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Abstract: We consider a fractional-order model of two asymmetrically coupled spiking 

neurons. The dynamical behavior of the two neurons is modeled by the fractional-order 

Hodgkin-Huxley equations. Simulations of the model for distinct values of the order of the 

fractional derivative, α, and of the coupling constants, 𝑘1, 𝑘2, show interesting features, 

such as relaxation oscillations, mixed-mode oscillations, small oscillations, and localized 

solutions. Moreover, α adds extra complexity to the dynamics of the model. These 

differences may explain certain differences in processing similar tasks in the human brain. 
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1 Introduction 

In 1952, Hodgkin and Huxley [1] conducted experiments, in the squid axon, 

aimed at a better understanding of the mechanisms and rules governing the flow of 

the electric current in a nerve cell, during an action potential. The derived 

equations, known as the Hodgkin-Huxley (HH) equations, have had a decisive 

influence on the understanding of the neuronal function since then [2], [3], [4], 

[5]. Phenomena such as in-phase synchronization, anti-phase synchronization, 

bursting, localization, small oscillations, mixed-mode oscillations, have been 

modeled by the HH equations. 

Synchronization is observed in specific areas of the brain in patients suffering 

from epilepsy and Parkinson’s disease [6]. On the other hand, tasks such as 

processing sensory information, only occur in synchronized neurons. Localized 

solutions in oscillatory systems are associated with a partition of the oscillators in 

two distinct sets. One set is described by oscillators with high amplitudes and the 

other by oscillators with small amplitudes [7]. These types of patterns may be 

good approximations for the dynamics of working memory, in a biologically 

reasonable parameter region [8]. Relaxation oscillations are solutions defined by 
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long periods of quasi-static behavior interspersed with short periods of rapid 

transition. They are analyzed in the context of the canard phenomenon [9]. A 

solution showing a combination of traits of relaxation oscillations and small 

oscillations is defined as a mixed mode oscillation. The later may also be 

generated by the canard mechanism. 

In [2] the authors simulate an integer-order asymmetrically coupled system of two 

HH equations. They find localized solutions, small oscillations, relaxation 

oscillations, and mixed-mode oscillations, for certain values of the coupling 

constants. Localized solutions are seen for negative values of the two coupling 

constants and when the ratio 
𝑘1

𝑘2
  between the two constants is far from to -1. 

Relaxation oscillations occur when this ratio is close to -1, and mixed mode 

oscillations are the states in between. 

Keeping the aforementioned ideas in mind, in this paper, we propose a fractional 

order model for the dynamics of two asymmetrically coupled HH equations, for 

variation of the order of the fractional derivative and various temperatures. We 

consider that the coupling is diffusive and is only done in the voltage term. This is, 

to our best knowledge, not been the issue of any previous research. In Section 2, 

we introduce the FO model of asymmetrically coupled HH equations. In Section 3 

we show and discuss the outcomes of the simulations of the model. In the last 

section, we conclude our work. 

1.1 Non-Integer Order Differentiation 

Non-integer order, aka fractional order (FO), differentiation and integration are 

generalizations of the well-known differentiation and integration of integer order. 

FO systems have been widely applied, for a couple of decades now, to solve 

problems in engineering, biology, physics, to name a few [10, 11, 12, 13, 14]. 

There are several definitions of FO derivatives. The most commonly used are the 

Caputo, the Grünwald-Letnikov, and the Riemann-Liouville derivatives [10]. The 

GL derivative is given by the equation (1). 

