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Abstract: In the current study, we present a new approach to predict 30-day and 1-year mor-
tality of patients hospitalized with acute myocardial infarction. The dataset of this research
is originated from Hungarian Myocardial Infarction Registry, a full, real-world, unfiltered
database of myocardial infarctions from year 2014 to 2016 (n = 47,391). The new approach
is based on ensembling and uses the prediction capability of different (already ensembled,
in some cases) models like Random Forest, General Boosting Machine, Neural Network and
Generalized Linear Model. We previously presented more different modelling techniques with
the same target on the same dataset, and this new ensemble-based way of prediction proved
to be the best among all the others. By numbers, this means 0.856 ROC AUC (area under the
receiver operating characteristic curve) for the 30-day, and 0.839 ROC AUC for the 1-year
mortality, both measured on validation datasets. We came to the conclusion that the combi-
nation of machine learning algorithms and regression models results the best performance in
mortality prediction on the dataset of HUMIR.
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1 Introduction

In Heart Disease and Stroke Statistics, American Heart Association annually re-
ports, that approximately every 40 seconds, an American will have an myocardial
infarction (MI) - they did the same in the recent statistics titled 2022 Update [1].
The estimated annual incidence of MI is 605,000 new attacks and 200,000 recurrent
attacks, they reported. The overall prevalence for MI is 3.1% in US adults (>= 20
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years of age). Males have a higher prevalence of MI than females for all age groups
except 20 to 39 years of age. MI prevalence is 4.3% for males and 2.1% for females.

In addition, Heart disease (which can lead to myocardial infarction) is still at the
first position of the ten leading cause of death, followed by cancer, unintentional
injuries, chronic lower respiratory diseases, stroke and Alzheimer disease, respec-
tively.

In the area with numbers like these, mortality prediction can and should play a very
important role in the hand of physicians: with validated models, it becomes possible
to select patients with high-risk of death and use this information in the process of
treatment. Using new, real-life datasets to extract hidden information can lead to
more effective treatment and prevention.

Reliable, high-quality datasets are mandatory to build and train any type of predic-
tive model. Hungarian Myocardial Infarction Register (HUMIR) project was intro-
duced in 2010, initially collected AMI information from five districts of Budapest
and the county of Szabolcs-Szatmár-Bereg. In 2014, the Hungarian government
selected it as the official myocardial database and obligated all hospitals in the terri-
tory of Hungary to report all MI-cases to HUMIR. In the recent years, around 15,000
new patients got registered per year and until December 2022, the 94 participating
hospitals reported 157,724 cases in 142,439 patients.

The dataset of this research is originated from HUMIR, it is a full, real-world, unfil-
tered database of myocardial infarctions from year 2014 to 2016 (n = 47,391). The
features of the dataset consists of three attribute groups: General information about
the patient (Group 1), Previously reported diseases (Group 2) and Information about
the pre- and in-hospital treatment (Group 3). All relevant features of each group will
be discussed later in Section 3.

In previous researches we developed several machine-learning models based on De-
cision Tree, Neural Networks (NN), Logistic Regression, Random Forest (RF), and
Generalized Boosted Models algorithms to predict 30-day and 1-year mortality on
the same dataset. The results achieved with these methods were published in several
conferences and papers.

The aim of the current paper is to provide an ensemble-based modelling technique in
the field of mortality prediction which is trained on the introduced HUMIR-dataset
and combines the predictive power of the constituent learning algorithms. The idea
behind the approach that we are working on the same dataset both here and in related
researches is the following: we are trying to establish an order in the list of differ-
ent modelling techniques by keeping the dataset fixed and trying to maximize the
prediction capability of each of our models. Here, we present the details and results
of the ensemble-based technique, and, as a result, we can compare the prediction
power of the different learning algorithms.

The rest of the paper is organized as follows. In Section 2, we summarize our pre-
vious efforts with different modelling algorithms, and quote some related research
results from other authors. Section 3 discusses the tools and methods involved in the
current study, especially the background of ensemble modelling. Then, in Section
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4, we present the new results and compare them with all our formers’. Finally, we
conclude with a summary.

