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Abstract: The behavior-based system (BBS) is a hierarchical structure built upon behavior 

components, behavior coordination and behavior fusion. The goal of this paper, is to recall 

the concept of the interpolative fuzzy behavior-based system and to introduce a declarative 

language especially designed for supporting its implementation and configuration into 

embedded applications. The suggested Fuzzy Behavior Description Language (FBDL) aids 

the definition of fuzzy rule-based systems and their connections to form behavior 

components and behavior coordination as fuzzy state-machines. The suggested language 

also assists the fuzzy rule definition with variable consequent, to help the creation of 

behavior fusion functions. For simplifying the definition of hierarchical rule-bases, the 

structure of rule-base dominancy is also introduced in the FBDL. According to the 

suggested embedded application concept, the FBDL code, as a parameter configuration, 

can directly "run" on a built in fuzzy state machine controller, called "FRI Behavior 

Engine". This case the behavior of the agent controlled by the FRI Behavior Engine, can be 

directly modified by changing the FBDL code, without reprogramming other parts of the 

agent controller software. 
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1 Introduction 

The behavior-based system (BBS) is a hierarchical structure built upon 

independent and parallel behavior components, and a behavior coordination, 

which can determine the usefulness (weights) of the behavior components in 

handling a given situation. The task of the behavior fusion is the combination of 

the behavior component actions to form the control action of the BBS. A behavior 

component could be a reactive (stateless) function, e.g. in case of a fuzzy BBS, a 

fuzzy rule-based system, or a compound behavior (a whole BBS itself). In 

common sense the function of the behavior fusion could be a convex combination 
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of the behavior component actions according to the corresponding component 

weights, but practically to be able to handle alternative, or contradictive 

component actions, it could be a (fuzzy) rule-based system again. The role of the 

behavior coordination is the situation awareness, the determination, which 

behavior component action with what level is required in handling a given 

situation. Considering the BBS to be a model based reflexive agent, the behavior 

coordination should have states, i.e. in case of an interpolative fuzzy BBS, it must 

be an interpolative fuzzy state machine. 

There are numerous adaptations of the BBS concept [1] [2]. The suggested Fuzzy 

Behavior Description Language (FBDL) follows the fuzzy rule-based systems, 

fuzzy rule interpolation (FRI) [12] and fuzzy state machines based adaptation [3] 

[4] [5] [6] [7] [8]. See for example Fig. 1 (see Section 3 for notation in details). 

 

Figure 1 

The adapted Fuzzy Rule Interpolation (FRI) based BBS structure with Fuzzy Automaton acting as 

Behavior Coordination, Behavior Components (BC) and Behavior Fusion 

The goal of this paper is to introduce a declarative language especially designed 

for supporting embedded behavior-based applications, by offering a common 

framework for defining a BBS (the behavior components, the behavior 

coordination and the behavior fusion) as an interpolative fuzzy rule-based system, 

as Fuzzy Rule Interpolation based BBS (FRI BBS). 

The interpolative fuzzy rule-based knowledge representation is an important issue 

in the suggested methodology. The rule-based structure makes the knowledge 

representation human readable and self-explanatory. The fuzziness, and its 
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“Linguistic Term” fuzzy set concept even strengthen the human readability in case 

of variables defined on continuous universes. The applied Fuzzy Rule 

Interpolation (FRI) reasoning methodology, simplifies the fuzzy rule-base 

definition by relaxing some constraints of the fuzzy rule-base, the FRI can handle 

sparse fuzzy rule-bases too [32]. 

The unified rule-based human readable system construction FRI BBS framework 

makes the suggested FBDL to be a suitable platform to support the 

implementation of human (expert) knowledge to a working system. The FBDL 

code can “run” on a system directly or, having some additional observed data, can 

serve as an object for machine learning parameter optimization methods. Some 

examples for FRI BBS applications are appearing in ethological model based 

human-robot interaction applications [9] [10] [11] and Ethorobotics [33], e.g. for 

expressing human readable emotions [34] for robots. In case of ethological 

models, the expert’s knowledge is based on real animal observations and 

represented as a descriptive verbal model built upon a series of facts and action-

reaction rules. Moreover, the verbal models can be incomplete, or contain some 

expert domain specific implicit knowledge, which is missing from the verbal 

description, e.g. as “well-known” facts. These requirements fit well the fuzzy rule-

based knowledge representation and the FRI reasoning of the suggested FBDL 

description. See the concept of FRI with some application examples more detailed 

in [12]. 

For creating the FBDL the goal was forming a language which supports function 

definition by linguistic rules similar like fuzzy systems. This case the fuzzy rules 

act like “fuzzy points” of a fuzzy function and the fuzzy reasoning method acts as 

a fuzzy function definition. In classical fuzzy reasoning, the fuzzy rule-base has to 

be complete (i.e. they need fully defined rule-base (e.g. the Zadeh-Mamdani-

Larsen Compositional Rule of Inference (CRI) (Zadeh [13]) (Mamdani [14]) 

(Larsen [15]) or the Takagi-Sugeno fuzzy inference (Sugeno [16], Takagi-Sugeno 

[17])). For releasing this condition, to be able to handle sparse fuzzy rule-base 

(where not all the possible rules are defined), the concept of the FRI was adapted. 