𝐷𝑡
𝛼

𝑎
𝐺𝐿 𝑓(𝑡) = limℎ→0

1

ℎ𝛼
∑ (−1)𝑘

[
𝑡−𝑎

ℎ
]

0 (
𝛼
𝑘

) 𝑓(𝑡 − 𝑘ℎ), 𝑡 > 𝑎, 𝛼 > 0                          (1) 

In 2015, Caputo and Fabrizio (CF) [15] proposed a new definition for the 

fractional order derivative. The update with respect to previous definitions is the 

new non-singular kernel operator. This novel derivative has been used in 

groundwater and thermal problems. Moreover, Atangana et al. apply the CF 

derivative to find the solutions of the Fisher’s reaction-diffusion equation and of 

the Baggs-Freedman model [16, 17]. 
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2 The Fractional-Order Asymmetrically Coupled 

System of Two HH Equations 

The Hodgkin-Huxley equations (1) are a system of 4 × 4 ordinary differential 

equations (ODEs). They were derived by Hodgkin and Huxley in 1952 [1] to 

model the electrical behavior of the squid axon. The first equation refers to the 

trans-membrane potential dynamics, 𝑣(𝑡), for a single neuron, in response to an 

external stimulus 𝐼, and as a function of the ion currents. The ion currents are 

mostly three, one for the sodium (𝑁𝑎+), one for the potassium (𝐾+), and one for a 

leakage current, associated with other ions, where calcium is included. The ions’ 

conductance’s are described by the other three equations of the model. 

𝐶𝑚𝑑𝑣

𝑑𝑡
= 𝑓(𝑣, 𝑚, 𝑛, ℎ) − 𝐼   

𝑑𝑚

𝑑𝑡
= Φ(𝛼𝑚(𝑣)(1 − 𝑚) − 𝛽𝑚(𝑣)𝑚)                                                                    (2) 

𝑑𝑛

𝑑𝑡
= Φ(𝛼𝑛(𝑣)(1 − 𝑛) − 𝛽𝑛(𝑣)𝑛)  

𝑑ℎ

𝑑𝑡
= Φ(𝛼ℎ(𝑣)(1 − ℎ) − 𝛽ℎ(𝑣)ℎ)  

where 𝐶𝑚is the membrane capacitance, Φ = 3
T−6.3

10 , is the temperature 

compensating factor. The function f is defined as: 

𝑓(𝑣, 𝑚, 𝑛, ℎ) = −𝑔𝐿(𝑣 − 𝑉𝐿) − 𝑔𝑁𝑎𝑚3ℎ(𝑣 − 𝑉𝑁𝑎) − 𝑔𝐾𝑛4(𝑣 − 𝑉𝑘) 

The functions 𝛼𝑖(𝑣) and 𝛽𝑖(𝑣), 𝑖 = 𝑚, 𝑛, ℎ, are given in [1] as: 

𝛼𝑚(𝑣) = 𝜓 (
𝑣+25

10
),  𝛼𝑛(𝑣) = 0.1𝜓 (

𝑣+10

10
),  𝛼ℎ(𝑣) = 0.07𝜓 (

𝑣

20
) 

𝛽𝑚(𝑣) = 4𝑒(
𝑣

18
), 𝛽𝑛(𝑣) =

1

8
𝑒(

𝑣
80

) , 𝛽ℎ(𝑣) = (1 + 𝑒(
𝑣+30

10
))

(−1)

 

and 𝜓 = {
𝑥

𝑒𝑥−1
, 𝑥 ≠ 0

1, 𝑥 = 0
. 

The asymmetrically coupled system of two fractional-order HH equations is thus 

given by: 

𝐶𝑚𝑑𝛼𝑣1

𝑑𝑡𝛼 = 𝑓(𝑣1, 𝑚1, 𝑛1, ℎ1 ) − 𝐼 − 𝑘1(𝑣1 − 𝑣2)   

𝑑𝑚1

𝑑𝑡
= Φ(𝛼𝑚1

(𝑣1)(1 − 𝑚1) − 𝛽𝑚1
(𝑣1)𝑚1)                                                             

𝑑𝑛1

𝑑𝑡
= Φ(𝛼𝑛1

(𝑣1)(1 − 𝑛1) − 𝛽𝑛1
(𝑣1)𝑛1)  

𝑑ℎ1

𝑑𝑡
= Φ(𝛼ℎ1

(𝑣1)(1 − ℎ1) − 𝛽ℎ1
(𝑣1)ℎ1)  (3) 

