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Abstract: In this work, we address the task of feature ranking for hierarchical multi-label 

classification (HMLC). The task of HMLC concerns problems with multiple binary 

variables, organized into a hierarchy of target attributes. The goal is to train a model to 

learn and accurately predict all of them, simultaneously. This task is receiving increasing 

attention from the research community, due to its wide application potential in text 

document classification and functional genomics. Here, we propose a group of feature 

ranking methods based on three established ensemble methods of predictive clustering 

trees: Bagging, Random Forests and Extra Trees. Predictive clustering trees are a 

generalization of decision trees, towards predicting structured outputs. Furthermore, we 

propose to use three scoring functions for calculating the feature importance values: 

Symbolic, Genie3 and Random Forest. We test the proposed methods on 30 benchmark 

HMLC datasets, show that Symbolic and Genie3 scores return relevant rankings, that all 

three scores outperform the HMLC-Relief ranking method and are computed in very time-

efficient manner. For each scoring function, we find the most appropriate ensemble method 

and compare the scores to find the best one. 

Keywords: hierarchical multi-label classification; feature ranking; ensemble methods; 

Relief 

1 Introduction 

Classification is a task in predictive modelling, where we develop a model that 

takes a vector x of descriptive variables (features) xi as the input, and predicts the 

class value y, for a given example. If y can take two different values, the task at 

hand is referred to as binary classification. Otherwise (y can take more than two 

values), the task at hand is multi-class classification. In both cases, every example 

is assigned precisely one value. For example, one can predict whether a person is 

sick, where y ∈ {yes, no} (binary), or what is the blood type of a person where y ∈ 

{A, B, AB, 0} (multi-class). In both cases, class values are mutually exclusive. A 

related task is multi-label classification (MLC). As opposed to the standard 
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classification, a MLC predictive model predicts which labels l from a predefined 

set ℒ  are relevant for a given example. For example, one can predict which of the 

genres from the set ℒ  = {romance, drama, comedy} are relevant for a given film. 

Clearly, a film can be drama and comedy at the same time. 

 

Figure 1 

An exemplary hierarchy of animals 

Hierarchical MLC (HMLC) is a generalization of MLC, where the labels are 

organized into a hierarchy that is given as a binary relation <, which partially 

orders the set ℒ . If l1 < l2, we say that l1 is a predecessor of l2. This relation 

imposes the hierarchical constraint: If l is relevant for a given example then all 

the predecessor labels are also relevant for the example. Fig. 1 shows a toy 

hierarchy of groups of animals. For example, animal < l for all labels l ∈ ℒ , Asian 

< tiger etc. The label elephant has two parents (African and Asian) and one 

additional predecessor (animal). Thus, if an example is an elephant, then it is also 

an African, Asian and an animal. If every label has, at most, one parent, the 

hierarchy is tree-shaped. Otherwise (as it is the case in the toy hierarchy), it is a 

general directed acyclic graph (DAG). In this paper, DAG refers only to the 

hierarchies that are not also tree-shaped. 

HMLC is a practically relevant task with problems occurring in life sciences (e.g., 

gene function prediction, disease classification), environmental sciences (e.g., 

habitat modelling, remote sensing), multimedia (e.g., image classification and 

retrieval) and semantic web (classification and analysis of text and web pages). 

Furthermore, many of the datasets used in this study (the data with -GO in their 

names) are from functional genomics - the goal there is to assign to each gene the 

multiple functions it has. In turn, the gene functions are organized into an 

ontology that takes the form of a DAG known as Gene Ontology (GO) [7]. 

It has been shown in several studies that use of a hierarchy improves the 

performance as compared to MLC in a variety of domains. For example, [29] 

show that the task of HMLC is beneficial to exploit the interdependencies among 

the labels. In [18] it is shown that the use of hierarchy helps obtain better single 

tree models. Moreover, [20] shows that MLC can be approached as HMLC by 

constructing hierarchies of the labels by clustering the label co-occurrences. 

However, it is still possible to approach HMLC problems by ignoring the 

hierarchy at the learning phase and use any of the MLC methods, such as binary 

relevance or power set approach [28]. Binary relevance is a simple method that 
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converts a MLC task to several binary classification tasks with y ∈ {yes, no} 

where we predict the relevance of each label separately. This approach is often 

criticized for it cannot make use of the interactions among the labels. In the label 

power set approach, the task of predicting a subset of ℒ  is converted to the task of 

predicting an element of the power set 2
ℒ

, and thus converting a MLC task to a 

multi-class classification task. However, the number of classes can be as high as 

2
|ℒ |

 which results in a very sparse dataset. At prediction stage, predecessors of the 

labels predicted as relevant, must be added to the set of relevant labels, so that the 

hierarchical constraint is met. A similar two-step approach [1] learns support 

vector machines for each class separately, and then combines the predictions using 

a Bayesian network model so that the hierarchical constraint is met. However, 

method adaptation techniques where an existing method is adapted to a new 

problem may be more appropriate. This can be done with predictive clustering 

trees (PCTs), which were shown to outperform their basic versions that follow the 

binary relevance approach [29]. 

In this paper, we do not address the task of building predictive models for HMLC. 

Rather, we propose a feature ranking method that is useful in this context. Feature 

ranking is another important task in machine learning, where the goal is to assess 

the importance of every descriptive attribute (feature) by using some scoring 

function. The output of a feature ranking algorithm is a list of features that is 

sorted with respect to the scores. 

