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Abstract: The autocorrelation function describing linear dependence is not suitable for the 
description of the residual dependence of regime-switching models. Therefore, we would 
like to investigate the description of this dependence with a ‘k-lag auto-copula’, which is a 
2-dimensional joint distribution function of the bivariate random vector (Yt , Yt−k ) of time 
lagged values of random variables that generate time series (in the analogy of the 
autocorrelation function of stationary time series). In this contribution, we will describe the 
dependence of time lagged residuals of SETAR models by means of copulas, and we will 
test the independence of these residuals. 
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1 Introduction 

The first models used for modelling economical and financial time series had a 
linear character (shocks were assumed to be uncorrelated but not necessarily 
independent and identically distributed - iid). Although many of the models 
commonly used in empirical finance are linear, the nature of financial data 
suggests that nonlinear models are more appropriate [5]. Therefore, in recent 
years, increasing attention has been given to modelling and forecasting economic 
time series by non-linear models, such as bilinear models, neural networks, 
regime-switching models, etc. Among other types of non-linear time series 
models, there are models to represent the changes of variance along time 
(heteroskedasticity). These models are called autoregressive conditional 
heteroskedasticity (ARCH) and Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH) models. Here changes in variability are related to, or 
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predicted by, recent past values of the observed series. In this paper we focus on 
the model SETAR (from the class of regime-switching models). 

The autocorrelation function is suitable for the description of the residual 
dependence only in the case of linear models. So the autocorrelation function is 
not suitable for the description of the residual dependence of regime-switching 
models (because these models have nonlinear character). 

Therefore we investigate the description of this dependence with ‘k-lag auto-
copula’, which is a 2-dimensional joint distribution function of the bivariate 
random vector (Yt , Yt−k ) of time lagged values of random variables that generate 
time series (in the analogy of the autocorrelation function of linear stationary time 
series). 

First we must test independence in the residuals { }tê . For our case we use the 
BDS test. When the BDS test shows residual dependence at a significant level, we 
use k-lag autocopulas for the modelling of these dependence residuals. 

The paper is organized as follows. After a general introduction, the theoretical 
basis of SETAR model, copulas and some tests are described. The paper continues 
with their application to modelling the dependence of residuals of real time series 
with auto-copulas. 

2 Theoretical Basis 

2.1 Model SETAR 

In this paper we focus on the class of regime-switching models that are good to 
interpret and are also very suitable for modeling a large amount of real data. The 
basic feature of these models is their “control” with one or more variables. 

Typical models belonging to this class are TAR models (“Threshold 
AutoRegressive”). They form the basis of regime-switching models with regimes 
determined by observable variables. These models assume that any regime in time 
t can be given by any observed variable qt (indicator variable). Values of qt are 
compared with threshold value c. In the case of a 2-regime model, the first regime 
applies if qt ≤ c, the second if qt > c. 

We have the model SETAR when the variable qt is taken to be a lagged value of 
the time series itself, that is qt = Xt-d for a certain integer d > 0. The resulting 
model is called a Self-Exciting Threshold AutoRegressive (SETAR) model. For 
example the 2-regime model SETAR with AR(p) in both regimes has the form 
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where { }te  is the strict white noise process with E[et] = 0, D[et] 
= n ..., 1, tallfor  2 =eσ and 1(A) is the indicator function with values 1(A) = 1 if the 
event A occurs and 1(A) = 0 otherwise. 

In the case of a 3-regime model, we must define 2 constants c1, c2 where 
∞≤<≤−∞ 21 cc . Model SETAR with AR(p) in all regimes has the form 

tptjptjjt eXXX ++++= −− ,1,1,0 ... φφφ  if jdtj cXc ≤< −−1 ,   j = 1, 2, 3 (2) 

For more details see [1], [5]. 

2.2 The BDS Test 

This test was presented in [2] and can be used to test independence in residuals 
{ }tê . For some Nn∈  and ε > 0 is the test based on the correlation integral 
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where Tn = T – n + 1, ( )′= −+ 1ˆ,,ˆˆ ntt ee …t,ne , 1(A) is the indicator of the event A, 

and .  denotes the maximum norm (also known as the Chebyshev norm) in dℜ  

(i.e., idi z≤≤= 1maxz  for ),,( 1 ′= dzz …z ). Then the BDS statistic is 
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and also T is the length of the time series, m is the order of the process AR and n 
embedding dimension (in our case a lag order of the residuals). 

