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Abstract: Production flow analysis includes various families of components and groups of 

machines. Machine-part cell formation means the optimal design of manufacturing cells 

consisting of similar machines producing similar products from a similar set of 

components. Most of the algorithms reorders of the machine-part incidence matrix. We 

generalize this classical concept to handle more than two elements of the production 

process (e.g. machine - part - product - resource - operator). The application of this 

extended concept requires an efficient optimization algorithm for the simultaneous 

grouping these elements. For this purpose, we propose a novel co-clustering technique 

based on crossing minimization of layered bipartite graphs. The present method has been 

implemented as a MATLAB toolbox. The efficiency of the proposed approach and 

developed tools is demonstrated by realistic case studies. The log-linear scalability of the 

algorithm is proven theoretically and experimentally. 
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1 Introduction 

Industry 4.0 is focused on smart production in smart factories where there is direct 

communication between humans, machine, and resources. Smart products know 

their manufacturing process and future application [16, 25]. With this knowledge, 

they actively endorse the production process and the documentation (“when was I 

made, which parameters am I to be given, where I am supposed to be delivered.”). 

Thanks to these developments that can be represented by 5C keywords 

(Connection, Cloud, Content, Community, and Customization) [17], complex 

production systems generate and store huge datasets, which has a high potential 

for productivity improvement. All these factors raise the question: “How can we 

increase productivity of manufacturing systems by the analysis of the huge 

amount of available data?” 

There exists several potentials for Big Data, in manufacturing, such as, production 

management [24], supply chain planning [12], maintenance, and sales [8, 9]. 

Among these, production management is the most complex problem as it includes 

scheduling, optimization, (human) resource management, warehouse logistic, and 

manufacturing cell formation. Once this enormous amount of information is 

available from the components, the systems will be processed at the same time 

and the optimization of the manufacturing systems can significantly improve. 

Cell formation (CF) is a widely studied topic in production systems optimization 

circles. The aim of cell formation is to create manufacturing cells from a given 

number of machines and products, by partitioning similar machines producing 

similar products. Since the formation of optimal manufacturing cells contributes 

significantly to the increased production, several different approaches have been 

proposed for the solution of a CF problems [5, 11, 15, 18, 23, 34]. Since, it can be 

difficult to find an optimal solution, in an acceptable amount of time, especially 

for large scale problems, usually heuristic approaches are used [19-22, 32, 33]. 

Furthermore, all these methods work only with relationships of machines and 

products (or with relationships of machines and parts). As these relationships can 

be represented by a two-layered bipartite graph or by an incidence matrix, the 

classical cell formation process can be considered as a biclustering task [1, 7]. 

Although, in complex manufacturing processes machines should be characterized 

by numerous properties, like the type of products, resources, and required skills 

from operators. To handle these elements of the production line, the traditional 

cell formation problem should be extended, and instead of the biclustering task, a 

co-clustering problem should be solved. 

While biclustering algorithms can solve classical manufacturing CF process [1], 

we try to handle the extended multidimensional problem as a co-clustering task 

[10] based on crossing minimization of multipartite graphs. Since NP-hard 

problem, we utilize the widely applied heuristic barycentric method. 



Acta Polytechnica Hungarica Vol. 13, No. 2, 2016 

 – 211 – 

In a traditional cell formation problem, crossing minimization reorders the 

machines into cells, based on their similar part usage. As we mentioned before, 

cell formation problems can be more complex and they can require more 

properties to describe the whole production process. While dealing with these 

complex datasets, we developed a new crossing minimization method for multi-

partite graphs. The proposed method sequentially reorders the elements of the 

node sets, thereby it relocates the elements of the connectivity matrix into a block-

diagonal way. As result, the cell formation problem is handled in his original 

complexity. 

Crossing minimization heuristics have been a subject of many years [4, 6, 13, 14, 

28, 30, 31]. The complexity of these heuristics are linear or log-linear [26, 27]. 