Feature ranking is typically considered a part of data preprocessing, since it can be 

used to reduce the dimensionality of the input space, so that only the features that 

contain the most information about the labels (or target(s) in general) are kept in 

the dataset. By doing this, we decrease the computational cost of building a 

predictive model, while the performance of the model is not degraded. Another 

reason to compute a feature ranking is that dimensionality reduction typically 

results in models that are easier to understand, which is useful when a machine 

learning and domain experts collaborate. Predictive models, such as decision trees, 

are easier to interpret when a small number of the relevant features are used to 

learn them. 

There is a plethora of feature ranking methods for the task of classification [27]. A 

possible approach to MLC feature ranking is to adapt the binary relevance 

approach from predictive modelling, where at the first stage, feature importance 

values are computed for every label l ∈ ℒ  separately as in the classification case. 

After that, the feature importance values are averaged over the different labels and 

a single ranking is returned. However, the landscape of methods for feature 

ranking for HMLC is not well populated, due to the complexity of the task. 

This work contains the following contributions: 

a) We propose a group of novel feature ranking approaches for HMLC that 

base on the Symbolic, Genie3 [13] and Random Forest [4] scoring 
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functions, coupled with Bagging, Random Forests and Extra Trees 

ensembles of PCTs for HMLC [16, 25] 

b) We develop the parameter-less version of the Symbolic score. The earlier 

version has been (as well as the other two scores) previously evaluated in 

the context of multi-target regression [22] 

c) We evaluate the proposed approaches on 30 HMLC benchmark datasets by 

using kNN model that uses feature importance scores in the distance 

function: we compare them to two baselines and show that the proposed 

scoring functions outperform i) the non-informed ranking where all 

features have equal importance; ii) the adaptation of Relief algorithm to 

HMLC [26] 

The rest of the paper is organized as follows. In part 2, we describe predictive 

clustering trees, ensembles thereof and the proposed feature ranking scores. Then, 

we proceed to the HMLC-Relief description. In part 3, the experimental design is 

given. In part 4, the results are presented and finally, we summarize in the 

Conclusion Section. 

2 Methods 

We first present the ensemble-based feature rankings and then proceed to the 

Relief ranking. Both PCT framework and the Relief family of algorithms is 

implemented in the CLUS system (http://source.ijs.si/ktclus/clus-public). 

2.1 Predictive Clustering Trees and Ensembles Thereof 

PCTs generalize decision trees and can be used for a variety of learning tasks, 

including clustering and different types of structured output prediction tasks, e.g., 

multi-target regression, multi-label classification, hierarchical multi-label 

classification, time series prediction etc. [3] [16]. PCTs are induced with the 

standard greedy top-down induction of decision trees algorithm [5]. The heuristic 

h that is used for selecting the tests guides the algorithm towards small trees with 

good predictive performance. If there are no candidate tests, a leaf is created and 

the prototype of the instances belonging to that leaf is computed. 

In the HMLC case, the heuristic function is defined as follows. First, a label subset 

S ⊆ ℒ  is converted into 0/1-vector s of length |ℒ |, where sj = 1 ⇔lj ∈ S. We 

denote the variance of sj over subset of examples E ⊆ 𝒟TRAIN as varj(E). 

Additionally, each label lj is assigned a weight wj that is defined as wj = α 𝑤̅ 

(Parents(lj)) if the set of parents Parents(lj) is not empty and wj = 1 otherwise (in 

the root(s) of the hierarchy). The function 𝑤̅ (P) returns the average weight of the 
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label set P, and the parameter α ∈ (0, 1) is user-defined. Then, the impurity 

function is defined as 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝐸) =  ∑ 𝑤𝑗𝑣𝑎𝑟𝑗(𝐸)
|ℒ|
𝑗=1 , hence the labels lj that are 

closer to the root of the hierarchy have bigger influence on the heuristic function. 

Motivation for this is - considering the example in Fig. 1 - that one can only 

correctly predict leaf labels (dingo versus koala) if the correct predictions are 

made for their predecessors (Australian versus African). Heuristic h is defined as 

the decrease of the impurity after applying the test. In a leaf L, the prototype 

function returns a vector whose j-th component equals the average value of sj of 

the examples belonging to L. 

To calculate feature importance scores (i.e., feature rankings), we grow ensembles 

of PCTs instead of growing a single one. An ensemble is a set of base predictive 

models, whose prediction for each new example is made by combining the 

predictions of the models from the ensemble. In HMLC tasks, this is typically 

achieved by taking the average of the base-model predictions. In our experiments, 

we used the following three approaches. 

Random Forests, Bagging. In the Random Forests ensemble, instead of being 

derived from the original dataset 𝒟TRAIN, each tree in the ensemble is learned from 

a different bootstrap replicate B of the dataset 𝒟TRAIN, called bag. Additionally, we 

choose a random subset S of features in every internal node of the tree, and 

consider only the tests that are yielded by the features in S when looking for the 

best test. Typical size of the set S is of the order log F or root(F), where F is the 

number features in 𝒟TRAIN. If |S| = F, we obtain the Bagging procedure. 

Extra Trees. Each tree is being developed directly from 𝒟TRAIN, but the candidate 

tests for each node are now extremely randomized. Again, we chose a random 

subset S of features in every internal node of the tree, and consider only one 

randomly chosen test per chosen feature, when looking for the best test. 

2.2 Ensemble Scores 

Once we build an ensemble of PCTs, we can exploit the ensemble structure to 

compute the feature ranking in three different ways. In the following, we denote a 

tree as TR, whereas N ∈ TR denotes a node. Trees form a forest FO. Its size (the 

number of trees in the forest) is denoted as |FO|. The set of all internal nodes of a 

tree TR in which the feature xi appears as part of a test is denoted as TR(xi). 