𝐶𝑚𝑑𝛼𝑣2

𝑑𝑡𝛼 = 𝑓(𝑣2, 𝑚2, 𝑛2, ℎ2 ) − 𝐼 − 𝑘2(𝑣2 − 𝑣1)   
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𝑑𝑚2

𝑑𝑡
= Φ(𝛼𝑚2

(𝑣2)(1 − 𝑚2) − 𝛽𝑚2
(𝑣2)𝑚2)                                                             

𝑑𝑛2

𝑑𝑡
= Φ(𝛼𝑛2

(𝑣2)(1 − 𝑛2) − 𝛽𝑛2
(𝑣2)𝑛2)  

𝑑ℎ2

𝑑𝑡
= Φ(𝛼ℎ2

(𝑣2)(1 − ℎ2) − 𝛽ℎ2
(𝑣2)ℎ2) 

where 𝑘1, 𝑘2 are the coupling constants, and 𝛼 is the order of the fractional 

derivative. 

3 Numerical Simulations 

In this section we show simulations of the FO asymmetrically coupled HH 

equations model (4), for several values of the order of the fractional derivative, α, 

and distinct coupling constants, 𝑘1,  𝑘2. In Table 1, we list the values of the HH 

parameters fixed in the simulations. In Table 2, can be found the initial conditions 

and the values for the varied parameters. The symmetrically coupled FO HH 

equations model is studied in [18]. 

Table 1 

Values of the Hodgkin-Huxley parameters used in the simulations 

Parameters Values Units 

𝐶𝑚 1.0 𝜇𝐹/𝑐𝑚2 

𝑇 6.3, 16.0, 26.0 𝑜𝐶 

𝑉𝑁𝑎 −115.0 𝑚𝑉 

𝑉𝐾 12.0 𝑚𝑉 

𝑉𝐿 −10.599 𝑚𝑉 

𝑔𝑁𝑎 120.0 𝑚𝑆/𝑐𝑚2 

𝑔𝐾 36 𝑚𝑆/𝑐𝑚2 

𝑔𝐿 0.3 𝑚𝑆/𝑐𝑚2 

Table 2 

Initial conditions and parameter values used in the simulations 

Fig. Initial conditions 𝑻, 𝑰 𝒌𝟏,  𝒌𝟐  

1, 2, 3 (-22.18,0.43,0.65,0.07,  

-20.81,0.38,0.63,0.08) 

26𝑜𝐶, 155  −0.2, −2.01 

4, 5, 6 

 

7, 8, 9 

 

10, 11, 12 

(-10.67,0.17,0.56,0.17, 

-18.91,0.67,0.74,0.05) 

(-16.21,0.36,0.60,0.10,                                      

1.39,0.04,0.52,0.28) 

16𝑜𝐶, 60 

 

16𝑜𝐶, 60 

 

20𝑜𝐶, 155 

 

0.7, −1.1 

 

0.5, −1.1 

 

−0.1, −2.0 (-26.01,0.48,0.64,0.07, 

-7.43,0.12,0.63,0.10) 
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Figures 1-3 depict small oscillations of the FO coupled system (3), for  
𝑇 = 26.0, 𝐼 = 155, and  𝛼 = 1.0, 0.8, 0.4, respectively. One can observe a decrease 

in the amplitude of the periodic orbits with the order of the fractional derivative, α, 

and a slight increase in the spiking frequency. Faster transients are observed for 

smaller α. In Figures 4-6, we show relaxation oscillations of the model (3), for 

𝑇 = 16.0, 𝐼 = 60, and  𝛼 = 1.0, 0.8, 0.4, respectively. As α is decreased the 

spiking frequency of the two neurons increases. In Figures 7-8, we show mixed-

mode oscillations of the model (2), for 𝑇 = 16.0, 𝐼 = 60, and  𝛼 = 1.0, 0.8, 

respectively. Fixing all other parameters and decreasing only 𝛼 to 0.4, the mixed-

mode oscillations are lost, and a relaxation oscillation appears, see Figure 9. Thus, 

𝛼, causes a, non-expected, change in the behavior of the system (3). Localized 

solutions are shown in Figures 10-12, for 𝑇 = 20.0, 𝐼 = 155, and  𝛼 =
1.0, 0.8, 0.4, respectively. Moreover, we note a decrease in the amplitude and an 

increase in the spiking frequency of the neurons as α decreases from 1. 