ΛBDS has a N(0,1) asymptotic distribution when {et} are i.i.d. 
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When the BDS test at a significant level shows residual dependence, we use k-lag 
autocopulas for modelling these dependent residuals. 

2.3 Copula 

2-dimensional copula is a function (see e.g [8]) 

[ ] [ ]1,00,1 : 2 →C  (4) 

such that 

C(0, y) = C(x, 0) = 0,  C(1, y) = y, C(x, 1) = x, 

for all x, y ∈ [0, 1] and 

C(x1,y1) + C(x2, y2) − C(x1,y2) − C(x2,y1) ≥ 0 

for all x1, x2, y1, y2 ∈ [0, 1] with x1 ≤  x2, y1 ≤  y2. 

The most important applications of 2-dimensional copulas are related to a well 
known, very convenient alternative of expressing the joint distribution function of 
2-dimensional random vectors (X, Y) in the form 

F(x, y) = C( FX(x), FY(y) ), (5) 

where FX, FY  are marginal distribution functions. 

Let X, Y be some continuous random variables with joint distribution function 
F(x,y) and copula C  satisfying (5). 

Kendall's tau for the random vector (X, Y) is defined (cf. [4]) by 

( ) ( )( ){ } ( )( ){ }0~~0~~- <−>= YY-XX-PYY-XXPX, Yτ , (6) 

where ( )Y, X ~~
 is an independent copy of (X, Y). 

It is well know that (cf. [4]) 

( ) ( )
[ ]

( ) .14
21,0

−= ∫ ∫ u, vCdu, vCX, Yτ  (7) 

2.3.1 Archimedean Class of Copulas 

There are many classes of copulas, but in this paper we will use only copulas from 
the Archimedean class. 

Copula C belongs to the Archimedean class if (see e.g. [7], [8], [4]) 

( ) ( ) ( ) ( )( ) 1] (0,   vu,for      , 1 ∈+= − vuvuC φφφφ , 



Acta Polytechnica Hungarica Vol. 8, No. 3, 2011 

 – 41 – 

where φ: (0, 1] → [0,∞) is a convex, decreasing function (satisfying φ(1) = 0) that 
is called a generator of the copula Cφ, and φ(−1) : [0,∞) → [0, 1] is given by 
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2.3.2 Characteristics of some Archimedean Copulas 

As a generator uniquely determines an Archimedean copula, different choices of 
generators yield many families of copulas that consequently, in addition to the 
form of the generator, differ in the number and the range of parameters. We 
summarize some basic facts related to the most important one-parameter families 
of Archimedean copulas (see e.g. [4]). Note that Clayton and Gumbel copulas 
model only positive dependence (measured by the Kendall's τ), while Frank 
covers the whole range [-1, 1]. 

The following useful relation for Archimedean copulas are presented in [4] 
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Gumbel family 

Generator φ(t) = ( )θtln− , where θ ≥ 1, 
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θ 1−

. 

Strict Clayton family (Kimeldorf and Sampson) 

Generator φ(t) =
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Kendall’s τ = ( )( )θ
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function. 

2.4 Maximum Pseudolikelihood Method (MLE) of Copula 
Parameters Estimation 

Suppose that a copula Cθ(u, v) is absolutely continuous with density 
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This method (described e.g. in [6]) involves maximizing a rank-based log-
likelihood of this form 
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where n is the sample size and θ is vector of parameters in the model. Arguments 

1
,

1 ++ n
S

n
R ii  equal to corresponding values of empirical marginal distributional 

functions of random variables X and Y. 

This L(θ) function we use to define the Akaike information criterion (AIC) in the 
form (see e.g. [6]) 

( ) kLAIC 22 +−= θ  (10) 

where k is the number of independent parameters in the model. 

AIC we use to compare the goodness of fit of our estimated model. A smaller AIC 
value means an improvement in the quality of the model fitting. 

To obtain the initial values of the parameters for maximalization of the L(θ) 
function, we apply the mean square error method. It is based on the 
minimalization of the distance to the empirical copula 
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2.5 Goodness of Fit Test for Copulas 

Let {(xj, yj), j = 1, …, n } be n modeled 2-dimensional observations, FX, FY their 
marginal distribution functions and F their joint distribution function. 

We say that the class of copulas Cθ is correctly specified if there exists θ0 so that 

( ) ( ) ( )( )yFxFCyxF YX ,,
0θ=  

holds. 