This clearly indicates that the proposed problem formulation can lead to efficient 

solution for the multivariate cell formation problem. 

Graphical representation of the manufacturing cell formation may also support 

optimization of production systems. Approaches like hierarchical clustering or 

Visual Assessment of Cluster Tendency (VAT) [2] are able to visualize the 

similarities of the elements, but by default they take only one or two variables into 

account. Nevertheless, complexities of these methods are not appropriate for Big 

Data [3], as the time complexity of VAT is O (N
2
), and the complexity of 

agglomerative clustering is O (N
3
), where N is the number of objects to be 

clustered. 

In this article, we aim to present a novel production process optimization method 

which is able to accomodate more aspects (machines, suppliers, human resources, 

bill of materials, etc.) simultaneously and still be able to visualize the cell 

formation problem and it’s solution accordingly for human interpretation. The 

optimization method is based on a newly developed co-crossing minimization 

method that solves the co-crossing minimization problem between O (N) and  

O (N log N) time, and therefore, able to process the Big Data rapidly and 

concurrently, the productivity of manufacturing systems can be significantly 

increased. 

In the following we formulate the extended cell formation problem, then we 

present the novel co-crossing minimization algorithm that is able to handle this 

complex problem. The algorithm provides easy implementation and low 

computing complexity. Finally, we present the capability of our new method on 

different cell formation examples. Firstly, we compare our approach with the 

popular hybrid-heuristic cell formation algorithm [33] and show the applicability 

of the proposed performance measures. This will be followed by the numerical 

analysis of the scalability. Finally, an illustrative real-life example will be given. 
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2 Multidimensional Representation of the  

Cell Formation Problem 

2.1 Classical Bipartite Graph-based Representation 

Traditional cell formation problems are represented by bipartite graphs (V,E), 

where V represents the set of vertices and E the set of edges.  V is partitioned into 

two adjacent subsets. 𝑉0 = {𝑣0,1, 𝑣0,2, … , 𝑣0,𝑁0
}  represents the set of machines, and  

𝑉1 = {𝑣1,1, 𝑣1,2, … , 𝑣1,𝑁1
}  the set of parts (see Figure 1 

 

Figure 1 

The classical cell formation problem is based on the crossing minimization of a bipartite graph,  

where V0 represents the sets of machines and V1 the set of the parts 

The cell formation is based on the rearrangement of the order of the vertices. 𝒐𝑖  ,
𝑖 = 0,1, where 𝒐𝑖 represents the sequence of all vertices of Vi . E.g. after the 

minimization of the crossings in the illustrative problem shown in Figure 1a, the 

sequence of the vertices becomes 𝒐0 = [2,4,1,3]. 

The bipartite graph of the machine - part connections can also be represented by 

an interconnection matrix, A[o0,o1]. The 𝑎𝑖𝑗  element of A[o0,o1] is 1 when the o0,i 

-th machine uses the o1,j -th part as input and otherwise 0. Please note, that the 𝑘-th 

element of these 𝒐𝑖 vectors is the index which row (i=0) or column (i=1) is placed 

at the 𝑘-th place in the ordering. Later we are going to also use vector, 𝒑i to show 

the position of the vertices, vi,j. In our illustrative example as the first vertex, v0,1, is 

placed in the third place p0,1=3, 𝒑0 = [3,1,4,2]. 

From this viewpoint, the crossing minimization can be considered as reordering 

the rows and columns of the interconnection matrix to explore the hidden block-

oriented structure of the matrix. 
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E.g. the initial problem is represented as: 𝑨[𝒐0, 𝒐1] = [

0 0
1 1

    
1 1
0 0

0 0
1 1 

    
1 1
0 0

]  (1) 

After crossing minimisation:    𝑨[𝒐0, 𝒐1] = [

𝟏 𝟏
𝟏 𝟏

    
0 0
0 0

0 0
0 0 

    
𝟏 𝟏
𝟏 𝟏

]  (2) 

As this simple illustrative example shows, minimization of the crossings provides 

not only a better visualization of the bipartite graph, but it also reorders the rows 

and columns of the incidence matrix in a block-diagonal way. With this order, 

similar nodes are placed next to each other, so they can form blocks that can be 

used to define manufacturing cells. 

