
Acta Polytechnica Hungarica Vol. 16, No. 10, 2019

Identification of a dynamic friction model
and its application in a precise tracking control

Joanna Piasek, Radosław Patelski, Dariusz Pazderski,
Krzysztof Kozłowski
Institute of Automation and Robotics, Poznan University of Technology,
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Abstract: The goal of this paper is to examine the friction behaviour in a one-degree mechan-
ical system designed for precise tracking. Friction as one of the main disturbances present
in this system strongly influences its performance, which is most visible during the velocity
reversals. Identification and compensation of the friction are crucial to achieve high track-
ing accuracy at very low velocities. In this paper the procedure for identification of static
and dynamic frictional parameters of LuGre is presented. The experimental results show
characteristic behaviours of friction present both in sliding and in presliding regime. Fur-
thermore, it is experimentally proven in several control scenarios that dynamic friction model
compensation causes significant decrease of trajectory tracking error.

Keywords: friction dynamic models; friction identification; precise tracking; the active dis-
turbance rejection paradigm; control of astronomic mounts

1 Introduction
One of the main disturbances deteriorating the quality of control of mechanical sys-
tems is friction. Its characteristics can be divided into two stages: presliding (or
micro-slip) regime and sliding regime. Classical methods of friction analysis are
focused on the description of the sliding regime. Such models represent the static
relationship between speed and friction force. The simplest of them consists of
Coulomb and viscous friction superposition. Other models take into account also
the Stribeck effect, which brings a better approximation of the phenomena at low
speeds, [2]. Still, in each of these cases, the presliding behaviour is not considered.
It is well known, however, that motion controllers taking advantage of only classical
friction models may provide unsatisfactory results, especially at zero-crossing in-
stants of the velocity due to the discontinuity in the velocity-friction characteristics.
Therefore, it is important to study more complex models, including also dynamic
phenomena, such as friction hysteresis and micro-slips in the presliding regime.
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The problem of friction modelling becomes critical in applications where a pre-
cise control is required. Important examples of such applications can be found in
astronomy. Nowadays, astronomical observations require often the use of mechan-
ical and drive structures (so-called mounts, to which the telescope is attached) and
control techniques known in robotics. One of the biggest challenges is to achieve
precise trajectory tracking in the task space over a wide range of speed. Currently,
at the Poznan University of Technology, an altitude-azimuth mounting structure for
a 0.5 m diameter class telescope is being developed, [12]. It is expected that the de-
vice is able to track the objects at the sky at very low speeds in the order of several
arcseconds per second (resulting from the daily rotation of the Earth on its axis) and
larger ones reaching several degrees per second. Moreover, it is supposed to allow
quick reconfiguration in order to shorten the time necessary to start the observation
of the next object.

The paper covers two main topics. The first is focused on experimental identifica-
tion of friction in a mechanical joint of the astronomic mount. The second deals
with the application of friction models to design a tracking controller based on the
active disturbance rejection (ADR) paradigm originally introduced by Han and Gao
[7, 8]. The considered control strategy enables an adaptation to unknown dynamic
terms of the process using a high-gain observer, [11]. Thus, it is possible to consider
the ADR as a particular implementation of the concept of free-model control, [5, 6].
However, in many applications observer gains cannot be increased arbitrarily. This
is due to the presence of measurement noises, additional actuators dynamics as well
as the delays in control loop, [14]. Then in order to improve control quality an ADR
controller can be supplemented with more complex models of the process. Taking
advantage of this possibility we design a motion controller and investigate if the ap-
plication of friction models brings a relevant improvement in the tracking precision
for the astronomic mount. We compare experimentally an impact of various models
on the controller performance.

Recently, preliminary results of the friction identification of the considered mount
have been already reported in [15]. In this paper, however, they are revised and sig-
nificantly extended. To the best authors’ knowledge the implementation of dynamic
friction models in the ADR control scheme is original and has not been reported in
the literature.