Symbolic Ranking. In the simplest version of the score, we would count how 

many times a given feature occurs in the tests in the internal nodes of the trees. 

Since the features that appear closer to the root are intuitively more important than 

those that appear deeper in the trees, we weight these occurrences by the number 

of examples e(N) that reach a node N, and define the feature importance as 

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒
𝑆𝑌𝑀𝐵

(𝑥𝑖) =  
1

|𝐹𝑂|
∑ ∑ 𝑒(𝑁) / |𝒟TRAIN|𝑁∈𝑇𝑅(𝑥𝑖)𝑇𝑅∈𝐹𝑂         (1) 
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Genie3 Ranking. The main motivation for Genie3 ranking is that splitting the 

current subset E ⊆ 𝒟TRAIN, according to a test where an important attribute 

appears, should result in high impurity reduction. The Genie3 importance of the 

feature xi is thus defined as: 

 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒
𝐺𝐸𝑁𝐼𝐸3

(𝑥𝑖) =  
1

|𝐹𝑂|
∑ ∑ ℎ∗        𝑁∈𝑇𝑅(𝑥𝑖)𝑇𝑅∈𝐹𝑂    (2) 

where h* is the heuristic value of the variance reduction function. Since h* is 

proportional to e(N)=|E|, greater emphasis is again put on the attributes higher in 

the tree, where |E| is larger. 

Random Forest Ranking. (To avoid confusion, we use the plural form (Random 

Forests) to refer to the ensemble method, and singular form to refer to the feature 

ranking score (Random Forest)). This feature ranking method tests how much the 

noise in a given feature decreases the predictive performance of the trees in the 

forest. The greater the performance degradation, the more important the feature is. 

In contrast to the first two feature rankings which can be computed for all three 

ensemble methods, this score cannot be used with ensembles of Extra Trees, since 

it uses the internal out-of-bag estimates of the error. 

Once a tree TR is grown, the algorithm evaluates the performance of the tree by 

using the corresponding OOBTR examples. This results in the predictive error 

err(OOBTR), where lower error value corresponds to better predictions. To assess 

the importance of the feature xi for the tree TR, we randomly permute its values in 

the set OOBTR and obtain the set OOBTR
i
. Then, the error err(OOBTR

i
), is computed 

and the importance of the feature xi for the tree TR is defined as the relative 

increase of error after noising. The final Random Forest score of the feature is the 

average of these values over all trees in the forest, namely: 

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒
𝑅𝐹

(𝑥𝑖) =  
1

|𝐹𝑂|
∑

𝑒𝑟𝑟(𝑂𝑂𝐵𝑇𝑅
𝑖 )−𝑒𝑟𝑟(𝑂𝑂𝐵𝑇𝑅)

𝑒𝑟𝑟(𝑂𝑂𝐵𝑇𝑅)𝑇𝑅∈𝐹𝑂     (3) 

2.3 HMLC-Relief Ranking 

The Relief family of feature ranking algorithms calculates the feature importance 

scores by considering differences in the feature values between pairs of examples 

(an example and its nearest neighbors). More specifically, if the values of features 

of a pair of examples from the same class are different then the features' 

importance decreases. Conversely, if the feature values are different for examples 

from different classes then the features' importance increases. 

The values of the importance importanceRelief(xi) in the Relief can be written in a 

probabilistic fashion [17]: simplified to some extent, we have a relation: 

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒
𝑅𝑒𝑙𝑖𝑒𝑓

(𝑥𝑖) =  
𝑃𝑑𝑖𝑓𝑓𝐴𝑡𝑡𝑟,   𝑑𝑖𝑓𝑓𝑇𝑎𝑟𝑔𝑒𝑡(𝑖)

𝑃𝑑𝑖𝑓𝑓𝑇𝑎𝑟𝑔𝑒𝑡
−

𝑃𝑑𝑖𝑓𝑓𝐴𝑡𝑡𝑟(𝑖)−𝑃𝑑𝑖𝑓𝑓𝐴𝑡𝑡𝑟,   𝑑𝑖𝑓𝑓𝑇𝑎𝑟𝑔𝑒𝑡(𝑖)

1−𝑃𝑑𝑖𝑓𝑓𝑇𝑎𝑟𝑔𝑒𝑡
   (4) 
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where we define the probabilities Pev = P(ev) and Pev1,ev2 = P(ev1∧ ev2) that base 

on the events diff/sameAttr (two instances have different/same value of xi) and 

diff/sameTarget (two instances have different/same target value). The probabilities 

in Eq. (4) are modeled as the distances in the corresponding spaces: PdiffAttr is 

modeled by the distance di on the domain of feature xi, PdiffTarget is modeled by the 

distance dℒ  between two label subsets of ℒ , and PdiffAttr,diffTarget is modeled as their 

product di dℒ . This enables the generalization not only to numeric attributes and 

targets, but also to more complex target types, such as hierarchies as described in 

[26]. However, it must be assured that the upper bound of all distances is 1, which 

was overlooked in [26]. There, they proceed as follows: 

First, the distances di on the feature domains Xi, and the distance dX on whole 

descriptive domain X are defined as: 