In case of FRI, the fuzzy reasoning method is a fuzzy interpolation, where the 

fuzzy rules are the fuzzy node points of the fuzzy interpolating function. (An 

axiomatic approach of the fuzzy interpolation can be found in [18]). 

There are numerous FRI methods that exist in the literature. For the FRI Behavior 

Engine implementation any of them is adaptable, which can handle 

multidimensional antecedent spaces. For the current implementation [31], because 

of its simplicity, the FRI “FIVE” [19] [20] [21] [22] were adapted. 
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2 Related Works 

The current work is the continuation of [23]. The Fuzzy Behavior Description 

Language and the FRI Behavior Engine have been improved but the aims 

remained unchanged. A framework was developed, where an expert could define 

the behavior of an agent. The applied FBDL is technically a declarative 

programming language. Therefore, it is necessary to make some comparison with 

the available agent based modeling methods too. This section briefly summarizes 

some works related to other declarative behavior definition languages and 

modeling methods. 

For dynamic declarative agent configuration in [24], the authors show a plan 

generation mechanism in a declarative manner. They emphasize the importance of 

adaptation of the agent. The approach is the same as the role of fuzzy interpolation 

in the suggested FRI BBS concept, i.e. the agent should be able to succeed in 

unseen situations. 

Other authors recognize that the usage of a simplified programming toolchain for 

non-technical users only viable solution for a short term [25]. For avoiding the fast 

increment of software complexity they introduced a new programming paradigm 

(Targets-Drives-Means). Their construction is similar to the proposed FBDL 

behavior description method. The main difference is the usage of fuzzy reasoning 

and a dedicated description language which is interpreted by the FRI behavior 

engine directly. 

Authors in [26] also suggests that the simplified imperative way is also viable for 

simple behaviors. They choose a component centric approach where the reasoning 

system tries to find a solution which match with the requirements of the designer 

and the runtime system. 

For agent based modeling and simulation, the SESAM [27] provides a useful 

visual programming environment, as UML-like activity diagrams. On the other 

hand, for larger models, and parameter optimization, the textual description could 

be more concise and practical. 

The comparison of the previously mentioned behavior description methods can be 

seen in the Table 1. 

Table 1 

Comparison of AgentSpeak [24], Target-Drives-Means (TDM) [25], Agent Based Modeling (ABM) 

[26] and SeSAmUML [27] description languages 

AgentSpeak TDM ABM SeSAmUML FBDL

representation textual textual textual visual textual

base language STRIPS - JSON UML -

paradigm declarative TDM declarative procedural declarative

inference layered planning score calculation backtracking transition rules fuzzy interpolation

hierarchy STRIPS operators priority control subcomponents rules dominancy
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The first aspect of the comparison is the representation method of the behavior. 

Most of the considered languages use textual representation. It is important to note 

that, the textual and visual representation are always interchangeable. This 

comparison focuses on the primary usage of the behavior description method. It 

means that the choice of visual and textual representation is depends on the 

preferred usage regardless the implementation difficulties. 

The behavior description is a special kind of knowledge representation. Therefore, 

in many cases the behavior description language is a refined version of a general 

purpose language. Three of the mentioned languages are based on STRIPS, JSON 

and UML languages. The TDM has an own semi-graphical definition language, 

while the proposed FBDL language uses a simple, natural language-like syntax. 

The paradigms behind the behavior description languages show many differences. 

The AgentSpeak is a declarative language where the user can define operators and 

their pre- and post-conditions. The TDM itself is a new programming paradigm, 

which organizes the behaviors to small, trigger activated behavior components. 

The ABM proposes a fully declarative model in the sense that the JSON-like 

description defines the required, higher level actions instead of low-level 

commands. The SeSAmUML follows the standard UML method for defining a 

final state machine. The FBDL defines the set of production rules which have 

organized to rule-bases. It is also a declarative approach which is similar to the 

AgentSpeak because the antecedent parts of the rules are similar to the 

preconditions of the standard STRIPS language. 

A common difficulty of the behavior description systems is how they can resolve 

the conflicts and contradictions of the behavior descriptions. They have to use 

some kind of inference for calculating the most suitable action for the given 

situation. The AgentSpeak solves the problem by a layered planning approach. It 

tries to dynamically evaluate the lower and higher level plans. The TDM 

calculates score for any action of its behavior components. After, it can choose the 

appropriate action according to these values. The ABM tries to find a proper 

solution which fulfils all constraints by backtracking. For the unspecified 

properties, it uses interpolation. The SeSAmUML uses different abstraction for the 

actions and for the resolution of conflicting cases. It has specific rules for selecting 

and terminating activities. The FBDL solves the conflicting situations by fuzzy 

rule interpolation. It obtains the required action by interpolating the consequent 

values. 