2.2 The Proposed Multidimensional Representation 

In complex manufacturing processes, machines are characterized by numerous 

properties, like the type of products, resources, and the required skills of the 

operators. To handle all elements of the production line we extended the 

conventional cell formation task into a multidimensional problem. According to 

this goal, our key idea is to represent the cell formation problems by multi-layered 

graphs (see Figure 2). 

The proposed n-dimensional representation is based on n sets of vertices 

𝑉 = 𝑉0 ∪ 𝑉1 ∪ 𝑉2 ∪ … 𝑉𝑛 ,   𝑉𝑖 ∩ 𝑉𝑗 = ∅ , ∀𝑖 ≠ 𝑗 (3) 

where each set represents possible values/categories of an attribute/feature of the 

machine. E.g. V0 represents the set of machines, V1 the parts, V2 the products, V3 

the resources, V4 skills of the operators. 

Relationships between the machines and the 𝑖-th attribute of the production line 

can also be represented by a sparse matrix, 𝑨(𝒊)[𝒐𝟎, 𝒐𝒊]  , 𝑖 = 1 … 𝑛, where the 

dimensions of these matrices are 𝑁0 ×  𝑁𝑖. 

The second fundamental idea is that the simultaneous re-ordering of the rows and 

columns of these matrices clusters the machines and supports the formulation and 

optimization of the manufacturing cells, as seen in Figure 2 
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Figure 2 

Representation of the multidimensional cell formation problem 

The visualized benchmark cell formation problem has N0=20 machines processing 

N1=34 different parts, utilizing N2=31 different resources, while working N3=37 

operators. The structure of this problem can be seen in the first row in Figure 3. 

The second row of this figure shows the rearranged data after the proposed co-

crossing minimization algorithm which will be presented in the following section. 

 

Figure 3 

The benchmark cell-formation problem and the result of co-crossing minimization 
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3 Co-Crossing Minimization Algorithm 

3.1 Barycentric Ordering of Crossing Minimization 

The classical heuristic barycentric method iteratively reorders the o0 row and the 

o1 column orders of A[o0,o1] to reduce the number of the crossings. The reordering 

is based on the row and column barycenters of the A interconnection matrix. 

Barycenter heuristic assigns a new rank to each node based on the mean of ranks 

of its neighbor nodes. 

The third key contribution of our paper is that we formulated the algorithm with 

the help of matrix operations to support compact, sparse matrix representation 

based implementation in of data analysis tools, like MATLAB. 

The column barycenters are calculated as the mean of the places of the 

neighboring vertices 

𝒃𝑖
𝐶 = 𝒑𝑖

𝑻𝑨(𝒊)./𝒔𝑖
𝐶   (4) 

where 𝒑𝑖  represents the vector of the places of the vertices,  𝒔𝑖
𝐶  represents a row 

vector of the sum of the connections calculated as the sum of the columns of 𝑨(𝒊) 

𝒔𝑖
𝐶 = 𝒖0

𝑅𝑨(𝒊) (5) 

with the help of the 𝒖0
𝑅, which is an 𝑁0 sized unitary row vector. 

With this formulation the j-th element of the 𝒃𝑖
𝐶  vector, 𝑏𝑖,𝑗

𝐶 , can be interpreted as 

the average of the places of the machines that are connected to the j-th element of 

the i-th feature, vi,j. 