 𝑑𝑖(𝒙1, 𝒙2) = {
𝟏[𝒙𝑖

1, 𝒙𝑖
2] : 𝑋𝑖 ⊈ ℝ

|𝒙𝑖
1−𝒙𝑖

2|

max𝒙 𝒙𝑖−min𝒙 𝒙𝑖
: 𝑋𝑖 ⊆ ℝ

      𝑑𝑋 =
1

𝐹
∑ 𝑑𝑖(𝒙1, 𝒙2)𝐹

𝑖=1   (5) 

where 1 is the indicator function defined as 1[true] = 1 and 1[false] = 0. The 

distance between two label sets S1 and S2 is defined as a weighted Euclidean 

distance between the corresponding 0/1-vectors s
1
 and s

2
 where sj

1,2
 and wj are 

defined as in Sec. 2.1. We correct this and define as: 

𝜇 = 1/ max𝑆, 𝑆′ 𝑑𝐸(𝑆, 𝑆′)      and      𝑑ℒ(𝑆1, 𝑆2) = 𝜇 𝑑𝐸(𝑆1, 𝑆2)   

 (6) 

The algorithm iteratively estimates the probabilities in Eq. (4) by randomly 

sampling the training dataset and comparing the chosen example r to its nearest 

neighbors nj. This is repeated m times and the estimate for PdiffTarget(i) is thus,  

𝑃𝑑𝑖𝑓𝑓𝐴𝑡𝑡𝑟(𝑖) =
1

𝑚𝐾
∑ ∑ 𝑑𝑖(𝒓, 𝒏𝑗).

𝐾

𝑘=1𝑟

 

The other probabilities are estimated analogously. The weight 1/mK ensures that 

the computed importance values are between -1 and 1. The values of the two 

parameters are set as follows. Typically, we iterate over the whole dataset, i.e., m 

= |𝒟TRAIN|. By doing this, the estimates of probabilities are expected to be more 

accurate. The value of K is typically set small enough to capture the local structure 

in the data. In that way, we implicitly capture the interactions between features 

[17]. Previous experiments [17] [21] have shown that K = 10 or K = 15 give the 

best performance. 

The normalization factor in the numeric part of the definition of di in Eq. (5) is 

trivial to compute. However, this is not the case with the μ in Eq. (6), if we want 

to do that efficiently. For tree-shaped hierarchies, we developed an efficient 

algorithm for computing μ that recursively finds the distance-maximizing pair of 

the labels in O(|ℒ |) time. If hierarchy is a general DAG we could not do 

considerably better than computing the maximizing pair by exhaustive search. 
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3 Experimental Design 

3.1 Experimental Questions 

The experiments were designed to answer the following experimental questions: 

1)  Given an ensemble feature ranking score, after which number of trees in the 

ensemble the quality of the ranking saturates? 

2)  Do the proposed ensemble feature ranking scores yield relevant rankings, i.e., 

can the additional information captured in the feature ranking boost the 

performance of the non-informed baseline classifier? 

3)  Do the proposed ensemble feature ranking scores outperform the improved 

version of HMLC-Relief algorithm? 

4)  Given an ensemble feature ranking score, which ensemble method is the most 

suitable? 

5)  Which ensemble feature ranking score yields the best rankings? 

3.2 Datasets 

We use 30 HMLC benchmark problems whose characteristics are summarized in 

Tab. 1. Most of the datasets have a few thousand of examples while the number of 

features could be as high as 74435. The label set typically contains a few hundred 

elements. Approximately 25% of the hierarchies are DAGs. Many of the datasets 

are microarray data and come from the field of functional genomics. They 

describe the connection between description of proteins and their functional 

classes that are taken from Gene Ontology [7] (the corresponding hierarchies are 

DAGs), or the MIPS functional hierarchy (http://mips.helmholtz-

muenchen.de/funcatDB) (the corresponding hierarchies are tree-shaped). Some 

other datasets are about text categorization of the processed news (reuters), patent 

classification according to the World International Patent Organization (wipo) etc. 

Table 1 

Properties of the datasets: data size |𝒟| given as the sum |𝒟TRAIN| + |𝒟TEST| of training and test set 

sizes, number of features F, shape of the hierarchy, label set size, depth of the hierarchy (max d), and 

average leaf depth (average d) of the hierarchy 

Dataset |𝒟| F shape |ℒ | max d avg d 

cellcycle-yeast-FUN [6] 2482+1284 77 tree 751 4 4 

church-yeast-FUN [6] 2480+1284 27 tree 751 4 4 

clef07a-is [9] 10000+1006 80 tree 152 3 3 

derisi-yeast-FUN [6] 2455+1278 63 tree 751 4 4 
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diatoms [11] 726+372 200 tree 81 2 2 