For simplification purposes, it is reasonable hierarchically organize or prioritize 

the actions of the behavior descriptions. The last aspect of the comparison 

considers the preferred way of this kind of hierarchy. In the AgentSpeak language, 

the domain expert can use STRIPS operators to express higher priority plans. The 

TDM contains priority management in its model. It assigns priorities for the 

different behaviors and prioritize the actions after the calculation of behavior 

scores. The ABM organizes the behavior description to a tree of components. 
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Each component has constraints, therefore, the component preference can be 

coded into this strict hierarchical structure. The SeSAmUML solves the conflict 

resolution problem on the level of rules. After an action has activated it does not 

terminate until the terminating rule has not fired. The FBDL organizes the rule-

bases into a hierarchy which automatically denotes their priorities. 

3 Fuzzy State Machine Model 

Having FRI models in Behavior Component definitions and FRI state transition-

rules in Behavior Coordination, most part of the BBS model forms a Fuzzy State 

Machine [8]. There are various understandings of the fuzzy state machine can be 

found in the literature (for summary see [28] [29]). Most of them are extending the 

classical finite state automaton by applying fuzziness for the state transitions, 

while the state remains discrete (crisp, one of the predefined ones). On the other 

hand, the fuzzy model suggested for the FRI Behavior Engine adapts the concept 

of “fuzzy state”, where the state is a vector of membership values. According to 

the fuzzy state concept, the system could be in all its states in the same time, but 

with different membership levels. This view fits well the FRI BBS concept, as the 

actual fuzzy state can be easily interpreted as the usefulness (weights) of the 

behavior components in handling a given situation. For example, the fuzzy state of 

the behavior coordination can directly control the behavior fusion. 

The fuzzy state machine adapted for the FRI Behavior Engine is an extended 

version of the Fuzzy Finite-state Automaton. It extends the finite set of input 

symbols to finite dimensional input values and the finite set of states to finite 

dimensional state values [8]. This case the fuzzy state machine can be defined by a 

tuple: 

�̃� = (𝑆, 𝑋, 𝛿, 𝑃, 𝑌, 𝜔) (1) 

where 𝑆 is a finite 𝑛 length of fuzzy states, 𝑆 = {𝜇𝑠1
, 𝜇𝑠2

, … , 𝜇𝑠𝑛
}, 𝜇𝑠𝑖

 is the 

membership value of the 𝑖th
 dimension of the 𝑛 dimensional fuzzy state. 𝑋 is a 

finite 𝑚 dimensional input vector, 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑚}. 𝑃 ∈ 𝑆 is the fuzzy initial 

state of �̃�. 𝑌 is a finite 𝑙 dimensional output vector, 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑙}. 𝛿: 𝑆 ×
𝑋 → 𝑆 is the fuzzy state-transition function which is used to map the current fuzzy 

state into the next fuzzy state upon an input value. 𝜔: 𝑆 × 𝑋 → 𝑌 is the output 

function which is used to map the fuzzy state and input to the output value. See 

e.g. on Fig. 2. 
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Figure 2 

FRI based Fuzzy Automaton and its decomposition 

In case of fuzzy rule-based representation of the state-transition function 𝛿: 𝑆 ×
𝑋 → 𝑆, the rules have 𝑛 + 𝑚 dimensional antecedent space, and 𝑛 dimensional 

consequent space. 

It is important to note, that the state 𝑆 is a vector of membership values, the actual 

state is a point in the 𝑛 dimensional unit hypercube. The state-transition rule-base 

moves this point in each discrete time step. 

The FRI state-transition rule-base defines the state-transition function, which is a 

𝑅𝑛+𝑚 → 𝑅𝑛 mapping, having 𝑛 + 𝑚 rule antecedent and 𝑛 rule consequent 

dimensions. For simplifying the rule-base definition, this rule-base is decomposed 

to 𝑛 pieces of single consequent rule-bases 𝑅𝑖
𝑛+𝑚 → 𝑅𝑖, 𝑖 ∈ [1, … , 𝑛]. See e.g. in 

Fig. 2. 

For evaluating the FRI state-transition rule-base the FRI FIVE [22] was applied. 

The main idea of the FIVE FRI is based on the fact that most of the control 

applications serves crisp observations and requires crisp conclusions from the 

controller. Adopting the concept of the Vague Environment (VE) [30], FIVE can 

handle the antecedent and consequent fuzzy partitions of the fuzzy rule-base by 

scaling functions [30] turning the fuzzy interpolation to crisp interpolation. The 

idea of a VE is based on the indistinguishability of elements. In VE the fuzzy 

membership function 𝜇𝐴(𝑥) is indicating level of similarity of 𝑥 to a specific 

element a which is a representative or prototypical element of the fuzzy set 𝜇𝐴(𝑥), 

or, equivalently, as the degree to which 𝑥 is indistinguishable from 𝑎 (see e.g. on 

Fig. 3) [30]. Two values in a VE are 𝜀-indistinguishable if their distance is less or 

equal than 𝜀. The distances in a VE are weighted distances (Eq. 2). The weighting 

factor or function is called scaling function (factor) [30]: 
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𝛿𝑠(𝑎, 𝑏) = |∫ 𝑠(𝑥)𝑑𝑥
𝑏

𝑎
| ≤ 𝜀 (2) 

where 𝛿𝑠(𝑎, 𝑏) is the scaled distance of the values 𝑎, 𝑏 and 𝑠(𝑥) is the scaling 

function on 𝑋. 