The paper is organized as follows. In Section 2 basic friction models are recalled.
Section 3 is focused on the design of tracking controller using the ADR approach
supported by friction models. In Section 4 an extensive experimental research is
discussed. The results of the friction identification and the tracking control using
different models are shown. The last Section concludes the paper.

List of symbols
All symbols are given in the order of appearance.

J moment of inertia [kg ·m2]
q axis angular position [rad]
h disturbances in the system [Nm]
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τ f friction torque [Nm]
τ control input, torque [Nm]

σ0 stiffness coefficient of the friction model [Nm/rad]
σ1 damping coefficient of the friction model [Nm · s/rad]
σ2 viscous coefficient of the friction model [Nm · s/rad]
Vs Stribeck velocity [rad/s]
Fs Stribeck friction [Nm]
Fc Coulomb friction [Nm]
δ empirical tuning coefficient of the friction model
z average displacement of bristles in the friction model [rad]

q̇,ω axis angular velocity [rad/s]
qd desired angular position [rad]
q̇d desired angular velocity [rad/s]
q̈d desired angular acceleration [rad/s2]
e tracking position error [rad]
ė tracking velocity error [rad/s]
kp gain of proportional term of the tracking controller [Nm/rad]
kd gain of derivative term of the tracking controller [Nm · s/rad]
w estimate of total disturbance τ f +h [Nm]
d lumped disturbance, d =−w+h+ τ f [Nm]
τ∗ estimate of input reduced by friction, τ∗ = τ− τ̂ f [Nm]
τ̂ f estimate of friction force [Nm]
ζ1 estimate of q [rad]
ζ2 estimate of q̇ [rad/s]
ζ3 estimate of reduced lumped disturbance [rad/s2]
L R3 vector of obsever gains

2 Friction models
Let us consider the following dynamics of one-degree of freedom mechanical sys-
tem

J (q) q̈+h+ τ f = τ, (1)

where q denotes a configuration, J is a moment of inertia, h describes a disturbance
(including gravity, dynamic couplings between other links of a multi-body system,
etc.), τ f stands for friction and τ is a torque (force) input.

Further, we consider operation conditions in which inertial forces are negligible
while friction τ f constitutes a predominant term in dynamics (1). As a result, its
proper modelling can be required for simulation analysis as well as control design.
In the successive sections we briefly recall basic approaches to describe friction
effects.

2.1 Static model
The static model is only dependent on the velocity ω = q̇. It describes the friction τ f
behaviour in the sliding state. The most common static model, taking into account
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the Stribeck effect, was presented by Armstrong in the following form, [2]:

τ f = σ2ω + sign(ω)

(
Fc +(Fs−Fc)exp

(
−
∣∣∣∣ωVs

∣∣∣∣δ
))

. (2)

The expression σ2ω represents viscous friction force, while the rest of the equa-
tion describes Stribeck effect. This model is characterized by 5 parameters: static
friction Fs, Coloumb torque/force Fc, Stribeck velocity Vs, shape coefficient δ and
viscous friction coefficient σ2.

The significant disadvantage of this model is the discontinuity by velocity reversals,
what can cause errors and instability in the friction compensation procedure.

2.2 Dahl model
The Dahl model is one of the oldest friction models (1968), that describes behaviour
of the friction in the presliding regime, that means in the stage when the input sig-
nal is not big enough to break the static friction force. In this regime, the rough
structures building contact surfaces are getting deformed, resulting in micro-scale
motion, [4]. These roughness form a system similar to a spring-system. When
the external force is high enough, the spring breaks and the sliding movement be-
gins. Dahl model takes into account the break-away moment of static friction Fs. It
presents friction as a first order differential equation with respect to position q, [4]:

dτ f

dq
= σ0sign

(
1−

τ f

Fs

)∣∣∣∣1− τ f

Fs

∣∣∣∣n . (3)

The model consists of three parameters: micro-stiffness coefficient σ0, static friction
force Fs and shape factor n.