eisen-yeast-FUN [6] 1588+837 79 tree 751 4 4 

enron-corr [14] 988+660 1001 tree 67 3 2.2 

expr-yeast-FUN [6] 2494+1294 552 tree 751 4 4 

exprindiv-ara-FUN [6] 2314+1182 1251 tree 424 4 2.8 

exprindiv-ara-GO [6] 7161+3679 1251 DAG 627 6.5 5.6 

gasch1-yeast-FUN [6] 2486+1287 173 tree 751 4 4 

hom-ara-FUN [6] 2260+1213 72869 tree 420 4 2.8 

hom-ara-GO [6] 7119+4002 72869 DAG 623 6.5 5.6 

hom-yeast-FUN [6] 2549+1318 47034 tree 751 4 4 

icpr2010 [11] 4913+2999 4000 tree 76 3 2.5 

interpro-ara-FUN [6] 2455+1264 2815 tree 427 4 2.8 

interpro-ara-GO [6] 7778+3985 2815 DAG 630 6.5 5.6 

pheno-yeast-FUN [6] 1010+582 69 tree 751 4 4 

reuters [19] 3000+3000 47236 tree 143 4 2.5 

scop-ara-FUN [6] 2055+1042 2003 tree 407 4 2.8 

scop-ara-GO [6] 6507+3336 2003 DAG 572 6.5 5.7 

seq-ara-FUN [6] 2455+1264 4450 tree 424 4 2.8 

seq-ara-GO [6] 7778+3985 4450 DAG 630 6.5 5.6 

seq-yeast-FUN [6] 2590+1342 478 tree 751 4 4 

spo-yeast-FUN [6] 2442+1269 80 tree 751 4 4 

struc-ara-FUN [29] 2455+1264 14804 tree 427 4 2.8 

struc-ara-GO [29] 7778+3985 14804 DAG 630 6.5 5.6 

struc-yeast-FUN [29] 2535+1316 19628 tree 751 4 4 

wipo [24] 1352+358 74435 tree 528 4 4 

yeast-GO [1] 2310+1155 5930 DAG 133 7.3 4.7 

3.3 Evaluation Procedure 

In our experiments, we use the same train/test splits of the datasets as the original 

authors, for all the data sets. First, a feature ranking is computed from the training 

set 𝒟TRAIN. Its quality is assessed by the k-nearest neighbor (kNN) algorithm in 

which the weighted version of Euclidean distance is used instead of the standard 

one, i.e., 𝑑𝐸(𝒙1, 𝒙2) = √∑ 𝑤𝑖𝑑𝑖
2(𝒙1, 𝒙2)𝑖 , where x

1,2
 are the input vectors of 

nominal/numeric feature values and di is defined by Eq. (5). Since the rankings 

that base on the Random Forest score and HMLC-Relief could contain negative 

relevance scores, which in both cases means that the feature is more irrelevant that 

a random feature would be, the weights are defined as wi = max{0, 

importance(xi)}. 

This evaluation procedure was chosen because kNN classifier is a distance-based 

model that can directly make use of feature importance values, learned in the first 
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phase of procedure. The second reason for our choice was kNN's simplicity: its 

only parameter is the number of neighbors, which we set to 10. 

The rationale for using kNN as an evaluation model is as follows. If a feature 

ranking is meaningful, then when the feature importance values are used as 

weights in the calculation of the distances kNN should produce better predictions 

as compared to kNN without using these weights [30]. Once the kNN model is 

trained on 𝒟TRAIN, its performance on 𝒟TEST is measured in terms of the area under 

the average precision-recall curve 𝐴𝑈𝑃𝑅𝐶̅̅ ̅̅ ̅̅  [29] which is computed as follows. 

First, we define multi-set P = {(vi,l , pi,l) | l ∈ ℒ , (xi, Si) ∈ 𝒟TEST} where vi,l = 1[l ∈ 

Si] and pi,l ∈ [0, 1] is the predicted probability of l ∈ Si. After that, the numbers of 

true positives tpθ, false positives fpθ and false negatives fnθ are computed, for all θ 

∈ [0, 1], e.g., tpθ = |{(v, p)∈ P | v = 1, p ≥ θ }|. From these, we compute recall rθ = 

tpθ / (tpθ + fnθ) and precision pθ = tpθ /(tpθ + fpθ), define the curve PRC = {(rθ, pθ)| 

θ ∈ [0, 1]}, and compute the area under it. 

It might seem that another possible approach to evaluation is extending a dataset 

with some randomly generated features and then see whether they are ranked at 

the bottom of the ranking. However, this approach is more suitable for synthetic 

data where the ground truth is known and all features can be made relevant. In the 

real world data, it may very well happen that some of the high-dimensional 

datasets indeed contain completely irrelevant features, hence, using this approach 

would yield incorrect performance estimates. 

3.4 Statistical Analysis of the Results 

We use the Wilcoxon's test for comparing two algorithms, and Friedman’s test for 

comparing more than two. In both cases, the null hypothesis is that all considered 

algorithms have the same performance. If it is rejected by the Friedman's test, we 

additionally apply Nemenyi's post-hoc test to investigate where the statistically 

significant differences between the algorithms occur. A detailed description of all 

tests is available in [8]. When performing Wilcoxon's tests whose outcomes are 

not independent, we control the false discovery rate by the Benjamini-Hochberg 

procedure [2]: let pi be the i-th smallest among the obtained p-values, and t the 

number of tests. Let i0 be the largest i, such that pi ≤ αi* := (i / t) α. Then, we can 

reject the hypotheses belonging to p-values pi, for 1 ≤ i ≤ i0. 

The results of the Nemenyi's tests are presented on average ranks diagrams. Each 

diagram shows the average rank of the algorithm over the considered datasets, and 

the critical distance, i.e., the distance for which average ranks of two considered 

algorithms must differ to be considered statistically significantly different. 

Additionally, the groups of algorithms among which no statistically significant 

differences occur are connected with a line. If Friedman's test did not reject the 

null hypothesis, all algorithms on the average rank diagram are connected with the 

same line, and no critical distance is given. 
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Before proceeding with the statistical analysis, we round the performances to three 

significant digits. In the analysis, the significance level was set to α = 0.05. 

3.5 Parameter Instantiation 

First, we give the parameters used in the process of obtaining the ensemble-based 

rankings. Afterwards, we give those for HMLC-Relief. 

We consider the following ensemble sizes: |FO| ∈{10, 25, 50, 75, 100, 150, 250}. 