As it can be observed from the numerical simulations, the asymmetrically coupled 

FO model of two HH equations has a rich dynamical behavior. Mixed-mode 

oscillations, relaxation oscillations, small oscillations, and localized solutions, are 

common in specific regions of the coupling constants. These regions agree with 

the results of paper [2], for most values of 𝛼. This means that localized solutions 

are seen for negative values of the two coupling constants and when the ratio 
𝑘1

𝑘2
  between the two constants is far from to -1. Relaxation oscillations occur when 

this ratio is close to -1, and mixed mode oscillations are the states in between. 

Nevertheless, the value of the fractional order derivative, α, adds extra complexity 

to the behavior of the model. We saw in Figure 9 an `expected’ mixed-mode 

oscillation tend towards a relaxation oscillation, when all other parameters 

`suggested’ a mixed-mode oscillation. This `complexity’ may be associated with 

differences in the human brain, when processing and storing information [8, 7], 

when responding to certain stimuli, amongst others. Further study is needed in 

order to infer the importance of the order of the fractional derivative in these 

models of spiking neurons. 
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Figure 1 

Small oscillations of the FO model (2) for T=26.0, I=155, and α=1.0 

 

 

Figure 2 

Small oscillations of the FO model (2) for T=26.0, I=155 and α=0.8 
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Figure 3 

Small oscillations of the FO model (2) for T=26.0, I=155, and α=0.4 

 

 

Figure 4 

Relaxation oscillations of the FO model (2) for T=16.0, I=60, and α=1.0 



C. M. A. Pinto Novel Results of Asymmetrically Coupled Fractional Neurons 

 – 184 – 

 

Figure 5 

Relaxation oscillations of the FO model (2) for T=16.0, I=60, and α=0.8 

 

 

Figure 6 

Relaxation oscillations of the FO model (2) for T=16.0, I=60, and α=0.4 
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Figure 7 

Mixed-mode oscillations of the FO model (2) for T=16.0, I=60, and α=1.0 

 

 

Figure 8 

Mixed-mode oscillations of the FO model (2) for T=16.0, I=60, and α=0.8 
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Figure 9 

Relaxation oscillations of the FO model (2) for T=16.0, I=60, and α=0.4 

 

 

Figure 10 

Localized solutions of the FO model (2) for T=20.0, I=155, and α=1.0 
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Figure 11 

Localized solutions of the FO model (2) for T=20.0, I=155, and α=0.8 

 

 

Figure 12 

Localized solutions of the FO model (2) for T=20.0, I=155, and α=0.4 
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Conclusions 

Herein we observed an asymmetrically coupled model of two FO HH equations. 

The model is rich in terms of diversity of dynamic patterns. One can distinguish 

mixed-mode oscillations, small oscillations, relaxation oscillations and localized 

solutions for certain parameters (coupling constants) regions. Moreover, the value 

of the order of the fractional derivative comprises more complexity to the coupled 

FO model. This may be used to explain differences in the human brain when 

storing and processing memories or when reacting to the same stimuli. More work 

is needed in order to fully understand the vast diversity of patterns in the model. 

Acknowledgement 

The author was partially supported by CMUP (UID/MAT/00144/2013), which is 

funded by FCT (Portugal) with national (MEC) and European structural funds 

(FEDER), under the partnership agreement PT2020 and by PAPRE-Programa de 

Apoio à Publicação em Revistas Científicas de Elevada Qualidade from 

Polytechnic Institute of Porto. 