 

Figure 3 

The 𝛼-cuts of 𝜇𝐴(𝑥) contain the elements that are (1 − 𝛼)-indistinguishable from 𝑎 

If the VE of a fuzzy partition (the scaling function or at least the approximate 

scaling function [19] [20] [21]) exists, the member sets of the fuzzy partition can 

be characterized by points in that VE (see e.g. scaling function 𝑠 in Fig. 4). 

 

Figure 4 

A “Ruspini” (0.5-covering) fuzzy partition built upon three linguistic terms,  

namely the Z (Zero), M (Middle), L (Large) fuzzy sets,  

its scaling function 𝑠, and its normalized cumulative scaling function 𝑐𝑠 
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Having the VE concept and the scaling function based similarity calculation, any 

crisp interpolation, extrapolation, or regression method can be adapted very 

simply for FRI [7] [8] [9]. Because of its simple multidimensional applicability, in 

FIVE the Shepard operator based interpolation (first introduced in [35]) is 

adapted. 

In case of singleton rule consequents (𝑐𝑘) the fuzzy rule 𝑅𝑘 has the following 

form: 

If 𝑥1 = 𝐴𝑘,1 And 𝑥2 = 𝐴𝑘,2 And … And 𝑥𝑚 = 𝐴𝑘,𝑚 Then 𝑦 = 𝑐𝑘 (3) 

Adapting the VE concept and the scaling function based similarity calculation to 

the Shepard operator based interpolation, the conclusion of the FRI can be 

obtained as: 

𝑦(𝑥) = {

𝑐𝑘 𝑖𝑓𝑥 = 𝑎𝑘  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘,

(∑
𝑐𝑘

𝛿𝑠,𝑘
𝜆

𝑟
𝑘=1 ) (∑

1

𝛿𝑠,𝑘
𝜆

𝑟
𝑘=1 ) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (4) 

where 𝛿𝑠,𝑘 are normalized scaled distances: 

𝛿𝑠,𝑘 = 𝛿𝑠(𝑎𝑘, 𝑥) = √∑ (𝑐𝑠𝑖(𝑥i) − 𝑐𝑠𝑖(𝑎𝑘,𝑖))
2

𝑚
𝑖=1 𝑚⁄  (5) 

𝑐𝑠𝑖(𝑥𝑖) is the normalized cumulative scaling function (see e.g. on Fig. 4) of 𝑠𝑖: 

𝑐𝑠𝑖(𝑥𝑖) = ∫ 𝑠𝑖(𝑥𝑖)𝑑𝑥𝑖
𝑥𝑖

0
∫ 𝑠𝑖(𝑥𝑖)𝑑𝑥𝑖

1

0
⁄  (6) 

and 𝑠𝑖 is the 𝑖th
 scaling function of the 𝑚 dimensional antecedent universe, 𝑥 is the 

𝑚 dimensional crisp observation and 𝑎𝑘 are the cores of the 𝑚 dimensional fuzzy 

rule antecedents 𝐴𝑘. 

According to Eq. 4 the proposed interpolation method calculates the conclusions 

in the following steps. 

1) Determine the normalized Euclidean distances of the observations from 

the rules on all the antecedent universes according to Eq. 5. 

2) The rule weights are calculated as the reciprocal value of the distances 

corrected by the Shepard power 𝑝. 

3) The consequent of the rule-base is calculated as the convex combination 

of the rule consequences weighted by the rule weights according to Eq. 4. 

Considering the implemented fuzzy state machine model to be a discrete time 

system, the connections between the decomposed state-transition rule-bases (see 

Fig. 2) can serve as the time delays (Z
-1

) temporarily storing the state variables. 

This case the fuzzy state machine can be defined as a recurrent network of 

multiple input single output state-transition rule-bases (see e.g. on Fig. 5), where 

the state variables are the values of the connections between them. On Fig. 5 the 

OBS prefix denotes observations and the RB denotes rule-bases. The number of 

the input is equivalent with the number of incoming edges. 
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Figure 5 

Example of a behavior description with recurrent connections  

(OBS denotes observations, RB denotes rule-bases) 

4 Behavior Fusion 

Comparing the suggested FRI BBS structure (see Fig. 1) with the FRI state 

machine (see Fig. 2), the network of the Behavior Components and the Behavior 

Fusion is corresponding to the Output mapping of the Fuzzy Automaton. 

A behavior component could be a reactive (stateless) function, e.g. an FRI rule-

based system, or a compound FRI BBS. The problematic part is the Behavior 

Fusion. The function of the behavior fusion could be a convex combination of the 

behavior component actions according to the corresponding component weights, 

but to be able to handle alternative, or contradictive behavior component actions, 

it should be a FRI rule-based system again. 