Since 100 trees is a typical recommended value [15], this should be enough. This 

is the only parameter for Bagging, while Random Forests and Extra Trees method 

need another one: the number of features F considered in each internal node as 

described in Sec. 2.1. The recommended value for Random Forests is F' = root(F) 

[15] and F' = F for Extra Trees [15]. However, if we carefully examine the data, 

we see that are some datasets, e.g., enron-corr and struc-ara-GO, for which the 

diversifying mechanism of the Extra Trees algorithm does not work if we set F' = 

F, since every single one of the attributes takes, at most, two values, which results 

in only one possible split per attribute. Thus, we rather choose F' = root(F) for 

Extra Trees also, since a necessary condition for an ensemble to be more accurate 

than any of its individual members, is that the members are diverse models [12]. 

If we fix the ensemble size and feature ranking score and compare the quality of 

the rankings from the ensembles of Extra Trees that use root(F)- and F-feature 

subsets via Wilcoxon's test, the results show that root(F)-version of the ensemble 

statistically significantly outperforms the F-version on the problematic datasets, 

and that there are no statistically significant differences on the other datasets. 

As for Relief algorithm, it has been shown in the previous experiments that the 

Relief algorithm is quite robust regarding the value of the number of neighbors K 

and that no other value outperforms K = 15 [17] [21], hence we will adhere to this 

value. Since the datasets are not all of equal size, the number of iterations m in 

HMLC-Relief algorithm is given as the proportion of the size of 𝒟TRAIN. The 

considered values are m ∈ {1%, 5%, 10%, 25%, 50%, 100%}. 

4 Results 

Feature rankings, and the extended results (for every dataset separately) are 

available at http://source.ijs.si/mpetkovic/hmlc-ranking. 
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4.1 Saturation of the Ranking Quality 

Influence of the Ensemble Size. We analyze each ranking score and ensemble 

separately. While these two are fixed, we let the number of the trees in the 

ensemble vary, and apply Friedman's test to discover whether some differences 

among them occur. 

The resulting p-values are all bigger than 0.05, which means that the rankings can 

be computed very efficiently since it suffices to grow only 10 trees. Therefore, the 

ensemble size in the subsequent experiments is fixed to 10. Fig. 2a shows the 

resulting average rank diagram for Genie3 score, computed from a Bagging 

ensemble. Similar conclusions can be made using the other ensembles and scores. 

 

  

Figure 2a Figure 2b 

Saturation of the rankings: Friedman's test discovered no statistically significant differences among 

different (a) ensemble sizes in the ensemble rankings (Genie3 score, coupled with the Bagging 

ensemble is shown), (b) considered proportions of the dataset by HMLC-Relief 

Influence of the HMLC-Relief’s Number of Iterations. Similarly, to previous 

setting, we let the value of the parameter m vary and compare the quality of the 

corresponding HMLC-Relief rankings by applying Friedman's test. Again, there 

are no statistically significant differences among the algorithms (p = 0.96) and the 

differences among quality of the rankings are now even smaller. As shown in Fig. 

2b, no two average ranks differ by more than 0.43. Since the most time-efficient 

setting is m = 1%, this is the considered number of iterations in the subsequent 

HMLC-Relief experiments. 

4.2 Are the Ensemble-based Rankings Relevant? 

To answer this question, we compare the predictive performance of the kNN 

classifier which uses the importance values from a particular feature ranking, to a 

non-weighted kNN baseline by using Wilcoxon's test. This pair-wise comparison 

is made for every admissible pair of feature ranking score and ensemble method, 

which results in 8 (not independent) comparisons. After we compute the p-values, 

the Benjamini-Hochberg correction is applied. 
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It turns out that all weighted kNN classifiers perform better than the baseline. 

However, the differences are statistically significant in 5 out of 8 cases, as 

assessed after applying the Benjamini-Hochberg correction after the Wilcoxon’s 

test results: (Symbolic, RandomForests), (Genie3, RandomForests), (Symbolic, 

Bagging), (Genie3, ExtraTrees), and (Genie3, Bagging). Here, the p-values range 

from 2.14 · 10
-4

 to 2.63 · 10
-2

. The remaining three cases (with p-values at least 

4.17 · 10-2) are both feature rankings that are computed using Random Forest score 

and the feature ranking computed from Symbolic score and Extra Trees ensemble. 

Thus, using Genie3 score always results in relevant rankings, while Symbolic 

score fails to yield relevant rankings when used in combination with Extra Trees. 

The fact that Random Forest ranking fails to yield relevant rankings in all cases, 

may be at least partially explained by the sparsity of the data, since in that case, 

the differences of the error estimates on the out of bag examples and out of bag 

examples with permuted values of a feature, may not be that significant. 

4.3 The most Appropriate Ensemble for a Given Score 

Here, we fix the remaining parameter of the ensemble-based rankings, i.e., we find 

the most appropriate ensemble method for each feature ranking score. This is done 

by first fixing a feature ranking score, and then comparing the quality of the 

rankings obtained using this score and one of the possible ensemble methods. In 

the case of Symbolic and Genie3 score, Friedman's test is applied, since they can 

be used in combination with three ensemble methods. In the case of Random 

Forest score which cannot be paired with Extra Trees, Wilcoxon's test is used. 

In the case of Symbolic ranking, the differences are not statistically significant (p 

= 0.106), as shown in Fig. 3a. Following the rationale from the previous section, 

Random Forests ensemble is proclaimed as the optimal one, since this method is 

considerably more time-efficient than Bagging. Since the majority of attributes is 

numeric (or can be considered numeric, because they are nominal and binary), 

Extra Trees i) have the same O time complexity of inducing one node as Random 

Forests, ii) typically result in bigger trees than Random Forests, the Random 

Forests ensemble is the most time efficient. 