White (1982) ([11]) showed that under correct specification of the copula class Cθ 
holds the following information matrix equivalence 

00 θθ BA =−  
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and cθ is the density function of Cθ (copula Cθ must be absolutely continuous). 

The testing procedure, which is proposed in [9], is based on the empirical 
distribution functions 
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( ) ( ) ( )( ),θθθ ii BAd += vechi  

vech (M) is the vector of dimension k x 1 containing the upper triangle (in the 
lexicographic ordering) of the symmetric matrix M of the type k x k (where k is 
the dimension of the space of parameters θ). 

Put ( )∑
=

=
n

i
in 1

1ˆ θθ dD . 

Under the hypothesis of proper specification the statistics θD̂n  has asymptotical 

distribution N(0, V), where V is estimated by ( ) ( )∑ ′
−

= θθ iin
ddV .

1
1ˆ . 

Therefore 

θθθ DVD ˆ.ˆ.ˆ. 12 −′= nχ  (11) 

is asymptotically as ( )
2

2
1+kkχ . 

3 Results 

In this section, we summarize all the results in tables and graphs. For our research 
we used 20 real data series (exchange rates, varied macroecomic data and other 
financial data series). 

First, we ‘fitted’ these time series with the SETAR model (see [3]). We based the 
selection of the models (optimizing the number of states and the order of the local 
autoregressive models) on the BIC criterion (see, e.g. [1], [5]). Recall that the 
residuals of these models are supposed to be independent (not only serially non-
correlated). This property can be tested by the BDS test (see [2]). 

Inspired by the approach of Rakonczai (2009) ([10]), we applied autocopulas to 
the time series of the above-mentioned residuals in order to gauge how much they 
violate the assumptions of independence. If the test showed dependence in 
residuals, we described this dependence of time lagged residuals of SETAR 
models by means of copulas. For each couple ( )ktt ee −ˆ,ˆ  and each class of copulas 
we subsequently performed the following sequence of procedures: 

a) calculation of ML estimates and AIC, 

b) goodness of fit tests and corresponding p-values. 
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3.1 Results – The BDS Test 

First we tested our real data series with the BDS test. Zero hypothesis is 
independence in residuals { }tê . We used significance level α = 0.05. In Table 1 
we can see the results of the BDS test and the number of regimes of SETAR 
model for which it is used. 

Table 1 
Results of the BDS test 

The BDS test 
 p value (H0: independent) data suitable for 
2 regimes 3 regimes 

conclusion (α = 
0.05) 

HUF 3 regimes 0,039277 0,491910 independent 
SKK linear 0,497770   independent 
PLN 3 regimes 0,021701 0,062389 independent 
CZK linear 0,003660   dependent 

SVK unemploy 2 regimes 0,129207 0,028170 independent 
SVK inflation 3 regimes 0,000371 0,048212 dependent 

DoS USA 3 regimes 0,028691 0,064259 independent 
GDP HUF 3 regimes 0,002610 0,000015 dependent 
GDP SVK 3 regimes 0,016147 0,029499 dependent 
GVA agri 3 regimes 0,154628 0,489461 independent 

GVA constr 3 regimes 0,141906 0,492069 independent 
GVA fin 3 regimes 0,024453 0,490318 independent 

GVA industry linear 0,007034   dependent 
GVA other 3 regimes 0,022448 0,493020 independent 

NofB10 SVK 3 regimes 0,011104 0,048212 dependent 
NofB100 SVK 3 regimes 0,000190 0,107229 independent 
CAP. GOODS 2 regimes 0,013195 0,051269 dependent 
EMPLOY SVK linear 0,000081   dependent 

UNEMPLOY ocist 3 regimes 0,114267 0,000244 dependent 
TRANSPORT SVK 3 regimes 0,153837 0,211726 independent 

The BDS test determined dependence in residuals in 9 cases (from 20) and here 
we used the description of residual dependence with ’k-lag auto-copula’. 