2.3 LuGre model
LuGre model was presented by Canudas de Wit [3], as an extension of Dahl model
by function describing the Stribeck effect. Both regimes are described using the
same group of equations without use of a switching function, what results in a
smooth transition between sliding and presliding regimes.
This model is based on a system of bristles (bristle model), where the internal state
variable z represents their average displacement. By usage of a first order differen-
tial equation authors described friction dynamic phenomena like frictional lag and
presliding displacement. LuGre model consists of 7 parameters and is described
below:

ż = ω−σ0
|ω|

s(ω)
z (4)

s(ω) = Fc +(Fs−Fc)exp

(
−
∣∣∣∣ωVs

∣∣∣∣δ
)
, (5)

τ f = σ0z+σ1ż+σ2ω, (6)
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For small deformations, the model behaves like a spring with stiffness σ0 and damp-
ing coefficient σ1. In the steady state, this model is reduced to a static model. Setting
the micro-stiffness coefficient to σ0 and micro-damping friction coefficient σ1 to 0
and equaling Coulomb Fc and Stribeck friction Fs reduces the LuGre model to the
Dahl model with shape factor n = 1.

3 Tracking controller with friction compensation
3.1 The general form of the control law
Let qd be a reference trajectory which is smooth enough (at least the second order
time derivative is bounded). Next, we define tracking error, e := qd−q, and consider
a PD-like controller equipped with feed-forward and compensation terms, cf. [14],

τ = J(q)(q̈d + kpe+ kd ė)+w, (7)

where kp > 0 and kd > 0 are positive gains, and w is an estimate of τ f +h.

Substituting (7) to (1) one can obtain the following closed loop system

J(q)ë =−J(q)(kpe+ kd ė)+d, (8)

where d :=−w+h+τ f denotes lumped disturbance which comes from a mismatch
between the model and the real dynamics.

Now, assuming that the disturbance is at least locally bounded in a subset of the
state-space where the system evolution takes place, one can expect that for any
positive kp and kd tracking error converges to vicinity of zero, such that

lim
t→∞
|e(t)| ≤C sup

t
|d(t)| , (9)

where C is a positive constant, which is dependent on the chosen gains. Hence, one
can conclude that for fixed values of parameters kp and kd , the tracking accuracy
can be improved by reducing the magnitude of disturbance d. Basically, such a
reduction can be achieved in two ways: by using a more accurate model of the
process or by application of adaptation techniques.

In this paper we combine two approaches. Specifically, in order to introduce an
adaption mechanism we take advantage of a high gain extended state observer
(ESO) and assume that a friction model becomes a part of the controller, while
estimate of h stays unknown. In such a case, the observer is designed based on the
following dynamics

q̈ =
1

J (q)
(−h+ τ

∗) , (10)

where τ∗ := τ − τ̂ f , while τ̂ f stands for the assumed model of friction. Then the
ESO observer can be designed as follows

ζ̇ =

0 1 0
0 0 1
0 0 0

ζ +

 0
1

J(q)τ∗

0

+L(q−ζ1) , (11)
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where ζ = [ζ1 ζ2 ζ3]
> denotes estimates and L ∈ R3 defines the observer gains

which are chosen based on the Routh-Hurwitz stability criterion. It can be proved
that for supt

∣∣ḣ∣∣< M1 and supt
∣∣τ̇ f − ˙̂τ f

∣∣< M2, where M1, M2 are constants, estimate
ζ satisfies the following

lim
t→∞
|ζ1−q| ≤ ε1, lim

t→∞
|ζ2− q̇| ≤ ε2, lim

t→∞

∣∣∣∣ζ3−
1

J(q)

(
τ̂ f − τ f −h

)∣∣∣∣≤ ε3, (12)

with ε1, ε2 and ε3 being positive constants which can be made small enough by
increasing the observer gains, for example see [18, 1].