2 Related Work

2.1 Previous Results

In one of the previous works, we overviewed [2] the health care registries in Eu-
rope and found that although several databases store information about patients and
diseases, only a few exist that focus directly on myocardial events and treatments.
Three European projects were investigated: Myocardial Ischaemia National Audit
Project (MINAP) in England, Swedish Web-system for Enhancement and Devel-
opment of Evidence-based care in Heart disease Evaluated According to Recom-
mended Therapies (SWEDEHEART) in Sweden and National Registry of Acute
Myocardial Infarction in Switzerland (AMIS Plus) in Switzerland. Then, we stated
that from 2014 HUMIR operated as the official hungarian myocardial register, and
we examined the changes of completeness and validity of data stored in HUMIR.
Completeness was calculated with the official numbers of National Health Insur-
ance Fund of Hungary (the central official organ of health insurance, supervised by
the Government of Hungary; Hungarian acronym: OEP). As a result, by 2016, the
completeness reached around 84%. As the ensemble-based research is based on the
same dataset, this value of completeness applies to the current research as well.

After receiving the dataset from HUMIR, we compared the relative performance of
our three initial models, which were based on decision tree, neural network, and
logistic regression techniques [3]. Area under the receiver operating characteristic
curve (ROC AUC) was used in all cases for evaluating performance. For 30-day
mortality, we achieved an average of 0.788 for decision tree models, 0.837 for neu-
ral net models and 0.836 for regression models on training set (on validation sets:
0.774, 0.835 and 0.834, respectively). In the case of 1-year mortality, these aver-
ages were 0.754 for decision tree models, 0.8194 for neural net models and 0.8191
for regression models (on validation sets: 0.743, 0.8179 and 0.8176, respectively).
So, differences were non-significant between our neural network and regression, but
both signicantly outperformed our decision trees.

In the next study [4], we investigated if an order could be declared between different
tuning approaches on decision tree models. 1-year mortality was selected as target
variable and K-fold cross validation, repeated cross validation and bootstrap were
used to find the optimal parameters for each model on the dataset of HUMIR. The
differences were measured in 10 different cases with increasing, randomly selected
number (starting from n = 300, until n = 18,000) of records. It was found that a
relatively small difference exists, but K-fold cross validation proved to be the best
before repeated cross validation and bootstrap.

Then, we involved a new technique to the research: the predictive power of our
newly developed Random Forest models were compared with the result of our de-
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cision tree [5]. ROC AUC values of Random Forest models for predicting 30-day
mortality were 0.843 and 0.847 (training and validation set), while for the 1-year
models these were 0.835 and 0.836, respectively. These meant to be a significant
difference: Random Forest models were at least 5% better than the decision tree
models, but in some cases the improvement is above 9%. This amount of difference
between these two tree-based solution could lead to serious relevance in clinical
environment.

Generalized Boosted Model (GBM) was the next learning technique which we used
to train models [6]. The ROC AUC values of the new GBM-models for 30-day
mortality were 0.847 and 0.839 (training and validation set), while for the 1-year
models these were 0.828 and 0.821, respectively. The numbers represented a strong
and stable learner: the standard deviation of ROC AUC values between models of
different imputations were 0.0035 for the 30-day models, and 0.0038 for the 1-year
models, both calculated on the validation datasets.

The difference of predictive performance (measured in ROC AUC values) between
our RF and GBM models were between 0.5% and 0.9%, except in the case of 1-
year model on the validation dataset: it was 1.7% compared to the RF results. Our
conclusion said that GBM almost reached the performance of the RF models.

2.2 Ensembled Modelling

Ensembled modelling is one of the most promising area of machine learning-based
predicting. In different domains researchers try to combine the advantages of indi-
vidual classifiers to produce a strong learner. In the current subsection we summa-
rize the results of some of the most-related articles.

Latha et al. [14] used ensembled modelling on the Cleveland Heart Disease Database
to improve the accuracy of prediction of heart disease risk. They used weak clas-
sifiers like decision tree (C4.5), Bayesian network, Naïve Bayes, Random forest
and neural networks to combine them in different ensembled-based modelling tech-
niques like Boosting, Bagging, Stacking and Majority vote. This comparative ana-
lytical approach was done to determine how the ensemble technique can be applied
for improving prediction accuracy in heart disease. As a result, a comparison of
the various ensembling strategies revealed that the accuracy of the weak classifiers
could be increased by a maximum of 7.26%.

Austin el al. found [15] that improvements in the misclassification rate using boosted
classification trees were at best minor compared to when conventional classification
trees were used. They analysed short-term (30-day) mortality in two cohorts of
patients hospitalized with either acute myocardial infarction (N = 16,230) or con-
gestive heart failure (N = 15,848). They observed minor to modest improvements
to sensitivity, with only a negligible reduction in specificity.