For simplifying the fusion, the continuous conclusions of the behavior 

components, for the FRI BBS, the application of a special fuzzy rule format is 

suggested. The basic rule structure is similar to the rule format applied in the 

Takagi-Sugeno fuzzy inference (Sugeno [16], Takagi-Sugeno [17]). In Takagi-

Sugeno fuzzy inference, the consequent of a fuzzy rule is a function of the input 

variables. In the suggested FRI BBS, a rule of the Behavior Fusion rule-base has a 

consequence, which is a conclusion of another (behavior component) rule-base. 

This case the conclusions of the behavior component rule-bases are appearing as 

consequences of the behavior fusion rules. 

From the viewpoint of the FBDL these are fuzzy rules with variable rule 

consequents, where the variable could be an observation, or a conclusion of a rule-

base. The variable consequent fuzzy rule 𝑅𝑘 has the following suggested form: 

If 𝑥1 = 𝐴𝑘,1 And 𝑥2 = 𝐴𝑘,2 And … And 𝑥𝑚 = 𝐴𝑘,𝑚 Then 𝑦 = 𝑦𝑉𝑘
 (7) 

where 𝑦𝑉𝑘
= 𝑥𝑖 is an observation, or 𝑦𝑉𝑘

= 𝑦𝑅𝐵𝑖
 the conclusion of the i

th
 rule-base 

RBi. 
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5 The Syntax of the Behavior Description Language 

In this section the proposed behavior description language will be introduced. It is 

a declarative language which has a SQL-like syntax. (The assumption behind is 

that the verbosity of the language and the avoidance of special characters makes 

easier to learn its usage for non-technical users.) 

The formal specification of the language is provided by extended Backus-Naur 

form. By using its common notation, the following language definition has 

obtained. 

behavior ::= universe+ rulebase+ [init] 
universe ::= 'universe' string ['description' string] 
symbol+ 'end' 
symbol ::= string number number 
rulebase ::= 'rulebase' string ['description' string] rules 
'end' 
rules ::= rule+ 
rule ::= 'rule' ['description' string] ['use'] string 
['when' predicates] 'end' 
predicates ::= predicate ('and' predicate)* 
predicate ::= string 'is' string 
init ::= 'init' ['description' string] (string (string | 
number))+ 'end' 

In this formalism the string as a terminal symbol is a string literal with quotas, 

for example string literal example. The number is also a literal, which 

describes a floating point value, for instance 12.34. 

The behavior description is a behavior non-terminal symbol. It contains at least 

one universe definition and a rule-base definition. After them, the expert can 

define an initialization block, where the initial state of the state machine can be 

set. 

The definition of the universe uses the universe keyword. It followed by the 

name of the universe. Its name must be unique in a behavior description. The 

definition (similarly to the rulebase, rule and init definition) can be contains 

an optional description. It is introduced by the description keyword. 

The symbol is a named point in the enclosing universe. The expert defines all of 

the language variables in this way. The symbol name is followed by the associated 

points of the antecedent and consequent side. 

As an example, let define a universe called distance: 

universe "distance" 
description "The distance from the target." 
    "close" 0 0 
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    "middle" 10 0.8 
    "far" 50 1 
end 

As it can be seen in the description part of the definition block, the purpose of this 

universe is to represent the distance from a target position. There are three 

symbols: close, middle and far in the defined universe. The measurement unit of 

the distance is not necessary for the universe. According to the definition, the 0 

distance is close, the 10 unit distance, is considered as middle and 50 units is seen 

as far. The second parameters after the symbol names are required for scaling. It 

means that the distance on interval [0, 10] changes quickly, while there is only a 

slight difference on the interval [10, 50]. 

For defining rules, it is necessary to define a further universe: 

universe "tiredness" 
description "The measure of tiredness." 
    "low" 0 0 
    "small" 0.3 0.5  
    "middle" 0.7 0.5 
    "high" 1 1 
end 

The universes of distance and tiredness are sufficient for the antecedent space. For 

the output side let define the universe approach: 

universe "approach" 
description "The speed how the agent approaching the 
target." 
    "low" 0 0 
    "high" 1 1 
end 

At this point there are two universes: one for the observations and one for the 

consequence. The rule-bases defines the connection between the inputs and the 

output of the defined behavior. The rule-base encloses its rules. The general form 

of a rule-base is the following: 

rule <consequent-name> when <predicates> end 

The name of the consequent must match with the name of the universe. Let 

assume that we would like to define the behavior which fulfils the following rules: 

1) The agent approaches the target, when the target is close and the agent is 

not tired. 

2) The agent does not approach the target, when the target is far. 