Consequently, one can consider ζ2 as an estimate of velocity q̇, while J(q)ζ3 can
be viewed as an approximation of the total disturbance. Following this observation,
one can assume that w in (7) satisfies

w := τ̂ f − J (q)ζ3 (13)

and can be considered as an approximation of h+ τ f . Then recalling definition of
d one can conclude that magnitude of this term can be attenuated. Alternatively, it
can be stated that the disturbance is actively rejected in the control loop.

Friction

model

Feedback Process

ESO

velocity

feed-forward mode

compensation mode

f

Figure 1
Diagram of the tracking controller with the friction model.

Remark. The stability of the closed loop system is considered under relatively
strong assumptions. In particular, the requirements formulated with respect to time
derivatives of h, τ f and τ̂ f could be seen as limiting factors. However, locally for the
considered operation conditions, they can be justified. In particular, it is noteworthy
that the application of dynamic friction models makes it possible to confirm that τ̇ f

and ˙̂τ f are bounded in a neighborhood of zero velocity.

3.2 Friction compensation
The outlined controller taking advantage of the ADR approach allows one to incor-
porate friction model τ̂ f in different ways. Basically, a priori knowledge about the
friction model may limit the process uncertainty that can lead to a better accuracy
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of estimation of residual disturbances. Particularly, it is expected that term
∣∣τ̇ f − ˙̂τ f

∣∣
can be reduced which leads to the improvement of tracking performance.

The main problem considered in this paper can be briefly stated as follows.

Problem. We investigate the qualitative and quantitative aspects of using friction
models in an ADR controller based on real experimental data.

In particular, we consider control tracking performance in the case of a slow-time
varying trajectory determined for a robotic revolute joint and take into account the
following approaches to define friction model τ̂ f :

C1 Nominal case: the friction model is not considered, τ̂ f := 0,

C2 Compensation case: the friction model is computed based on the system state
(i.e. velocity estimated by the observer), τ̂ f := τ̂ f ( ˆ̇q),

C2a Dynamic compensation case: full LuGre model is considered and dy-
namical effects are included based on the system state,

C2b Static compensation case: simplified static model is considered under
assumption ż≡ 0, based on the system state,

C3 Feed-forward case: the friction model is computed based on the reference
trajectory (i.e. reference velocity q̇d), τ̂ f := τ̂ f (q̇d),

C3a Dynamic compensation case: full LuGre model is considered and dy-
namical effects are included based on the reference trajectory,

C3b Static compensation case: simplified static model is considered under
assumption ż≡ 0, based on the reference trajectory.

The controller diagram with the friction model employed in the compensation or
feed-forward path is presented in Fig. 1.

4 Experimental work
The experiments have been conducted using telescope mount developed at Institute
of Automatic Control and Robotic of Poznan University of Technology, [12]. The
studied object consists of a two-axis altitude-azimuth gearless robotic platform with
an astronomic telescope with a mirror of diameter 0.5 m. It is driven by permanent-
magnet synchronous motors (PMSMs) which are capable of delivering torque of the
order of 50Nm. The measurement of angular positions is performed by two sets of
four absolute encoders with a resolution of 32 bits, [9], while speed is estimated
by numerical differentiation of the position signal. Control algorithms have been
implemented in C++ using Texas Instruments AM4379 Sitara processor with ARM
Cortex-A9 core. The controller itself is implemented in a cascade form which con-
sists of independent current and position loops. Both loops work simultaneously
with frequency of 10 kHz.

The results reported in this paper have been obtained for the vertical axis of the
mount which supported by a ball bearing. Since the identification procedure is
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performed offline, in this report we have presented only the most representative
results among a wide number of experimental trials. All the measurements used
in the identification scheme have been collected under normal operating conditions
(after the system has heated up, in constant temperature, and the fixed position of
the horizontal axis). Value of the moment of inertia J = 30 kg ·m2 was estimated
based on identification experiments and CAD model of the device.