In the next section 3.2 we describe in detail the results for two time series. In the 
case of time series ‘CZK’ and ’GDP HUF’, the independence is reached only for k 
= 23 (CZK) and k = 18 (GDP HUF); so for these time series the SETAR model is 
not appropriate and therefore results for this time series will not be mentioned. 
Results for all 7 remaining time series we will only present in the form of tables 
and graphs in section 3.3. 
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a) Unemployment (seasonally adjusted) 

In case of the time series ‘Unemployment (seasonally adjusted)’ for 1-lagged 
residuals, the BDS test showed dependence. Therefore, we used the BDS test also 
for lag k = 2,3,… etc. to find out the couple (residuals and k-lag residuals) where 
the BDS test determines independence. In this case it is k = 9. For these time 
lagged residuals of the SETAR models, where we have dependence, we calculated 
Kendall τ . Then we described the dependence of the time lagged residuals of the 
SETAR models by means of an Archimedean class of copulas (Gumbel, strict 
Clayton and Frank). Then we tested the ‘goodness’ of the copulas with the 
Goodness of Fit test and finally we calculated the L2 norm distance and AIC to 
see which copula was the best for the description of our couples. All of these 
results are in Table 2 and, for better illustration, these results are also in the graphs 
underneath. 

Note: ‘d’ means dependent and ‘i’ independent 

Table 2 
Summarized results for the Kendall τ , parameters of copulas, GoF test, L2 norm and AIC in case of 

lag 1 to 9 for time series ‘Unemployment (seasonally adjusted)’ 

lag 1 2 3 4 5 6 7 8 9 
 p value (H0

indep.) <10-6 0,00003 0,00036 0,00028 0,00018 0,00171 0,0014 0,00616 0,0523 
BDS test 

conclusion d d d d d d d d i 

Kendall tau 0,55206 0,4362 0,35148 0,32966 0,29495 0,32123 0,2694 0,2602 0,2462 
Gumbel 2,13894 1,7221 1,52794 1,44275 1,39507 1,44965 1,0495 1,34303   

Clayton  1,60655 1,0041 0,73268 0,55573 0,42898 0,43848 0,1329 0,43478   
parameter

s of 
copulas Frank 6,84353 4,6904 3,69323 3,21936 2,903 3,28623 0,3755 2,5776   

Gumbel 0,13839 0,2802 0,34904 0,21064 0,11198 0,37077 0,3858 0,29188   

Clayton  0,36567 0,1200 0,28685 0,45586 0,3514 0,43836 0,1724 0,04778   Good of 
fit test 

Frank 0,40747 0,321 0,33888 0,03204 0,44108 0,12063 0,2002 0,41271   

Gumbel 0,87811 0,94 0,90618 1,19393 1,16001 1,40264 1,3079 0,99168   

Clayton  2,24868 2,4014 2,19219 2,6145 2,63743 3,07746 1,3501 1,93755   L2 norm 
distance 

Frank 1,09679 1,2584 1,09337 1,31255 1,40455 1,66317 1,3125 1,16871   

Gumbel -100,192 -57,399 -34,871 -27,957 -23,0306 -27,141 1,742 -17,275   

Clayton  -80,2784 -42,485 -24,777 -14,898 -7,58769 -7,7959 1,5358 -8,3735   AIC 

Frank -97,7153 -56,299 -35,316 -28,278 -22,3284 -26,816 1,8188 -17,059   
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Figure 1 
Graphs of parameters of copulas, Kendall τ , L2 norm and AIC in case of lag 1 to 9 for time series 

‘Unemployment (seasonally adjusted)’ 

For each couple ( )ktt ê,ê − , k = 1, …, 8, the optimal models in all three considered  
Archimedean copulas classes pass the GOF tests. The minimal values for the L2 
norm was attained for the optimal model in the Gumbel class for all lag k = 1, …, 
9. We observed that the autocopulas for the residuals were with increasing lag k 
near to the (independence indicating) product form. The value of Kendall τ  also 
reduces with increasing lag k. 

On the other side, because the independence is reached for high value k = 9, the 
SETAR model is not appropriate for these time series. 

b) Inflation in Slovakia 

In the case of the time series ‘Inflation in Slovakia’, the BDS test showed 
independence earlier, already for the lag 2, as we can see in Table 3 and Figure 2. 
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Table 3 
Results for time series “Inflation in Slovakia” 

BDS test 
Good of fit test copulas parameter 

lag 

p 
va

lu
e 

(H
0 

in
de

pe
nd

en
t) 

co
nc

lu
si

on
 Kendall 

tau 

Gumbel Clayton Frank Gumbel Clayton Frank 

1 0,04821 d 0,2237 0,015551 0,48396 0,435379 1,26234 0,484523 2,19487 
2 0,05345 i 0,0643 0,143151 0,40402 0,054031 1,11077 8*10-6 0,58843 
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Figure 2 
Graphs of parameters of copulas, Kendall τ , L2 norm and AIC in case of lag 1 and 2 for time series 