3) The agent does not approach the target, when the agent is tired. 
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These rules can be formalized via the proposed description language by the 

following way: 

rulebase "approach" 
    rule "high" when 
        "distance" is "close" and "tiredness" is "low" 
    end 
    rule "low" when 
        "distance" is "far" 
    end 
    rule "low" when 
        "tiredness" is "high" 
    end 
end 

5.1 Variable Valued Consequent 

The language makes possible to use a recently calculated variable value as a 

consequent instead of a symbol of the universe. It is notated by the use keyword 

and the rule-base name which represents the variable, for example: 

rulebase "first" ... end 
 
rulebase "second" ... end 
 
rulebase "output" 
    rule use "first" when "need_first" is "true" end 
    rule use "second" when "need_first" is "false" end 
end 

In the suggested FRI BBS, the variable valued consequents are the tools of the 

behavior fusion. The behavior component rule-bases are calculating the 

conclusions of the behavior components as variables. Then a rule-base with the 

corresponding variable valued consequents fuses them as behavior fusion. 

The variable valued consequent has improved the flexibility of the language 

significantly. In fact, it makes available the calculation of weighted summation of 

rule-base outputs, where the weights are also calculated according to the user 

defined rules. 

5.2 Initialization 

The behavior model is iterative; therefore it requires an initial state. The 

initialization is compulsory if the variable (a value of a rule-base conclusion) is 

used as an input. The observations are also needed to be initialized, but it must be 

done by the environment. For variable initialization the language uses the init 
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keyword. It contains a pair of variables (rule-base names) and values. It is possible 

to use both symbols and values for setting the initial values. 

init 
    "value" "low" 
    "result" 20 
end 

The integrity of the initial values are also checked. It means, that the following 

statements must be fulfilled: 

- All universe names must have corresponding universe definitions. 

- The symbol values of a given universe must be in the discourse bounds 

of the universe. 

- All input values must be defined. 

The initialization is an essential part of the behavior model. The initial values, as 

initial state is an integral part of the fuzzy state machine model. 

5.3 Evaluation of the Consequences 

If we consider our fuzzy state machine to be a connectionist structure, a rule-base 

is a node which represents a 𝑅𝑛 → 𝑅 function. 

At first the behavior engine must calculate the distance of the observations from 

the symbols on all the antecedent universes. Let see the following example: 

universe "distance" 
    "zero" 0 0 
    "close" 1 0.1 
    "far" 5 1 
    "max" 10 1 
end 

In this example the distance is given directly in meter. The consequent value is on 

the [0,1] interval. (The normalization on consequent side is optional but a good 

practice in most cases.) 

Above 5 meter the rule-base does not distinguish the values. All values are “far” 

up to 10 meter. 

Let see the following rule-base: 

rulebase "speed" 
    rule "high" when "distance" is "far" and "curiosity" is 
"high" end 
    rule "low" when "distance" is "close" end 
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    rule "low" when "curiosity" is "low" end 
end 

where the appropriate universes are: 

universe "curiosity" 
    "low" 0 0 
    "high" 1 1 
end 
 
universe "speed" 
    "low" 0 0 
    "high" 1 100 
end 

It is necessary to initialize the observations and calculate the distance of the 

observations from the symbols on all the antecedent universes. For instance, the 

values are initialized as the followings: 

init 
    "distance" 3 
    "curiosity" 0.4 
end 

Consider the first rule and calculate the distance of 3 from “far” on the “distance” 

universe. The distance is determined from the difference of the cumulative scaling 

function values of the two points. 

The value of the cumulative scaling function at 3 is 0.55, at “far” is 1, therefore 

their cumulative scaled distance is 0.45 (see Fig. 6). Similarly we can calculate 

the distance of 0.4 and “high” on “curiosity” interval. The result is 0.6. 

 

Figure 6 

The non-linear scaling of the “distance” universe 

The distance of the rule is given by the Euclidean norm of the distances by 

dimensions divided by the square of the number of antecedents. (It is necessary 
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because this way the distance is on [0,1] is independent from the scaling of the 

universe.) The rule distance for the first rule is calculated as: 

𝑑𝑟𝑢𝑙𝑒1 =
√0.452+0.62

√2
≈ 0.5303 (8) 

Similarly, the engine calculates the distance of the second and the third rule: 

𝑑𝑟𝑢𝑙𝑒2 =
√0.452

√2
≈ 0.3182, 𝑑𝑟𝑢𝑙𝑒3 =

√0.42

√2
≈ 0.2828 (9) 

If there is a 0 distance from some rules, then the consequent is calculated as the 

mean value of the corresponding consequent symbol values, or variable values. 

The weights are the reciprocals of the distances on the 𝑝 Shepard-power, 𝑤𝑖 =
1

𝑑
𝑖
𝑝 

If 𝑝 = 1 then the weights of the rules are: 

𝑤 = [1.8856,3.1427,3.5355] (10) 

The consequent values of the rules are: 

𝑐 = [1,0,0] (11) 

The consequence can be obtained as the sum of rule consequents weighted by the 

rule weights: 

𝐶 =
∑ 𝑤𝑖𝑖 ⋅𝑐𝑖

∑ 𝑤𝑖𝑖
≈

1.8856

8.5638
≈ 0.2202 (12) 

The consequent value of the “speed” rule-base is approximately 22.0183. 