The identification experiments of static friction as well as experiments investigating
the controller performance have been conducted in the closed loop control regime
with kp = 255 and kd = 30 what corresponds to bandwidth ωc = 15 and damping
coefficient ζ = 1 of PD regulator. The bandwidth of ESO observer was chosen as
ωo = 220, cf. also [14]. Identification of dynamic parameters has been carried out
in an open loop. Both identification experiments are outlined in Figs. 2 and 3.

slow time-varying

sinusoidal position trajectory
Tracking

controller

Vertical

axis

position

torque

controller

Identi�cation algorithm
based on nonlinear optimization

desired
torque

Current

parameters of static friction model

Figure 2
Diagram of the identification process of the static friction model in the closed loop regime (the case of a
quasi-static excitation)

step time signal

desired  torque Vertical

axis

torque

controller

Identi�cation algorithm
based on linear approximation

Current

parameters of dynamic friction model

position

Figure 3
Diagram of the identification process of the dynamic friction model in the open loop regime (the case of
a dynamic excitation)
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4.1 Identification of friction model
4.1.1 Friction – velocity map

The most common way to find the friction-velocity map is by registration of the
input torque at constant velocity in the full range of available velocities [13, 16, 3].
Due to limitations connected with the long-lasting recording process, it was very
difficult to conduct the corresponding experiment. Furthermore, PMSM drives gen-
erate torque with unwanted ripples, resulting from the construction of the motor.
This entails the need for a comprehensive analysis of movement – preferably aver-
aging measurements of a few revolutions of a telescope. Taking into account the
geometric constraints imposed on the considered system it was impossible to repeat
the experiments reported for other mounts, [13].

Alternatively, in order to find a friction-velocity map one can measure the velocity
of the mount as a response for triangular or sine input of very low frequency and
amplitude bigger than break-away torque required to just initiate the motion. This
solution was presented in [17] and [10].

Quasi-static excitation was achieved using reference trajectory qd a such that q̇d
defines a sine wave of amplitude 0.056 rad/s and frequency 0.04Hz. The chosen
stimulation minimizes the influence of mechanical dynamics, therefore the charac-
teristics obtained in this way can be presented as quasi-static. To be more precise,
recalling (1) in the considered conditions it is assumed that |J(q)q̈|+ |h| <<

∣∣τ f
∣∣.

Hence, the following approximation can be justified: τ f ≈ τ .

Nonlinear optimization was performed in Matlab (Curve Fitting Tool) to find static
parameters based on the torque-velocity data by minimizing cost function:

min
σ2,Vs,Fs,Fc,δ

n

∑
i=1

[τ f i− τ̂ f i]
2, (14)

where τ̂ f stands for the torque computed by the model.

Table 2
Estimated static parameters of LuGre model in the vertical axis

Parameter ω > 0 ω < 0 nominal case unit
σ2 28.64 22.5 32.77 Nm s/rad
Fc 3.128 2.123 2.322 Nm
Fs 4.32 3.081 3.322 Nm
Vs 0.01129 0.02126 0.04129 rad/s
δ 1.2914 1.9 2 -

Estimated values are collected in Table 2. From the obtained results one can con-
clude that friction characteristics are not symmetrical for two directions of motion.
Figures 4a and 4b show static friction parameters identification results for positive
and negative velocities as well as for the nominal case, Fig. 4c, that collects results
of all data independently of the velocity sign. The break-away torque takes smaller
values when system velocity decreases than when it increases. The width of hys-
teresis loop grows with the acceleration increase. Stribeck effect in this system is
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negligible, which can be partially explained by the application of rolling bearings
(instead of plain bearings).
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Figure 4
Static friction estimation when (a) ω > 0 (b) ω < 0 (c) nominal case (d) comparison of nominal static
friction model with an input signal

From Fig. 5a one can conclude that the system behaviour in the open loop is not
consistent, especially in the context of break-away friction torque, despite periodic
input torque signal. Such properties of the object were not observed in any of the
cited papers. This probably means that the assumed friction model does not reflect
additional disturbances in the analyzed system. In Fig. 5b friction-velocity map
for following periods are presented, the difference between curves reaches 2Nm
for the corresponding velocities, this property causes variability of static friction
parameters and shows that system is non-stationary.