‘Inflation in Slovakia’ 

Among considered Archimedean copulas classes, only the Clayton and Frank class 
provide models (for k = 1) which were not subsequently rejected by the goodness 
of fit tests described above. The minimal values for the L2 norm and AIC was 
attained for the optimal model in the Frank class. The value of Kendall τ  reduces 
with increasing lag k. 
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3.2 Results for Remaining Time Series in Graphs and Tables 

In this section we can see results for all time series, where the BDS test in time 
lagged residuals (k = 1) rejected H0 (except ‘CZK’ and ’GDP HUF’) in tables and 
graphs. 

a) p-value of BDS Test 

In the next 7 pictures in Figure 3, we can see how the change p-value of BDS test 
until the residuals will be independent. We can see that for 4 time series the 
residuals are already independent for k = 2. 
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Figure 3 
The graphs of changes of p-value of the BDS test 
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b) The Values of Kendall τ  

In Figure 4 we can see that the growing lag k reduces the value of Kendall τ  until 
the residuals are no longer dependent. 
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Figure 4 
The graphs of changes of Kendall τ  
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c) Parameters of Copulas 

The results for the parameters of the autocopulas are summarized in the Table 4. 

Table 4 
The table of changes of parameters of copulas when we aproach to the independence 

Gumbel 1,19905 1 1,04948 1,7498 1,07927 1,04948 1 1,04948 

Clayton 0,161757 0,1 0,132946 0,992168 1,00E-01 0,132946 0,058127 0,132946 Employ 
SVK 

Frank 1,30708 -2,78766 0,375501 4,73045 0,586813 0,375501 0,005865 0,375501 

Gumbel 2,13894 1,72208 1,52794 1,44275 1,39507 1,44965 1,04948 1,34303 

Clayton 1,60655 1,00458 0,732684 0,555728 0,428978 0,43848 0,132946 0,434783 
Unemploy 
seasonal 

adjustment Frank 6,84353 4,69038 3,69323 3,21936 2,903 3,28623 0,375501 2,5776 

Gumbel 1 1 1 1,57595 1    
Clayton 1,00E-01 1,00E-01 1,00E-01 0,996258 1,00E-01    GVA 

industry 
Frank -1,02654 -2,29807 -0,672488 4,0506 -0,719123    

Gumbel 1,26234 1,11077       
Clayton 0,484523 8,01E-06       SVK 

inflation 
Frank 2,19487 0,588432       

Gumbel 1 1       
Clayton 1,00E-01 6,86E-05       GDP SVK 
Frank -1,20478 -1,41876       

Gumbel 1 1,18813       
Clayton 1,00E-01 0,108703       NofB10 
Frank -2,33575 0,913485       

Gumbel 1 1,0294       
Clayton 0,1 1,00E-01       Cap. 

Goods 
Frank -2,28115 0,338111       

We can see how the parameters of the copulas change when we approach to 
independence. The parameter of the Gumbel copula approaches to 1, the 
parameter of the Clayton copula approaches to 0 and also the parameter of the 
Frank copula (in most cases) approaches to 0. 

d) Goodness of Fit Test (GoF Test) 

The results of the p-value of the GoF tests are summarized in the Table 5. 

Table 5 
The table of changes of p-values of GoF test 

Gumbel 0,49464 0,05061 0,38581 0,00757 0,39491 0,38581 0,20417 0,38581 

Clayton 0,25181 0.38163 0,17242 0,01314 0.30665 0,17242 0,28867 0,17242 Employ 
SVK 

Frank 0,42371 0,24724 0,20022 0,40317 0,27459 0,20022 0,04971 0,20022 
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Gumbel 0,13839 0,28018 0,34904 0,21064 0,11198 0,37077 0,38581 0,29188 

Clayton 0,36567 0,12002 0,28685 0,45586 0,35140 0,43836 0,17242 0,04778 
Unemploy 
seasonal 

adjustment Frank 0,40747 0,32097 0,33888 0,03204 0,44108 0,12063 0,20022 0,41271 

Gumbel 0,30037 0,17217 0,36434 0,25722 0,49017       

Clayton 0.14088 0.00253 0.32579 0,17110 0.05172       GVA 
industry 

Frank 0,03746 0,18319 0,40797 0,17856 0,43309       

Gumbel 0,01555 0,14315             
Clayton 0,48396 0,40402             SVK 

inflation 
Frank 0,43538 0,05403             

Gumbel 0,07065 0,09656             
Clayton 0.31525 0,41367             GDP SVK 
Frank 0,06254 0,42859             