6 Dominancy 

In many cases the domain expert’s heuristically descriptive verbal model can be 

incomplete, or can contain some expert domain specific implicit knowledge. This 

domain specific implicit knowledge is inherently missing from the verbal 

description, e.g. as “well-known” facts, supposing that these are already known 

(explicitly given earlier). 

On the other hand, having a rule-based knowledge representation, the lack of 

information means some missing cardinal rules from the rule-base. Let see a 

simple example. We want to describe the connection between the distance and the 

interest. We give a single expert’s rule, that the interest is high when the distance 

is close. This case the natural assumption is that the interest is low when the 

distance is far. However, this assumption is not explicitly stated as a rule. It can be 

deduced, as a straightforward fact, only in the case, if we take into consideration, 

the domain knowledge. Otherwise, this rule is meaningless. But the rule-base is 

formally incomplete, because we do not say anything what should happen, when 
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the distance is far. Hence the previously considered model with one rule results 

high interest value independently from the distance. The FRI (fuzzy interpolation 

based) behavior model designed for handling undefined situation only in case if it 

can be deduced from the existing knowledge. A single rule means that only one 

output value is given, therefore it should be chosen independently from the input 

value. The other example is a kind of contradiction because of the unequal 

priorities of the rules. The first rule is “Stay home”, the second is “Go to the 

garden if the sunshine is moderate”. This case the “Stay home” is a kind of 

“default” rule requesting staying home if nothing special is happening. The second 

rule has more specialty (priority), requesting “Go to the garden” in a special case 

of “the sunshine is moderate”. These two rules have contradictive conclusions in 

the case if “the sunshine is moderate”. One solution could be the extension of the 

contradictive rules to make them to be the same specialty e.g. “Stay home if the 

sunshine is not moderate”. On the other hand, this solution could be problematic, 

if the linguistic term “not moderate” is not defined (or it is impossible to define). 

As a possible heuristic to solve the above problems, we suggest the concept of rule 

dominancy. The suggested rule dominancy heuristic is implemented as an 

extension of the FBDL, which enables the expression of rule relations in the form 

of rule dominancy. 

6.1 Dominancy of the Rules 

The suggested language extension provides elements for expressing hierarchical 

relation between rule-bases and between rules. We can express hierarchical rule 

relation without language extension, only by modifying the suppressed rule 

antecedents in the FBDL, but usually this is a tedious task. The suggested 

language extension automatizes this burden. Instead of try to cover the antecedent 

space by hand written rules, we can save this task by defining dominancy on the 

rule level. For supporting this, the grammar is slightly modified in the following 

way: 

rules ::= rule+ ['dominates' rules 'end'] 

The dominancy means that the user can select dominant and dominated rules. The 

dominant rule consequent suppresses the conclusion of the dominated rules 

according to the fulfilment of the dominant rule antecedent. The consequent of the 

dominated rule is viable in a high level only when the fulfilment of the dominant 

rule antecedent is low. The dominancy can be applied in a hierarchical manner. 
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Figure 7 

The semantical hierarchy of dominated rules 

Let see the following example for multilevel dominancies: 

rulebase "sample" 
description "rule-base dominancy with examples" 
   rule 
      "low" when "stay_at_home" is "high" 
   end 
   dominates 
      rule  
         "high" when "playmates_exist" is "true" 
      end 
      dominates 
         rule # Default rule 
            "low" 
         end 
      end 
   end 
end 

The dominancy also gives sense for defining default rules (see e.g. last rule of the 

rule-base “sample” above). It has no antecedent part; its conclusion is always 

selected. Having a default rule dominated by the others, all the undefined 

situations are automatically covered. 
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7 Sample Behavior 

The following behavior shows a complete example of the previously mentioned 

features. 

The model describes a one dimensional world, where an agent can walk between 

the target and the rest position. The target can make noise. The agent can move 

forward (to the target) and backward (to the rest position). The interest is the 

internal state of the agent. When the target makes noise, the agent interest is 

increasing. While the agent stays near the target, the interest value is decreasing. 

The measure of approaching mood to the target is also depending on the distance 

from the target. If the level of tiredness is high, the agent goes to the rest position. 

The FBDL language definition of this sample behavior is the following. 

universe "has_noise" 
description "Has the target noise?" 
    "false" 0 0 
    "true" 1 1 
end 
 
universe "distance" 
description "The distance from the target." 
    "close" 0 0 
    "far" 1 1 
end 
 
universe "tiredness" 
description "The measure of tiredness." 
    "low" 0 0 
    "high" 1 1 
end 
 
universe "speed" 
description "The speed of the agent." 
    "forward" 1 1 
    "stop" 0 0 
    "backward" -1 -1 
end 
 
universe "approach" 
description "The speed how the agent approaching the 
target." 
    "low" 0 0 
    "high" 1 1 
end 
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universe "go_to_rest" 
description "The speed how the agent go to the rest 
position." 
    "low" 0 0 
    "high" -1 -1 
end 
 