4.1.2 Dynamical parameters

Estimation of dynamic parameters values σ0 and σ1 is not possible by direct us-
age of linear estimation techniques because of the non-linear relationship between
friction and these parameters and the impossibility of measuring the variable z, that
represents bristle displacement due to junctional deformations at the surface inter-
face. Instead, a simplified method based on the linear approximation of the system
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Figure 5
(a) system’s response for the periodic input torque signal that results in varying break-away friction. (b)
velocity-friction map in the closed loop system for several sine periods

in the presliding stage can be applied. Basically, when torque τ is less than the
breaking torque, Eq. (4) reduces to ż = ω and the essential system dynamics can be
described by:

Jq̈+(σ1 +σ2)q̇+σ0q = τ. (15)

The corresponding transfer function is as follows:

Q(p)
U(p)

=

1
σ0

J
σ0

p2 + σ1+σ2
σ0

p+1
, (16)

where p is a complex variable, Q(p) and U(p) stand for Laplace transforms of q
and τ , respectively.

In the applied identification procedure, estimation of dynamic parameters σ0 and
σ1 abridges to parameters estimation of the transfer function Q(p)

U(p) , for example by
analyzing the system response for an input step of small amplitude (smaller than the
break-away torque).

In the conducted experiments the desired torque defined by a step function of value
of±1 Nm (the function jumps from 0 to±1, respectively) was employed. Estimated
parameters are presented in Table 3, measured and estimated step responses for
velocities of different signs are presented in Fig. 6. The resulted characteristics are
not symmetrical.

Table 3
Estimated dynamic parameters in the vertical axis

ω > 0 ω < 0 unit
σ0 9.7869 ·104 8.674 ·104 Nm/rad
σ1 521.4151 473 Nm s/rad
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Figure 6
Dynamic friction estimation: (a) ω > 0, (b) ω < 0

4.2 Tracking control
4.2.1 Implementation of friction model

Typically, friction effects are described by fast dynamics. As a result, value of
parameter σ0 in (4) is large, which makes numerical integration of the friction model
challenging. In such a case (4) can be considered as a stiff differential equation. In
order to overcome this issue, we assume that velocity ω is a slow-time varying
function. In particular, for ω̇ = 0 one can find the following approximated analytic
solution of (4)

z(t) =
(

1− exp
(
−|ω|σ0

s(ω)
t
))

sign(ω)s(ω)

σ0
+ exp

(
−|ω|σ0

s(ω)
t
)

z(0) , (17)

where z(0) stands for the initial condition. This result has been used to implement
the friction model in the discrete time domain, namely a new value of z has been
computed at each time interval for the given value of ω from t to t + Ts , where
Ts = 0.1 ms is the sampling time.

4.2.2 Friction compensation

Having obtained both the identified parameters of the friction model and the numer-
ical implementation of differential equations in the discrete time domain, series of
experiments have been undertaken to investigate practical usability of LuGre model
in a task of high-precision tracking control. Each of the cases defined in section 3.2
has been separately implemented and tested. During every experiment the desired
trajectory was chosen as a sine wave with frequency of fd = 1

5 Hz and maximum
velocity of ωdmax = 5ωs, where ωs = 7.268 ·10−5 rad

s stands for the velocity of stars
observed on the night sky.