The row barycenters of 𝑨(𝒊)[𝒐0, 𝒐𝑖]   are calculated similarly, 

𝒃𝑖
𝑅 = 𝑨(𝒊)𝒑0 ./𝒔𝑖

𝑅  (6) 

where 𝒔𝑖
𝑅  represents the sum of rows of 𝑨(𝒊), calculated as 

𝒔𝑖
𝐶 = 𝑨(𝒊)𝒖𝒊

𝑪  (7) 

where 𝒖𝒊
𝑪 is an 𝑁𝑖 sized unitary column vector. 

The standard crossing minimization algorithm iteratively reorders 𝒐0 based on 

shorting 𝒃𝑖
𝑅 and generates A[o’0,o1], than reorders 𝒐1 to generate 𝒐′1 based on the 

shorting the 𝒃1
𝐶  barycenters of the columns of A[o’0,o1]. The number crossings is 

minimised by repeating these orderings till convergence. 

3.2 The Co-Crossing Minimization Algorithm 

The key idea of the algorithm is that we simultaneously arrange the rows and the 

columns of the A
(i)

[o0,oi] matrices. Since the row-orders of these matrices are 
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identical, the row barycenters are calculated as the weighted sum of the row 

barycenters of the individual matrices: 

𝒃𝑅 = ∑ 𝒃𝑖
𝑅𝒏

𝒊=𝟏 𝑤𝑖 = ∑ 𝑨(𝒊)𝒑0 ./𝒔𝑖
𝑅𝑛

𝑖=1 𝑤𝑖  (8) 

The 𝑤𝑖  weight can represent the importance of the features to their contribution to 

the cell-formation problem. When all features have equal importance, 𝑤𝑖  should 

set as 𝑤𝑖 = 1/𝑁𝑖 to ensure that features with different number of categorical 

values have the same weight. 

The steps of our new method can be seen in Algorithm 1.  

 

initialize the row orders:  

𝒐𝑖 , 𝑖 = 0 … 𝑛 as 1 ∶  𝑁𝑖 

calculate the sum of the columns and rows: 

𝒔𝑖
𝐶 , 𝒔𝑖

𝑅  𝑖 = 1 … 𝑛 

while converge do 

calculate 𝒃𝑖
𝑅 , 𝑖 = 1, … , 𝑛, and 𝒃𝑹  

calculate the new o0 row order by shorting 𝒃𝑅  

calculate the new p0 places of the vertices of V0 

for 𝑖 = 1: 𝑛 do 

calculate 𝒃𝑖
𝐶 , 𝑖 = 1, … , 𝑛 

calculate the new oi row order by shorting 𝒃𝑖
𝐶  

calculate the new pi places of the vertices of Vi 

end for 

end while 

Algorithm 1 

The proposed co-crossing minimization algorithm 

Please note that the 𝒑𝑖  vectors are generated by sorting 𝒐𝑖 the order vectors. The 

use of these vectors is important since the algorithm does not modify the original 

𝑨(𝒊) space matrices, which ensures fast and memory effective implementation. 

The algorithm stops when the ordering is converged or the maximum iteration 

number is reached. 

3.3 Complexity Analysis 

The complexity of the classical barycenter technique is O (|E|+|V|  log V) [1,30].  

It should be noted that since we decomposed the problem into n almost 

independent subproblems as 𝑉 = 𝑉0 ∪ 𝑉1 ∪ … 𝑉𝑛 ,   𝑉𝑖 ∩ 𝑉𝑗 = ∅ , ∀𝑖 ≠ 𝑗 and 

𝐸 = 𝐸1 ∪ … 𝐸𝑛 ,   𝐸𝑖 ∩ 𝐸𝑗 = ∅ , ∀𝑖 ≠ 𝑗, the complexity of the algorithm is smaller 

than if we would handle the standard classical problem with the same size. By 

decreasing the sparsity of the problem (increasing the number of edges) the 

complexity linearly increases, while the increase of the number of vertices has 
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log-linear effect as the critical step in the algorithm is, that it requires 2(n+1) sorts 

of the nodes in each iteration. 