universe "interest" 
description "The measure how the agent interested about the 
target." 
    "low" 0 0 
    "high" 1 1 
end 
 
rulebase "interest" 
description "The agent is interested when the target has 
noise." 
    rule "high" when "has_noise" is "true" end 
    rule "high" when "interest" is "high" end 
    rule "low" when "distance" is "close" end 
    dominates 
        rule "low" end 
    end 
end 
 
rulebase "approach" 
description "Approach when there is a closer interesting 
target." 
    rule "high" when "distance" is "far" end 
    dominates 
        rule "low" end 
    end 
end 
 
rulebase "go_to_rest" 
description "Go to rest position when the target is tired." 
    rule "high" when "tiredness" is "high" end 
    dominates 
        rule "low" end 
    end 
end 
 
rulebase "speed" 
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description "The speed fusioned from approach and go_to_rest 
values." 
    rule use "approach" when "interest" is "high" end 
    rule use "go_to_rest" when "tiredness" is "high" end 
    dominates 
        rule "stop" end 
    end 
end 

 

Figure 8 

The behavior description of the agent 

The behavior description can be checked by testing the following scenario in the 

simulation framework [31]: 

1) Move the agent to the rest position by setting the distance value to 1. 

2) Make noise by setting the has_noise observation to 1 and after back to 0. 

As a result, the interest value remains high, however the noise already 

stopped. 

3) The agent speed is 1 which means that the agent wants to go to the target. 

Simulate the motion by setting the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 value to 0. At that point the 

interest level has decreased and the speed is near 0. 

4) Set the tiredness to 0.5 - The agent now wants to move to the rest 

position. Start to increase the distance value, supposing the agent is 

moving away from the target. Near 0.55 the agent stops, because the 

interest level and the tiredness are close to each other. 

5) Set the tiredness value to 0.8 - The 𝑠𝑝𝑒𝑒𝑑 value becomes negative, 

therefore the agent wants to go to the rest position. By increasing the 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 further, the direction of speed remains, which means that the 

agent goes back to the rest position. 
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8 JavaScript Library and Framework 

According to the suggested concept, the FBDL code is “running”, as a parameter 

configuration, directly on a FRI state machine called “FRI Behavior Engine”. In 

the current implementation, the FRI Behavior Engine was written in JavaScript. 

The instantiated FRI Behavior Engine loads and interprets the FBDL code and 

according to the fetched parameters provides interface for accessing its functions. 

For the implementation of the FRI Behavior Engine the JavaScript version was 

chosen. It makes testing easier and can run in a browser without installation. 

Moreover, it can be easily embedded to an online simulation environment too. 

The FBDL web page, the FBDL library, the online FBDL simulator and their 

sources are available at [31]. 

The behavior engine is a software component which is able to evaluate the inputs 

based on the defined rules and calculates the internal state and the output, which 

will be available via its interface. 

The engine instance can be applied according to the following sample: 

engine.set("observation", 10); 
engine.step(); 
var distance = engine.get("result"); 

The set method in the first line sets the observation value to 10. After, the step 

method calculates the new state. The variable values in the new state are 

accessible via the get method. 

Conclusion and Future Work 

The suggested Fuzzy Behavior Description Language (FBDL) is an easy-to-learn 

declarative language for non-programmer users, to define Fuzzy Rule 

Interpolation based Behavior-based System (FRI BBS) applications. Its inference 

model is based on the Fuzzy Rule Interpolation. Among the basic parameter and 

topology configuration the suggested FBDL also supports the concept of variable 

valued consequent and rule dominancy definitions. 

The FBDL describes a fuzzy state machine having a massively parallel structure. 

The rule-bases and even the rules of the rule-bases can be evaluated parallel 

independently from each other. This parallel structure can be implemented on a 

massively parallel architecture speeding up the evaluation time and supporting the 

implementation of more complex models. 

The FBDL is also serves embedded applications, where the FRI Behavior Engine 

is implemented on an embedded system. Instead of storage consuming look-up 

tables, or time consuming calculation of complex models, the FBDL and the FRI 

Behavior Engine can be an effective way for implementing complex behavior 

models. Moreover, the modification of the agent behavior can be simply achieved 

by modifying the FBDL description. 
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The proposed behavior description method, basically targets the non-programmer 

domain experts, where the definition of complex behaviors is a requirement from 

behavioral related studies or agent development reasons. The proposed Behavior 

Description Language and its Behavior Engine can be control physical and virtual 

robots, where there is a feedback from the environment and the actions are 

available. The FBDL description is in fact a special kind of configuration. It can 

be applied where the user has predefined inputs and outputs for the system. For 

instance, it is appropriate for the high level configuration, of IoT devices. The 

presented FBDL language can be regarded as a structured, semi-natural way of 

automatized robot control. 

Future research will focus on the complexity of the defined behaviors. There is an 

assumption that the quantitative metrics of the behavior description, shows a 

strong correlation with the complexity of the modeled behavior. Its validation 

requires more experimentation, within the various types of behaviors. 
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