a static random network model where
the Vab random variables do not depend on b, and for all a∈ Si, Vab∼Bernoulli( i

N−1 )
and s(x) = x/2. This model can be interpreted as that the agent a who belongs to
the group Si would like to achieve Da = i degree. The probability that the a agent
gives a vote on the {a,b} edge candidate is Da

N−1 . This voting rule justifies the ”pro-
portional” name. The direct consequence of this setup is that the number of agent
groups M = N− 1, and Si is the group of agents who target degree is i. The gen-
eral definition of the static edge voting model assumes that the distribution of the
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Figure 1
The empirical distribution of the degree sequences: BinomSeq(0.1,25) (top-left),

LognormalSeq(1.7,0.4,25) (top-right), BinomSeq(0.1,1000) (bottom-left),LognormalSeq(4,0.6,1000)
(bottom-right)

Vab random variables are given. In case of the proportional model this is equivalent
with that the {Da|a ∈ V} degree sequence is given, where Da can be considered as
the desired degree of agent a. It is clear that:

P({a,b} ∈ E) =
1
2

Da +Db

N−1

From Proposition 2 we can directly get:

E[da|a ∈ Si] =
1

2(N−1)

(
i(N−2)+

N−1

∑
j=0

k j j

)

Using the estimation: N−1≈ N and N−2≈ N we have:

E[da|a ∈ Si]≈
1

2N

(
iN +

N−1

∑
j=0

k j j

)
=

1
2

(
i+

N−1

∑
j=0

k j

N
j

)
=

1
2
(
i+D

)
(7)

Where D = ∑
N−1
j=0

k j
N j is the mean target degree. This result shows that this model

has a ”smoothing” effect on the degrees. Equation 7 also shows that if an agent a
has a desired degree Da close to the average D desired degree, then she/he can easy
achieve Da in mean, however when Da is far from D, then hitting the aims is much
harder: the D average value has a gravity.
Lets continue with the degree distribution of the static edge voting model. For
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this, use the four degree sequence generator methods to generate the desired degree
sequences. To be able to compute the exact degree distributions using equations
(2) and (5) first we use a small network with 25 nodes. The desired degree se-
quences are: ConstSeq(2,25), BinomSeq(0.1,25), LognormalSeq(1.7,0.4,25) and
Uni f ormSeq(0,4,25). The degree distribution of each case is plotted on Figure 2.
On Figure 3 we also plotted the MOG approximation of the degree distributions.
In order to compare the exact degree distributions and the MOG approximations,
we computed the total variation distance and the Jensen-Shannon divergence of the
distributions. The results are summarised in Table 1. We can conclude that the ex-
act and the MOG approximated distributions are close to each other. We can not
compute the exact degree distribution for greater networks, because it is computa-
tionally very expensive. However, in one special case, we know the exact distri-
bution: in case of ConstSeq(C,N) desired degree sequence the probability of each
edge is p(N,C) = C

N−1 , therefore this model is equivalent to the Erdos-Renyi ran-
dom graph: ER(N, p(N,C)). We know that the degree distribution of this ER model
is binomial with parameters N− 1 and p(N,C). We computed therefore the total
variation distance and the Jensen-Shannon divergence of the binomial distribution
with parameters N−1 and p(N,C) and the MOG approximation of the degree distri-
bution with desired degree sequence ConstSeq(C,N), where N ∈ {10,20, ...,2000}
and C = N/10. The results are in Figure 4. We can see, that both distances de-
crease as N increases, however the rate of decline is decreasing. We can con-
sider the proportional edge voting model as a transformation of the distribution
of the input parameters, e.g. the distribution of the desired degree sequence. To
be able to illustrate this with numerical examples, we set the desired degree se-
quence to ConstSeq(100,1000), LognormalSeq(4,0.6,1000), BinomSeq(0.1,1000)
and Uni f ormSeq(0,99,1000). We used the MOG approximation of the degree dis-
tribution, and the results are in Figure 5. We also computed the empirical mean
and variance of the desired degree distribution and the approximated degree dis-
tribution of the proportional model. These values are collected in Table 2. From
Equation (7) we may expect that the model has a shrinking effect to the desired
degree distribution. However, this phenomenon is valid only in case of the log-
normal and uniform distributions. The constant degree sequence is a special case,
but it is not clear why this effect does not work when the input degree distribution
is binomial. Finally, we apply Corollary 1 to the IRG equivalent with the propor-
tional edge voting model to bound the probability that the degree of a given node is
greater/smaller than a value. In this numerical example, we set the desired degree
sequence to LognormalSeq(4,0.6,1000) and apply Corollary 1 to the nodes with
degrees 15, 60, 130, 170 respectively. Note that the average desired degree in this
case is 61.2919. On Figure 6 we plotted the bound probability in the function of D.
In the case, when the desired degree of the node is 15, we can realize that the bound
probabilities have a maximum around 38. This observation meets with equation (7).
We can do the same observation when the desired degree of the the node is 60, 130
or 170. Looking at the shape of the curves, we may have the idea, that the Chernoff
bound and the Gauss approximation of the degree distribution of a given node give
similar results.
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Table 1
Total variation distance (TV) and Jensen-Shannon divergence (JS) of the exact degree distributions and