We observe a similar situation when comparing different ensemble methods when 

the feature ranking score is fixed to Genie3, as shown in Fig. 3b. Again, no 

statistically significant differences are found (p = 0.705), hence Random Forests 

ensemble is again chosen as the most appropriate one. 

As for the Random Forest feature ranking score, Wilcoxon's test detects that 

Bagging ensemble statistically significantly (p = 0.030) outperforms Random 

Forests ensemble, hence Bagging is the most appropriate one for this feature 

ranking score. 
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Figure 3a Figure 3b 

The quality of different feature rankings as assessed by Friedman's test, when ensemble method varies, 

and feature ranking score is fixed to (a) Symbolic and (b) Genie3. No statistically significant 

differences were found. 

4.4 Comparison of the Scores 

In Sec. 4.1, we have shown that we obtain as good as it gets ensemble-based 

feature rankings when we grow 10 trees, and as good as it gets HMLC-Relief 

feature rankings when we set then number of iterations to m = 1% of the training 

set size |𝒟TRAIN|. In the previous section, we additionally found the most 

appropriate ensemble method for a given feature ranking score. Now, we first 

check whether the three ensemble scores computed with the optimal parameters 

outperform the HMLC-Relief score, computed with the optimal parameters. This 

is done in a similar fashion to the Sec. 4.2 by applying three pairwise comparisons 

via Wilcoxon's test and Benjamini-Hochberg correction. 

The differences reported here are always in favor of the ensemble-based scores. 

The obtained p-values are (sorted in the increasing order): p1 = 4.86·10
-5

 

(Symbolic, Random Forests), p2 = 1.74·10
-4

 (Genie3, Random Forests), p3 = 

1.59·10
-3

 (Random Forest, Bagging). After applying the correction, all three 

differences are statistically significant, hence all three ensemble-based rankings 

outperform the HMLC-Relief ranking. 

Next, we investigate which of the ensemble-based scores performs best. To this 

end, we apply Friedman's test. The obtained p-value equals 2.33·10
-3

 and we can 

proceed to the Nemenyi's post-hoc test to discover where the differences occur. 

The results are shown in the Fig. 4. There are two groups of scores that do not 

perform statistically significantly different. The first group consist of Symbolic 

and Genie3 score, and the second one consists of Genie3 and Random Forest 

score. The graph also reveals Symbolic score (with the average rank of 1.55) 

performs statistically significantly better than Random Forest score (with the 

average rank of 2.42). Since the Random Forest score has the worst time 

complexity, we prefer the other two over it. 

 

Figure 4 

Comparison of the three ensemble-based feature ranking scores 
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4.5 A Closer Look to Some Other Rankings' Characteristics 

A high number of benchmark problems allows for a statistical analysis performed 

in the previous sections. However, when averaging the performances, some 

information is always lost, therefore we now take a closer look at two 

characteristics of the obtained feature rankings in addition to the one already 

mentioned: the quality of the ranking stabilizes quite quickly (after growing ten 

trees). We will use the graphs in Figs. 5a and 5b which show the results for hom-

ara-FUN dataset, as a running example. One of the reasons for choosing this 

dataset is that it is high dimensional and is also one the datasets where considering 

all features when inducing the trees in the Extra Trees ensemble does not work. 

This is visible from Fig. 5a, which shows the qualities of the Symbolic ranking, 

computed from different ensembles. Considering only a subset of features in each 

node (Extra Trees, SQRT) as compared to considering all the features (Extra 

Trees, all), pushes the quality of the rankings over the baseline. 

 

  

Figure 5a Figure 5b 

Quality of the feature rankings on the hom-ara-FUN dataset when number of trees varies and (a) 

feature ranking score is fixed to Symbolic, (b) ensemble method is fixed to Random Forests. In the 

figure (a), all and SQRT denote the number of features considered in the Extra Trees algorithm. 

The order of the rankings. Fig. 5b depicts typical situation with respect to the 

order of the feature ranking scores when an ensemble method is fixed. More 

precisely, only in 4 out of 30 cases, the ranking that belongs to the Random Forest 

score is placed in between those that belong to Symbolic and Genie3 score. This 

can be explained by the fact that the mechanisms for computing feature relevance 

values in the latter two scores, are more similar to each other than to the 

mechanism of Random Forest score: Symbolic score (number of examples) and 

Genie3 score (variance reduction) both consider statistics that are somewhat 

related since number of examples is also part of the variance reduction statistic. 

Random Forest score, on the other hand, takes a look at the error reduction values. 

Efficiency of the rankings. Under efficiency of a ranking, we mean the (relative) 

number of the features that have a positive feature importance. The lower the 

number, the more efficient the ranking. In Fig. 5b, all three scores result in 
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relevant feature rankings, since all three curves lie above the baseline. The dataset 

at hand has the second highest number of features (72869) and it is surprising that 

the weighted kNN algorithms which make use of the weights from the rankings, 

wipo ignores more than 90% of the features - those that were proclaimed 

irrelevant and have weight 0 (or negative): In the case of Genie3 and Symbolic 

score, approximately, 8% of the features are being used, whereas in the in the case 

of the Random Forest score, this number is even lower: 3%. Similar situation was 

observed for the other extremely high dimensional datasets, e.g., wipo where 

Random Forest rankings proclaim 99% of the features irrelevant, and reuters. On 

the other hand, the rankings seem to be less efficient on lower-dimensional 

datasets. For example, in the case of cellcycle, clef07a-is and gasch1-yeast-FUN 

datasets, all features have positive importance. 