Gumbel 0,23687 0,37940             
Clayton 0.14667 0,18414             NofB10 
Frank 0,31182 0,34269             

Gumbel 0,12051 0,07906             
Clayton 0.02399 0.35867             Cap. Goods
Frank 0,47009 0,46636             

Optimal values of the p-value (result of the GoF test) are bigger then 0.05 (a 
significant level) and in most cases it is fulfilled. 

e) L2 Norm Distance 

The values of L2 norm distance are in Table 6. 

Table 6 
The table of values of L2 norm distance 

Gumbel 1,80711 4,51264 1,30795 1,3504 2,39809 1,30795 1,82147 1,30795 

Clayton 2,27074 5.12645 1,35004 2,45897 2.66454 1,35004 1,84872 1,35004 
Employ 

SVK 
Frank 1,87764 1,63538 1,31251 1,2516 2,49996 1,31251 1,82138 1,31251 

Gumbel 0,878114 0,94 0,906184 1,19393 1,16001 1,40264 1,30795 0,991681 

Clayton 2,24868 2,40135 2,19219 2,6145 2,63743 3,07746 1,35004 1,93755 
Unemploy 
seasonal 

adjustment Frank 1,09679 1,25838 1,09337 1,31255 1,40455 1,66317 1,31251 1,16871 

Gumbel 2,22829 3,81971 1,68091 1,65548 1,79534       
Clayton 2.74804 4.46763 2.16497 1,86848 2.248       GVA 

industry 
Frank 1,57291 1,81806 1,45327 1,41446 1,57783       

Gumbel 1,36999 1,50498             
Clayton 1,3878 1,79565             SVK 

inflation 
Frank 1,3095 1,55809             
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Gumbel 2,45152 3,07762             
Clayton 2.96081 3,07802             GDP SVK
Frank 1,88178 2,09258             

Gumbel 4,24449 2,72947             
Clayton 4.78234 2,88818             NofB10 
Frank 2,86354 2,75174             

Gumbel 4,14803 1,35069             
Clayton 4.76407 1.43428             Cap. 

Goods 
Frank 1,96202 1,33945             

We can see that for all four time series, in which the residuals are already 
independent for k = 2, the best copula is from the Frank class. In contrast, for time 
series in which the residuals are independent only for large values of lag k, the 
best copula is from the Gumbel class. 

f) The Values of Information Criterion AIC 

In the last section we can see in the table changes of AIC when we approach to 
independence. 

Table 7 
The table of changes of AIC when we aproach to the independence 

Gumbel -1,50845 2 1,74197 -20,5521 1,40842 1,74197 2 1,74197 

Clayton 1,49185 4.5722 1,5358 -14,7951 2.26746 1,5358 1,91957 1,5358 Employ 
SVK 

Frank -0,170686 -7,91672 1,81884 -21,1443 1,56084 1,81884 1,99995 1,81884 

Gumbel -100,192 -57,3995 -34,8711 -27,9567 -23,0306 -27,1413 1,74197 -17,2749 

Clayton -80,2784 -42,4846 -24,7772 -14,8982 -7,58769 -7,79587 1,5358 -8,37347 Unemploy 
ocist 

Frank -97,7153 -56,2998 -35,3158 -28,2783 -22,3284 -26,8159 1,81884 -17,0593 

Gumbel 2 2 2 -15,1784 2       

Clayton 3.56993 5.221 3.18131 -16,3222 3.36876       GVA 
industry 

Frank 0,461541 -5,53732 1,3366 -17,7225 1,28324       

Gumbel -6,50767 -0,487722             
Clayton -7,726 2,00002             SVK 

inflation 
Frank -8,30962 1,19782             

Gumbel 2 2             
Clayton 3.40186 2,00121             GDP SVK
Frank 0,021092 -0,586261             

Gumbel 2 0,435091             
Clayton 3.24797 1,9097             NofB10 
Frank -1,58858 1,45354             

Gumbel 2 1,77872             
Clayton 8.28015 3.19424             Cap. 

Goods 
Frank -13,062 1,64807             
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From the table in this section we can see changes in the AIC values when we 
approach to independence. The smallest value of AIC (from our 3 families of 
copulas) means the best description of residuals. We see that in most cases the 
value of AIC confirms the findings of the value of L2 norms. 