Tracking error e(t), friction force τ̂ f (t) computed from the implemented model,
torque τd produced by the controller (for the real control system torque τ is achieved
indirectly taking advantage of an auxiliary current controller – here for simplicity it
is assumed that τ = τd , cf. [14]) and an estimate of the total disturbance represented
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Table 4
Values of Integral Square Error criterion calculated for each experiment

C1 C2a C2b C3a C3b
ISE criterion [arcsec] 47.58 12.75 73.71 9.29 41.29

by ζ3(t)J(q) and provided by the extended state observer have been recorded during
each experiment. All measures were registered after a short initial stage when an
auxiliary trajectory was generated in order to ensure a smooth transition from the
motionless state. Thus, for t ≥ 0 a discontinuity in the desired trajectory t = 0 is
avoided. Obtained results are presented in Figs. 7-11. Integral square error criterion
within time horizon Th = 15s has been calculated for each of the experiments and
the corresponding values are presented in Tab. 4.
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Tracking error, desired torque and estimated disturbance during C1 experiment
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Figure 8
Tracking error, calculated friction force, desired torque and estimated disturbance during C2a experiment

Several conclusions can be drawn from the presented figures. The effectiveness of
friction compensation using dynamic LuGre model is successfully confirmed by a
significant decrease of the tracking error, especially in intervals where the sign of
velocity changes. Over 80% decrease of ISE criterion was obtained by using the
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Figure 9
Tracking error, calculated friction force, desired torque and estimated disturbance during C2b experiment
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Figure 10
Tracking error, calculated friction force and estimated disturbance during C3a experiment

feed-forward compensation based on the desired velocity and almost 75% decrease
by usage of the feedback variant based on the estimated velocity of the joint. Com-
monly used feed-forward compensation using static only friction model proved to
be unable to significantly improve the tracking quality while feedback-based static
model led to increase of tracking errors due to the noise present in the velocity esti-
mate. Thus, it can be expected that the low-pass filtering properties of LuGre model
dynamics are able to restore the usability of a disturbed velocity signal. Moreover,
from a comparison of the disturbance torque in Fig. 7 and inverted (due to the def-
inition of disturbance in (8)) friction torque obtained from the models in the other
experiments, one can conclude about quality of chosen friction model, identified
parameters and presence of other unmodelled dynamic effects in the system. The
similarity of the compared signals suggests that friction is indeed the main disturb-
ing torque in the considered telescopic mount and that model parameters have been,
at least locally, identified correctly.

Conclusions
The aim of this study is to investigate the phenomenon of friction in a robotic system
with application to precise motion control. Based on the experimental data dynamic

– 96 –



Acta Polytechnica Hungarica Vol. 16, No. 10, 2019

0 5 10 15

-2

0

2

0 5 10 15

-10

0

10

0 5 10 15

-5

0

5

0 5 10 15

-4

-2

0

2

4

Figure 11
Tracking error, calculated friction force, desired torque and estimated disturbance during C3b experiment

friction model has been identified properly, however, the lack of symmetry with
respect to the sign of the velocity has been noticed. Moreover, the studied object is
strongly nonstationary.

In spite of these limitations, it was observed that a dynamic friction model makes it
possible to improve the tracking precision when reversal motion in a revolute joint
with by a ball bearing is considered. Based on the experimental data, the best results
for the proposed ADR-based controller are achieved when LuGre friction model is
used in the feed-forward path. In contrast, static friction models seem to be inap-
propriate for the considered motion conditions. It is noteworthy to emphasize that
model inaccuracies are effectively attenuated by the ESO observer at least for slow
time-varying disturbances. However, in order to significantly improve the tracking
performance, it is necessary to accurately model fast disturbances which cannot be
precisely estimated by the observer due to limited bandwidth.

In future works, it may be interesting to enrich deterministic friction models with
stochastic models. Additionally, the high variability of friction depending on param-
eters such as temperature shows on-line identification can be required to improve
robustness of the controller. Alternatively, more complex dynamics of the friction
can be implemented.
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