When this advantageous O (N log N) scaling of the quicksort algorithm is not 

enough, to achieve speed proportional to the size of the data O (N), binsort can be 

applied. However, this requires auxiliary storage and memory for the bins. 

Because quicksort manipulates the data in place, it can sort larger arrays, albeit 

somewhat a bit slower. Another sorting option, is the application of the O (N) 

counting sort algorithm. It should be noted, that this and another advanced integer 

sorting algorithm requires the calculation of the median instead of the mean or 

rounding the ranks into integers.  To scale the algorithm, it is possible to execute 

the loop iterations in parallel. 

The algorithm solves the crossing minimization problem rapidly. Similarly to 

multi-layered application of crossing minimizatuion usually it stops after 5-10 

iterations [1, 30]. It calculates the node ranks in each set of nodes linear algebraic 

way with matrix and vector multiplication. It should be noted, that matrices 

describing the cell formation problem are sparse, so they can be stored and 

handled efficiently. 

Concluding, the proposed algorithm can be implemented in Big Data 

environments, as it supports sparse matrices, parallel computing (thanks to the 

barycenters of the interconnection matrices can be independently calculated), and 

the application of advanced (integer) sorting algorithms. 

3.4 Performance Evaluation 

The proposed method can be considered as a visualization tool, similarly to VAT 

(Visual Assessment of clustering Tendency) [2]. Although the resulted plots are 

informative, in most of the cases the numerical evaluation of the results is also 

necessary. 

The first and most obvious measurement of the performance of the crossing 

minimization algorithms is based on the counting of the edge crossings. If we 

denote the rearranged A
(i)

[o0,oi] matrix as M
(i)

 , the number of crossings of the vi,j - 

th and vi,k - th vertices (represented by the j - th and k - th rows of the matrix) can 

be calculated as 

𝑛𝑐(𝑖)(𝑗, 𝑘) = ∑ ∑ 𝑚𝑗𝑏
(𝑖)𝑁𝑖

𝑏=𝑎+1
𝑁𝑖−1
𝑎=1 𝑚𝑘𝑎

(𝑖)
 (9) 

The total number of crossings of M
(i) 

can be calculated based on the sum of these
 

𝑛𝑐(𝑖)(𝑗, 𝑘) values: 

𝑛𝑐(𝑖) = ∑ ∑ 𝑛𝑐(𝑖)(𝑗, 𝑘)
𝑁0
𝑘=𝑗+1

𝑁0−1
𝑗=1  (10) 

Since the crossings of the 𝐸𝑖 and 𝐸𝑗 ∀𝑖 ≠ 𝑗 edges are not taken into account, the 

total number of crossings is calculated as 
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𝑛𝑐 = ∑ 𝑛𝑐(𝑖)

𝑛

𝑖=1

 

The effectiveness of the ordering from the expected block-diagonality of the 

resulted M
(i) 

matrices can be measured based on the distance of the nonnegative 

elements from the diagonal 

𝑑𝑗,𝑘
(𝑖)

= 𝑚𝑗𝑘
(𝑖)

|
𝑗

𝑁0
−

𝑘

𝑁𝑖
|. 

The percentage of the non-negative neighbors is also informative to represent the 

coherence of the resulted “maps”, 𝑛𝑛𝑗,𝑘
(𝑖)

. Based on the combination of these two 

measures the we propose the following “goal-oriented” measure of the M
(i) 

ordering: 

𝑞(𝑖) = ∑ ∑
(1 − 𝑛𝑛𝑗,𝑘

(𝑖)
)𝑑𝑗,𝑘

(𝑖)

𝑚𝑗,𝑘

(𝑖)

𝑁1

𝑘=1

𝑁0

𝑗=1

 

It is also important to note, that the smaller the q value the better the ordering is in 

the data matrix. 