Conclusions 

The topics of this paper were motivated by the modelling of a large number of 
economic and financial time series from emerging Central–European economies 
with the SETAR model (see [1], [5]). 

We have based the selection of the models (optimizing the number of states and 
the order of the local autoregressive models) on the BIC criterion. 

Recall that the residuals of these models are supposed to be independent (not only 
serially non-correlated). This property can be tested by e.g. the BDS test ([2]). 

The BDS test has showed residual dependence (for α = 0.05) in 9 cases (from 20) 
for the lag k = 1. We increase the lag k of residuals while they are independent. In 
the case of the time series ‘CZK’ and ’GDP HUF’ the independence is reached 
only for k = 23 (CZK) and k = 18 (GDP HUF), so for these time series the SETAR 
model is not appropriate. 

Inspired by the approach of Rakonczai (2009) [10] we applied autocopulas to the 
time series of the above-mentioned residuals in order to gauge how much they 
violate the assumptions of independence. We have arrived at an interesting 
conclusion concerning the residuals of the models that were selected as optimal on 
the basis of the BIC criterion. We have observed that the autocopulas for the 
residuals of the optimal models have been mostly substantially closer to the 
(independence indicating) product form (especially for lags k ≥ 2) than those for 
competing non-optimal models. 

For all four time series, in which the residuals are already independent for k = 2, 
the best copula is from the Frank class. In contrast, for time series in which the 
residuals are independent only for large values of lag k, the best copula is from the 
Gumbel class. 

In further research we would like to describe our time series with non-
Archimedean copulas such as Gauss, Student copulas, etc. We would also like to 
use more complicated multi-regime models – for example the STAR and MSW 
models. 

In this work we modeled residuals with bivariate copulas for couples ( )ktt ê,ê − , 
but we aim to model them with multivariate copulas for random vectors 
( )kttt eee −− ˆ,,ˆ,ˆ 1 " . 

Acknowledgement 

This work was supported by Slovak Research and Development Agency under 
contract No. LPP-0111-09. 



Acta Polytechnica Hungarica Vol. 8, No. 3, 2011 

 – 55 – 

References 

[1] J. Arlt, M. Arltová: Financial Time Series (in Czech), Grada Publishing 
a.s., Praha, 2003 

[2] W. A. Brock, W. D. Dechert, J. A. Scheinkman, B. Le Baron: A Test for 
Independence Based on the Correlation Dimension. Econometric Reviews 
15, 1996, 197-235 

[3] S. D. Campbell: Specification Testing and Semiparametric Estimation of 
Regime Switching Models: An Examination of the US Short Term Interest 
Rate. Department of Economics, Brown University, 2002 

[4] P. Embrechts, F. Lindskog, McNeil, A.: Modeling Dependence with 
Copulas and Applications to Risk Management. In: Rachev, S. (Ed.) 
Handbook of Heavy Tailed Distributions in Finance. Elsevier, Chapter 8, 
2001, pp. 329-384 

[5] P. H. Frances, D. Van Dijk: Non-Linear Time Series Models in Empirical 
Finance, Cambridge University Press, Cambridge, 2000 

[6] C. Genest, A. C. Favre: Everything You Always Wanted to Know about 
Copula Modeling but Were Afraid to Ask. Journal of Hydrologic 
Engineering July/August 2007, pp. 347-368 

[7] H. Joe: Multivariate Models and Dependence Concepts. Chapman & Hall, 
London, UK, 1997 

[8] R. B. Nelsen: An Introduction to Copulas. Springer, New York, 1999 

[9] A. Prokhorov: A Goodness-of-Fit Test for Copulas. MPRA Paper No. 
9998, online at http://mpra.ub.uni-muenchen.de/9998, 2008 

[10] P. Rakonczai: On Modeling and Prediction of Multivariate Extremes. 
Mathematical Statistics Centre for Mathematical Sciences, Lund 
University, 2009 

[11] H. White: Maximum Likelihood Estimation of Misspecified Models. 
Econometrica 50, 1982, pp. 1-26 

[12] Magda Komorníková, Jozef Komorník: A Copula-based Approach to the 
Analysis of the Returns of Exchange Rates to EUR of the Visegrád 
Countries, in Acta Polytechnica Hungarica, Vol. 7, No. 3, 2010, pp. 79-91 

 