By carefully inspecting the results, we make three main observations. First, 

Symbolic and Genie3 score columns are equal, but this can be explained by the 

fact that they are computed from the same ensemble (Random Forests) and the 

terms in Eq. (1) and Eq. (2) are always positive which is obvious for the Symbolic 

score, and can be proven with simple algebra for the Genie3 score. 

A more interesting observation is that Random Forest ranking is consistently more 

efficient that the other two ensemble rankings (on 28 of 30 datasets). The reason 

for this is most likely the fact that Random Forest rankings are computed from the 

Bagging ensemble which always considers all features when inducing a new node 

of a tree. If the relevant features can be told apart from the irrelevant ones, then, 

always one of the relevant features would be chosen in a test split. This does not 

hold for the Random Forests ensembles which Genie3 and Symbolic scores are 

computed from, since they consider only a subspace of features, so all (or most of 

the) relevant ones can be skipped by chance. In addition to that, bootstrapping 

may also play an important role in this process, especially when the data is sparse 

which is true for many of the datasets, e.g., yeast-GO, it can happen, that different 

features are important, for different bootstrap replicates. 

The last observation is that HMLC-Relief feature rankings are typically more 

efficient than the ensemble-based feature rankings. This is another proof that data 

is sparse, since the second term in Eq. (4) - which can make the relevance negative 

- should converge to zero when the domain is populated with more and more 

examples (a sketch of a proof can be found in [17]). However, the efficiency is not 

correlated with the ranking quality as shown in Sec. 4.4. 

The other view on efficiency relates to time efficiency. We can estimate the time 

complexities O(F m
2
 + n |ℒ |) for HMLC-Relief and O(F m log m (log m + |ℒ |)) in 

the worst case of ensemble-based rankings (using bagging ensemble), where m = 

|𝒟TRAIN|. This reveals that ensemble-based rankings are typically more time-

efficient than HMLC-Relief rankings (unless the hierarchy size |ℒ | is sufficiently 

larger than the other quantities). 
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Ranking Similarity. The similarity of the two feature rankings is measured in 

terms of their Fuzzy Jaccard Index (FUJI) score [23] which is defined as follows. 

Given two rankings ri = (x(1)
i
, …, x(F)

i
),  i = 1, 2, where x(j)

i
 denotes the j-th top-

ranked feature in ranking ri, accompanied by the feature importance score fj
i
, we 

define the sets Fj
i
 = {x(1)

i
, …, x(j)

i
} as the sets of top-ranked features of ranking ri. 

Finally, the fuzzy membership function μ of the feature x(k)
i
 for the set Fj

i
 is 

defined as μ(Fj
i
, x(k)

i
) = min{1, fk

i
 / fj

i
}, and FUJI(Fj

1
, Fj

2
) is defined as: 

𝐹𝑈𝐽𝐼(𝐹𝑗
1, 𝐹𝑗

2) = (∑ min𝑖 𝜇(𝐹𝑗
𝑖 , 𝑥)𝑥∈𝐹𝑗

1∪𝐹𝑗
2 ) /  (∑ max𝑖 𝜇(𝐹𝑗

𝑖 , 𝑥)𝑥∈𝐹𝑗
1∪𝐹𝑗

2 )  

This score is computed for 1 ≤ i ≤ F and the final similarity measure is the area 

under the FUJI curve consisting of the points (j, FUJI(Fj
1
, Fj

2
)). We compute this 

for all 6 pairs of the feature ranking scores and for all datasets. In Fig. 6, we 

present the distance d = 1 - FUJI between the scores, averaged over the datasets. 

 

Figure 6 

Tetrahedron whose vertices correspond to the feature ranking scores. The length of a side between two 

vertices equals the average distance d = 1 - FUJI between the corresponding two feature ranking 

scores. 

We can see that the Symbolic and Genie3 score produce the most similar rankings 

which is explained by the fact that they both consider tree node statistics. The 

closest to these two scores is the Random Forest score which reflects the fact that 

HMLC-Relief is the only non-ensemble-based score among the analyzed scores. 

Conclusions 

In this work we proposed three feature ranking scores, Symbolic, Genie3 and the 

Random Forest score, for the task of HMLC. The proposed feature ranking 

methods can be computed very efficiently, since it suffices to grow only 10 trees 

in the ensemble. The first two scores yield relevant feature ranking, while Random 

Forest score, fails. For the Symbolic and Genie3 score, the most suitable ensemble 

method is Random Forests, whereas bagging is the most suitable for Random 

Forest score. When coupled with the suitable ensemble method, all three scores 

outperform the HMLC-Relief feature ranking. Moreover, the Random Forest score 

is statistically and significantly, outperformed by the Symbolic score. Therefore, 

we recommend using either the latter or Genie3 score, since there are no 
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statistically significant differences among these two (but the Symbolic score has 

the lowest rank on average). We have also shown that Symbolic and Genie3 score 

are more closely related to each other than to Random Forest score. Especially on 

the extremely high-dimensional datasets, all three feature ranking scores 

successfully filtered out a majority of the features and still outperform the baseline 

that uses all of them. The HMLC-Relief feature rankings are even more efficient 

in that sense, but they are of lower quality. 

This work can be extended in at least two directions. First, we could improve the 

HMLC-Relief, so that its performance would be comparable to the ensemble-

based rankings. Second, we could extend the ensemble-based scores to the 

gradient boosting ensemble technique, which is inherently different from those 

presented herein, since, the trees are not independent of each other, which also 

allows for the analysis of the development of the ranking through the iterations. 
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