the MOG approximation of the degree distributions when the desired degree sequences are:
ConstSeq(2,25), BinomSeq(0.1,25), LognormalSeq(1.7,0.4,25) and Uni f ormSeq(0,4,25)

ConstSeq BinomSeq LognormalSeq UniformSeq
TV 0.0668770019 0.0459734622 0.0257139778 0.0535480364
JS 0.0035851277 0.0015726680 0.0008468790 0.0022105596

Figure 2
The exact degree distributions of the proportional edge voting model when the desired degree sequences
are: ConstSeq(2,25) (top-left), BinomSeq(0.1,25) (top-right), LognormalSeq(1.7,0.4,25)(bottom-left),

Uni f ormSeq(0,9,25) (bottom-right)

Table 2
The mean and the variance of the desired degree distribution (µD, σD) and the degree distribution of the

proportional edge voting model using the Mixture of Gaussians approximation (µd(U), σd(U))

ConstSeq BinomSeq LognormalSeq UniformSeq
µD 100 99.88 61.2919 49.5
σD 0 87.8295 1242.1627 833.25

µd(U) 100 99.88 61.292 49.5
σd(U) 90.0733 111.8468 366.913 254.6096
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Figure 3
The degree distributions of the proportional edge voting model computing with the MOG

approximation, when the desired degree sequences are: ConstSeq(2,25) (top-left), BinomSeq(0.1,25)
(top-right), LognormalSeq(1.7,0.4,25)(bottom-left), Uni f orm(0,9,25) (bottom-right)

Figure 4
Total variation distance (left) and the Jensen-Shannon divergence (right) of the binomial distribution

with parameters N−1 and p(N,C) and the MOG approximation of the degree distribution with desired
degree sequence ConstSeq(C,N), where N ∈ {10,20, ...,2000} and C = N/10
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Figure 5
The degree distributions of the proportional edge voting model computing with the Mixture of

Gaussians approximation, when the desired degree sequences are: ConstSeq(100,1000) (top-left),
BinomSeq(0.1,1000) (top-right), LognormalSeq(4,0.6,1000(bottom-left), Uni f orm(0,99,1000)

(bottom-right)
.

Figure 6
Applying the additive version of the Chernoff bound (Corollary 1) to the IRG equivalent with the

proportional edge voting model with LognormalSeq(4,0.6,1000) desired degree sequence. We plotted
the bound probability in the function of D. The desired degree of the selected nodes are 15 (top-left), 60

(top-right),130 (bottom-left) and 170 (bottom-right).
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3.4 Voting model with Poisson voting law
Let’s discuss an example when the nodes may have more then one vote to a link.
Consider the case when Vab ∼ Poisson (λi) if a 6= b and a ∈ Si and the edge prob-
ability function is given as s(x) = 1− e−λx, where λ is the control parameter. We
have shown [12] that the probability of the {a,b} edge is

P({a,b} ∈ E|a ∈ Si,b ∈ S j) = 1− e(λi+λ j)(e−λ−1) (8)

And the expected degree of the a node is:

E[da|a ∈ Si] = N−1+ e2λi(e−λ−1)−
N−1

∑
j=0

e(λi+λ j)(e−λ−1) (9)