4 Case Studies 

Manufacturing cell formation is widely studied and well-documented problem of 

process flow analysis. In this session, we provide several reproducible 

comparisons based on the most widely applied benchmark problems. The 

MATLAB implementation of the algorithm and the related datasets are 

downloadable from the website of the authors (www.abonyilab.com). 

Firstly, we compare our approach with the popular hybrid-heuristic cell formation 

algorithm [33] and show the applicability of the proposed performance measures. 

This will be followed by the numerical analysis of the scalability. Finally, an 

illustrative real-life example will be given. 

4.1 Application on Benchmark Problems 

Since there are several two-dimensional examples for manufacturing cell 

formation problems in the literature, we first applied our method on one of those 

available [33]. The chosen dataset consists of 14 machines and 24 parts. The 

sparsity pattern of the incidence matrix is depicted in Figure 4(a). The hybrid 

heuristic algorithm is one of the recently published methods which combines the 

simulated annealing with genetic methods. This method in many cases 

outperforms the performance of the classical methods [33]. Solutions provided by 
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the hybrid heuristic algorithm and our method can be seen in Figure 4. As it can 

be seen, our new approach provides much better block-diagonal ordered solution. 

   

(a) Original dataset 
(b) Result of hybrid 

heuristic method 

(c) Result of the 

proposed method 

Figure 4 

The original data set and two orderings provided by the hybrid heuristic  

and our new crossing minimization algorithm 

Using the number of edge crossings the hybrid heuristic and the proposed method 

can be numerically compared. While the original dataset has 674 edge crossings, 

and the result of the hybrid heuristic method has 256, the proposed crossing 

minimization algorithm provided an ordering only with 95 edge crossings. 

We also compared crossing numbers of another eight benchmark datasets. The 

results are showed in Figure 5a, where the blue bars show the original, the red bars 

the hybrid heuristic, and the green ones the number of the crossings of the 

proposed algorithm. As it can be seen our method outperforms the hybrid heuristic 

method in every benchmark examples. 

A summary of the previously presented cn crossing number and q block-diagonal 

ordering results can be seen in Table 1. As this table and Figure 5b show, the 

crossing minimization also ensures effective block-oriented orderings of these 

benchmark problems. 

 

Figure 5 

The number of the edge crossings (a) and the measure  

of the block-diagonal (b) ordering of the benchmark datasets 

nc q 
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Table 1 

Block-diagonal ordering (q) and crossing number (nc) results on different datasets 

 Dataset Original Hybrid heuristic Proposed method 

 q cn q cn q cn 

 P1(61) 0.2057 674 0.0756 256 0.0351 95 

 P2(62) 0.1954 2785 0.1580 1900 0.1336 1506 

 P3(63) 0.1900 4612 0.1083 2508 0.0826 1688 

 P4(64) 0.2840 4221 0.1708 2443 0.1193 1467 

 P5(65) 0.2201 11224 0.1564 7810 0.0948 4258 

 P6(66) 0.2713 3644 0.0775 1313 0.0422 653 

 P7(67) 0.2388 5150 0.0991 2283 0.0328 585 

 P8(68) 0.2675 6221 0.1811 4267 0.0966 2019 

 P9(69) 0.0786 229570 0.0782 173961 0.0373 131472 

4.2 Crossing Minimization of Multidimensional Datasets – 

Numerical Analysis of the Complexity 

While there are only 2D examples in the literature, we have generated several 

multidimensional benchmark problems to test the presented algorithm. After 

applying the previously mentioned iterative co-crossing minimization algorithm 

on the given multidimensional cell formation problem the results are seen in 

Figure 3, in the second row. As results, each matrix is reordered in a block-

diagonal way. 

In the following, we validate the log-linear scalability of the algorithm. We 

defined problems with 10, 100 and 500 properties/categories (𝑁𝑖) of i=1-6 

features. Figure 6 shows the computational costs of these cases as we increased 

the number of objects (𝑁0) from 10 to 1.000.000. These graphs on the log-log 

scale show the log-linear complexity of the algorithm. 