References 

[1] Hodgkin, A. L., Huxley, A. F., A Quantitative Description of Membrane 

Current and Its Application to Conduction and Excitation in Nerve. In J 

Physiol (Lond), Vol. 117, 1952, pp. 500-544 

[2] M. Krupa and C. M. A. Pinto, Curious Phenomena in Two Coupled 

Neurons. In Proceedings of the 26
th

 IASTED International Conference on 

Modelling, Identification and Control, 2007, pp. 387-390 

[3] I. S. Labouriau and C. M. Alves-Pinto, Loss of Synchronization in Partially 

Coupled Hodgkin-Huxley Equations. In Bulletin of Mathematical Biology, 

Vol. 66, 2004, pp. 539-557 

[4] H. H. Sherief, A. M. A. El-Sayed, S. H. Behiry, W. E. Raslan, Using 

Fractional Derivatives to Generalize the Hodgkin–Huxley Model. In: 

Fractional Dynamics and Control, New York, NY: Springer New York, 

2012, pp. 275-282 

[5] A. M. Nagy and N. H. Sweilam, An Efficient Method for Solving 

Fractional Hodgkin–Huxley Model. In Physics Letters A, Vol. 378, 2014, 

pp. 1980-1984 

[6] J. Modolo, B. Bhattacharya, R. Edwards, J. Campagnaud, A. Legros, A. 

Beuter, Using a Virtual Cortical Module Implementing a Neural Field 

Model to Modulate Brain Rhythms in Parkinson’s Disease. In Frontiers of 

Neuroscience, Vol. 4, Article 45, 2010, p. 11 

[7] H. G. Rotstein, N. Kopell, A. M. Zhabotinsky, I. R. Epstein, A Canard 

Mechanism for Localization in Systems of Globally Coupled Oscillators. 

In: SIAM J. Appl. Math, Vol. 63(6), 2003, pp. 1998-2019 



Acta Polytechnica Hungarica Vol. 14, No. 1, 2017 

 – 189 – 

[8] C. P. Fall, T. J. Lewis, J. Rinzel, Background-Activity-Dependent 

Properties of a Network Model for Working Memory that Incorporates 

Cellular Bistability, In: Biol. Cybern., Vol. 93(2), 2005, pp. 109-118 

[9] Krupa M, Szmolyan P. Relaxation Oscillations and Canard Explosion. In: J 

Diff Equations, Vol. 174, 2001, pp. 312-368 

[10] A. A. Kilbas and H. M. Srivastava and J. J. Trujillo. Theory and 

Applications of Fractional Differential Equations 204, North-Holland 

Mathematics Studies, Elsevier, Amsterdam, 2006 

[11] F. Mainardi, Fractional Relaxation-Oscillation and Fractional Diffusion-

Wave Phenomena. In Chaos Solitons & Fractals, Vol. 7, 1996, pp. 1461-

1477 

[12] D. Baleanu, S. I. Muslih, Lagrangian Formulation of Classical Fields within 

Riemann–Liouville Fractional Derivatives In Phys. Scr., Vol. 72(2-3), 

2005, 119-121 

[13] R. De Keyser, C. I. Muresan, C. M. Ionescu, A Novel Auto-Tuning Method 

for Fractional Order PI/PD Controllers. In ISA Transactions, Vol. 62, 2016, 

pp. 268-275 

[14] C. M. A. Pinto, A. R. M. Carvalho, New Findings on the Dynamics of HIV 

and TB Coinfection Models. In Appl. Math. Comput., Vol. 242, 2014 36-46 

[15] M. Caputo, M. Fabrizio, A New Definition of Fractional Derivative without 

Singular Kernel, In Progr. Fract. Differ. Appl., Vol. 2, 2015, 73-85 

[16] A. Atangana, On the New Fractional Derivative and Application to 

Nonlinear Fisher’s Reaction–Diffusion Equation. In Appl. Math. Comput., 

Vol. 273,  2016, 948-956 

[17] A. Atangana, I. Koca, On the New Fractional Derivative and Application to 

Nonlinear Baggs and Freedman Model. In J. Nonlinear Sci. Appl., Vol. 9, 

2016, 2467-2480 

[18] C. M. A. Pinto, Coupled Fractional Spiking Neurons. In: Proceedings of 

2016 IEEE International Conference on Systems, Man, and Cybernetics, 

February 2017, 000487-000491 