The parameters of the Poission voting model are {λi|i ∈ V} and the λ control pa-
rameter. We would like to compare the behaviour of the Poission model to the pro-
portional model. To be able to do this we use the same sequences to set the λi param-
eters of the model: ConstSeq(100,1000), BinomSeq(0.1,1000), LognormalSeq(4
,0.6, 1000) and Uni f ormSeq(0,99,1000), but in this case we apply these values to
set the λi parameters. However, we have an additional model parameter: λ , that
we have to set somehow. It is reasonable to set λ such that the mean of the {λi}
parameters approximately equals to the mean of the (MOG approximated) degree
distribution of the Poisson model. To achieve this, we used the bisection [15] root-
finder to find the appropriate parameter. The fitted parameters are collected in Table
3. We also added the variance of the degree distribution of the Poisson model and
the proportional edge voting model with the same {Di} sequence. The degree dis-
tribution of the Poisson models with the fitted parameter are plotted on Figure 7.
According to the plots and the variance numbers we can conclude that the Poisson
voting model and the proportional voting models behave in a very similar way in
this setup.
We can do the same, but fitting to the variance. The results of this approach are in
Table 4. We can see that changing the parameter λ we can get similar variability as
the input {λi} parameters have, but the price is that the mean is shifted.
We can now ask what is the role of the λ parameter in the model. We can investigate
the effect if we fix the {λi} parameters and observe how the mean and the variance
is changing when we change λ . We expect that λ behaves as the accelerator of the
model, as it is increasing, the mean is increasing, however the variance will reach a
maximum and then it will fall. Our experiments confirm these expectations. Fixing
the {λi} parameters in LognormalSeq(4,0.6,1000), we plotted the results in Figure
8.

3.5 Biased voting model
In this variant of the static edge voting model we modify the proportional edge
voting model. Here we consider the Da values as social capital, where the greater
Da means not only more desired degree but also greater influence. This idea is
similar to the preferential attachment rule in the Barabasi-Albert model [11]. To be
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Table 3
The fitted λ parameter of the Poisson voting model, when the {λi} parameters setted to

ConstSeq(100,1000), BinomSeq(0.1,1000), LognormalSeq(4,0.6,1000) and
Uni f ormSeq(0,99,1000). The first and the second lines are the mean and the variance of the λi

parameters. The third line is the fitted λ parameter for each cases. The forth and the fifth lines are the
variance of the (approximated) degree distribution in case of the Poisson and the proportional voting

model respectively.

ConstSeq BinomSeq LognormalSeq UniformSeq
µλi 100 99.88 61.2919 49.5
σλi 0 87.8295 1242.1627 833.25
λ 0.0005280 0.00052802 0.00051923 0.00051572

σPoi
d(U) 90.1494 109.7385 345.0582 246.0220

σ
pro
d (U) 90.0733 111.8468 366.913 254.6096

Figure 7
The degree distribution of the Poisson voting model, when the {λi} parameters are

ConstSeq(100,1000), BinomSeq(0.1,1000), LognormalSeq(4,0.6,1000) and Uni f ormSeq(0,99,1000)
and the λ parameter of each cases is setted to 0.0005280, 0.00052802, 0.00051923, 0.00051572

respectively
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Table 4
The fitted λ parameter of the Poisson voting model, when the λi parameters setted to

ConstSeq(100,1000), BinomSeq(0.1,1000), LognormalSeq(4,0.6,1000 and Uni f ormSeq(0,99,1000).
The first line is the variance of the λi parameters. The second line is the fitted λ parameter for each

cases. The third and the forth lines are the means of the (approximated) degree distribution in case of
the Poisson and the proportional voting model respectively.

ConstSeq BinomSeq LognormalSeq UniformSeq
σλi 0 87.8295 1242.1627 833.25
λ 0.05850230 0.00042395 0.00112025 0.00105202

µPoi
d(U) 998.999 81.089 126.781 97.933

µ
pro
d(U)

100 99.88 61.2919 49.5

Figure 8
Above, the mean and the variance of the Poisson voting model are plotted in the function of parameter

λ , when the λi parameters are LognormalSeq(4,0.6,1000). Below the variance is plotted in the
function of the mean
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able to formalize this with the edge probability function, first define:

v(Vab,Vba) =
Da

N−1
Vab +

Db

N−1
Vba

In the function v the vote of agent a has a weight Da
N−1 . Using the v function we can

formalize the s function for any fixed η > 0:

sb(Vab,Vba) = 1− e−ηv(Vab,Vba)

As voting rule we use the Bernoulli voting rule, where Vab does not depend on b and
P(Vab = 1) = pi if a ∈ Si

Proposition 3. In the static edge voting model using the Bernoulli voting rule and
the sb edge probability function, for any a ∈V node:

P[{a,b} ∈ E] = p∗ab + p∗ba− p∗ab p∗ba (10)

where:

pab = P(Vab = 1)

p∗ab = pab

(
1− e−η

Da
N−1

)
Proof. Using the definition of sb and the fact that the expected value of a Bernoulli
random variable is its parameter, we have:

P[{a,b} ∈ E] = E[1− e−ηv(Vab,Vba)] = 1−E[e−ηv(Vab,Vba)]

Since the agents can give 0 or 1 vote, we can express the expected value directly
using the definition:

1−E[e−ηv(Vab,Vba)] = 1− e0(1− pab)(1− pba)− e−η
Da

N−1 pab(1− pba)−

− e−η
Dba
N−1 (1− pab)pba− e−η

Da+Db
N−1 pab pba =

After doing the multiplications, rearranging and grouping the appropriate terms, we
get the statement:

= pab(1− e−η
Da

N−1 )+ pba(1− e−η
Db

N−1 )− pab(1− e−η
Da

N−1 )pba(1− e−η
Db

N−1 ) =

= p∗ab + p∗ba− p∗ab p∗ba
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Proposition 4. In the static edge voting model using the Bernoulli voting rule and
the sb edge probability function, for any a ∈V node:

E[da] = ∑
b∈Va

(p∗ab + p∗ba− p∗ab p∗ba)

where:

pab = P(Vab = 1)

p∗ab = pab

(
1− e−η

Da
N−1

)
Proof. Since the degree of a node is the number of its neighbours in the graph, and
the expected value of a Bernoulli random variable is its parameter:

E[da] = ∑
b∈Va

P[{a,b} ∈ E]

Applying Proposition 3 we get the statement.

Using equation (10) we can construct the equivalent IRG model. As before in the
case of the Poisson model, we would like to compare the model to this proportional
model and to the Poisson model. In order to do this we use the same sequences to
set the {Di} parameters of the model: ConstSeq(100,1000), BinomSeq(0.1,1000),
LognormalSeq(4,0.6,1000) and Uni f ormSeq(0,99,1000). We use the proportional
voting rule: pi =

Di
N−1 but we also have to set the η parameter. We do the same as be-

fore: set the η parameter such that the mean of the {Di} parameters approximately
equals to the mean of the (MOG approximated) degree distribution. To achieve this,
we used the bisection [15] root-finder again. The fitted parameters are collected in
Table 5. and the corresponding degree distributions are on Figure 9. As in the case
of the Poission model, we also fitted the η parameters to hit the variance of the {Di}
parameter set. The results of this method are in Table 6. When we fitted the η pa-
rameter to hit the mean of the input {Di} sequence, we can see that we can achieve
greater variance in the degree distribution than in the case of the other two models.
While we fitted to hit the variance, we can now see that the shift of the mean is not
so high then in case of the Poisson model.
Now we investigate the role of the η parameter with numerical experiments. As be-
fore, fix the {Di} parameters to LognormalSeq(4,0.6,1000) and compute the mean
and the variance of the approximated degree distribution for each η ∈ 0,1, ...,100
The results are plotted in Figure 10.

4 Discussion
In this paper we continued and extended our preliminary work [12] about static
edge voting models. In Section 2 started with reviewing the properties of inho-
mogeneous random graphs (IRG), because IRGs are our basic tool, and proved a
corollary of the Chernoff-bounds what we can use to bound the probability that the
degree of a fixed node is below or above of a given D value. In Section 3 we gave
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Table 5
The fitted η parameter of biased model, when the Di parameters setted to ConstSeq(100,1000),

BinomSeq(0.1,1000), LognormalSeq(4,0.6,1000 and Uni f ormSeq(0,99,1000). The first and the
second lines are the mean and the variance of the Di parameters. The third line is the fitted η parameter

for each case. The next lines are the variance of the (approximated) degree distribution in case of the
biased, the proportional voting model and the Poisson model respectively.

ConstSeq BinomSeq LognormalSeq Uniform
µDi 100 99.88 61.2919 49.5
σDi 0 87.8295 1242.1627 833.25
η 7.1914 7.1591 9.5026 11.1728

σb
d(U) 90.0733 148.266 884.0557 444.9441

σ
pro
d (U) 90.0733 111.8468 366.913 254.6096
σPoi

d(U) 90.1494 109.7385 345.0582 246.0220

Figure 9
The degree distribution of biased voting model, when the Di parameters are ConstSeq(100,1000),

BinomSeq(0.1,1000), LognormalSeq(4,0.6,1000 and Uni f ormSeq(0,99,1000) and the η parameter of
each cases is setted to 7.1914, 7.1591, 9.5026, 11.1728 respectively
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Table 6
The fitted η parameter of the biased voting model, when the Di parameters setted to

ConstSeq(100,1000), BinomSeq(0.1,1000), LognormalSeq(4,0.6,1000 and Uni f ormSeq(0,99,1000).
The first line is the variance of the λi parameters. The second line is the fitted η parameter for each

case. The next lines are the means of the (approximated) degree distribution in case of the biased, the
proportional voting model and the Poission model respectively.