Figures 6-8 present similar results where the effects of increasing the number of 

machines, categories and properties are shown. 
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Figure 6 

The computational costs of the proposed co-crossing minimization algorithm on different datasets 

 

Figure 7 

The increase of the number of machines linearly increases the computational complexity 
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Figure 8 

The increase of the number of categories linearly increases the computational complexity 

 

Figure 9 

Effect of the increase of the number of properties (n) 

As we will see, the results confirm the theoretical considerations and the 

industrial-scale applicability of the method. 
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4.3 Application on Real Life Problem 

The previously presented multivariate co-crossing minimization method was 

applied on a real life example as well. We used this method on a production line 

analysis problem, where the primary task is the optimization of the production line 

of that produces over 5000 types of products assembled from several parts. 

Assuming that the switching time between similar products is less than the 

switching time between more different products, our aim was to analyze 

interconnections between parts and products. Since there are several stages of the 

production and different types of parts are used in different stages we formulated 

the multivariate model based on the hierarchy of the bill of materials (BOM) [29]. 

As Fig. 10 illustrates the methodology worked perfectly, we were able to sort the 

products according to their similarity. 

 

Figure 10 

Real-life example for shorting products based on bill of materials 

Conclusions 

Thanks to the fourth industrial revolution production processes are becoming 

more and more integrated. This integration allows the simultaneous optimization 

of the whole supply chain. From this viewpoint production flow analysis is 

becoming an important tool since the analysis of the integrated marketing, design, 

production, logistic and sales data can effectively support production scheduling 

and flexible manufacturing cell formation. 

Complex and integrated manufacturing processes require more detailed problem 

representation than used in classical manufacturing cell formation. This means, 

production lines should be characterized by several features that should be 

simultaneously analysed. We proposed a novel multipartite graph based 

representation of these complex production flow analysis problems and proposed 
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an efficiently scalable clustering and visualization algorithm that sequentially 

reorders the edge crossings of bipartite graphs. The barycentric heuristic based co-

crossing minimization method is simultaneously reorders the rows and columns of 

the interconnection matrices of the features to highlight their hidden block-

diagonal structure, which structure supports data visualization easier. The 

applicability of the proposed co-crossing minimization is illustrated by several 

case studies. 

We also showed that the proposed algorithm requires low computational 

capacities as it uses simple linear algebraic operations defined on sparse matrices. 

Another advantage of the method is its capability of parallelization and handling 

multi-dimensional sparse datasets. Considering these benefits, the proposed co-

crossing minimization method can be scaled and used efficiently when we are 

dealing with large databases. 
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Notations 

 Representation 

 G graph  

V vertex set of a G graph 

𝑉𝑖 set of vertices, set of objects/properties 

vi,j j-th vertex (node) of the i-th set of vertices 

N number of nodes in a network/graph 

Ni number of nodes in the i-th set of vertices 

E edge set of a G graph 

e
ij

 edge between node i and j 

A(i) incidence (interconnection) matrix 

𝑨(𝒊)[𝒐0, 𝒐𝑖]   ordered interconnection matrix  

𝒐𝑖 ordering of the i-th vertex set  

𝒑𝒊 positions of the vertices according to the oi ordering 

 Crossing minimization 

𝒃𝑖
𝐶 , 𝒃𝑖

𝑅 column and row barycenters (vectors) 

𝒔𝑖
𝐶 , 𝒔𝑖

𝑅 sum of the coumns and rows of A(i 

  Metrics 

𝑛𝑐(𝑖)(𝑗, 𝑘) number of crossings of the vi,j - th and vi,k - th vertices 

𝑑𝑗,𝑘
(𝑖)

 diagonal distance  

𝑞(𝑖) block-oriented quality of the ordering of the i-th intterconneciton 

matrix  
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