ConstSeq BinomSeq LognormalSeq UniformSeq
σDi 0 87.8295 1242.1627 833.25
η 0 3.8873 16.348 26.3628

µb
d(U) 0 63.654 82.00028 76.305

µ
pro
d(U)

100 99.88 61.2919 49.5
µPoi

d(U) 998.999 81.089 126.781 97.933

Figure 10
Above, the mean and the variance of the biased voting model are plotted in the function of parameter η ,
when the Di parameters are LognormalSeq(4,0.6,1000) Below the variance is plotted in the function of

the mean
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the general definition of the static edge voting models, and introduced the method
of Mixture of Gaussians to be able to estimate the degree distribution of the model.
We dealt with three special cases: the proportional edge voting model, the Pois-
son model and the biased voting model. In case of the proportional model any a
agent votes for the {a,b} edge candidate with probability proportional to its Da de-
sired degree, and the probability that {a,b} becomes an edge is just the average
of the incoming votes. We have seen, that the proportional model has a smooth-
ing effect, the expected degree of a node a is approximately the average of the
Da desired degree of a and the D mean desired degree. In the Poisson model the
agents can give more votes to an edge candidate, and the distribution of the votes
given by agent a is Poisson(λi) if a ∈ Si. The edge probability function here is
s(x) = 1− e−λx where λ is a control parameter. The input parameters are in this
model the {λa|a ∈V} parameters of the Poisson distributions and the λ control pa-
rameter. We have seen, that if we set λ such that the mean of the degrees is equal
to the mean of {λa|a ∈ V}, then the Poisson edge voting model behaves like the
proportional model, however we can get similar variance in the degrees like in the
{λa|a ∈ V} input sequence at the price that the mean of the degree distribution is
shifting. The biased voting model is the modification of the proportional model in
a way that the votes of agent a is weighted by Da

N−1 . In this model Da can be con-
sidered as social capital. This biased behaviour is enforced by the edge probability
function: sb(Vab,Vba) = 1− exp

(
−η

(
Da

N−1Vab +
Db

N−1Vba

))
. We have seen that we

can achieve greater variability in degree as in case of the proportional and the Pois-
sion models. Lets do now a final comparison as a summary. Fix again the input
parameters of all the three models: in case of the proportional and biased models set
the {Di|i ∈V} sequences to LognormalSeq(4,0.6,1000), and in case of the Poisson
model set {λi|i ∈ V} to LognormalSeq(4,0.6,1000) again. Choose the control pa-
rameters λ and η in case of the Poisson and the biased models forcing the mean of
the degree distribution equal to the mean of the input LognormalSeq(4,0.6,1000)
sequence. Now compute the expected degree of the nodes for a reference node for
each non-empty Si agent group, and plot E[da|a ∈ Si] in the function of the pa-
rameter (Di or λi). The results are in Figure 11. We can see that the proportional
and the Poission models are behaving almost identically, and we can experience the
”smoothing” behaviour in both cases. However, in case of the biased model after a
short initial period the curve of the expected degrees becomes close to the identical
function, which shows that the biased model more-or-less preserves the variability
of the input parameter set in the degree distribution.
We note that the SEV model better describes the process in which agents explore
their environment in the social space, but the survival of relationships are affected by
other factors. A natural extension is to make the model temporal, and the previous
note makes sense only in temporal networks: agents first explore their environment
by making connections, but maintaining these connections is a different process.
Finally, here we supposed a small population, where every agent can link to any
other agent. However, in larger populations this is not true, so we have to include
the distance into our framework in some way.
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Figure 11
Comparison of the expected degrees of the nodes in the function of the model parameters. The

horizontal axis is the parameter and the vertical axes is the expected degree of the node in the function
of the parameter. The proportional, the Poission and the biased models are represented by the red, green

and blue lines respectively. The blue dashed line is the identical function.
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