In another study [16] on the same datasets, Austin el al. evaluated the improvement
that is achieved by using ensemble-based methods, including bootstrap aggregation
(bagging) of regression trees, random forests, and boosted regression trees. They
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found that ensemble methods offered substantial improvement in predicting car-
diovascular mortality compared to conventional regression trees; but conventional
logistic regression models that incorporated restricted cubic smoothing splines had
even better performance. An example of ROC AUC values from their study: on the
"EFFECT Follow-up" database, their models achieved the following results by ROC
AUC: regression tree: 0.767, bagged trees: 0.820, random forest: 0.843, Boosted
trees (depth four): 0.852, Logistic regression: 0.852, Logistic regression—Splines:
0.858, Logistic regression—GRACE score: 0.826.

A neural network ensemble method was proposed [17] by Das et al.. Three inde-
pendent neural networks models were used (Levenberg–Marquardt, scaled conju-
gate gradient and Pola–Ribiere conjugate gradient algorithms) as primary learners,
and the final, ensembling layer combined their results with averaging. The inves-
tigated database contained 303 complete samples. Although they didn’t published
the predictive performance of the individual models, the final model gained 89.01%
classification accuracy, 80.95% sensitivity and 95.91% specificity values on the val-
idation dataset.

Subramanian et al. were also focused on heart failure mortality and used partial
patient data from the dataset of Vesnarinone Evaluation of Survival Trial [18]. On
the data of 963 patients, they established three logistic regression models to predict
survival and an ensemble model learned by boosting. On of the major finding of the
study is that their ensemble model performed significantly better than the standard
approach of logistic regression. As authors discuss, the reason for this significant
increase in predictive accuracy is that "an ensemble of models adjusts better for the
biological variability inherent in clinical studies that are derived from patient data."

Although the previous examples were focusing on heart failure and mortality predic-
tion, researchers gain advantages of ensemble modelling in various fields: Bagging,
Random Forests and Extra Trees were used by [19] Petkovic et al. when they ad-
dressed the task of feature ranking for hierarchical multi-label classification. Extra
Tree is similar to RF, with two main differences: instead of using bootstrap replicas,
Extra Trees use the whole original sample; and the selection of cut points is random
and not an optimum split, like in RF [20]. Three feature ranking scores like Sym-
bolic, Genie3 and the Random Forest Score were investigated and authors found
the first two scores yield relevant feature ranking. In the domain of medical image
processing, Tóth et al. [21] described an efficient 3D visualization framework in
connection with an ensemble-based decision support system.

3 Materials and Methods

3.1 Fundamentals of Ensembled Modelling

Ensembled modelling as a strategy based on the idea that if we combine the predic-
tive performance of different classifiers, it can produce a stronger learner. Bagging
also known as Bootstrap aggregation, Boosting and Stacking are the main classes of
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ensemble learning methods.

1. In Bagging, from the original dataset new datasets (called bootstrap samples
or bootstrap replicates) are selected with replacement; we train the models on
each of them; and finally the outcome is calculated with averaging (in case of
regression) or majority vote (in case of classification).

2. In Boosting, simple, 2-3 level depth trees are used and we build the models
trying to predict based on the prediction error of the previous tree. The two
types are: ADA Boosting and Gradient Boosting.

3. In Stacking different types of individual machine learning models are applied
(1-st level learner) and trained on the same, original dataset, then we combine
the prediction results of them in an upper level (meta-learner or second-level
learner).

In the list of previously published models, our RF models is similar to Bagging
category (although there are some differences between RF and bagged models); and
our GBM models belong to Boosting category: we were using a given number of
decision tree to construct a final, better learner.

In this paper, we are focusing on Stacking, as we are using different types of first-
levels learners then we try to exploit the common predictive power of them in an
upper level.

The schematic overview of Stacking is depicted on Figure 1. As it shows, there can
be any number of 1st-level learners, they are trained on the full, original dataset and
produce their "local predictions". These different predictions serve as inputs for the
meta-learner who attempts to combine these predictions to have the best possible
final outcome. As can be seen, the 1-st level learners have to be fully trained and
the local predictions have to be made before the Meta-learner starts to operate.

In the current study, our 1-st level learners are RF, GBM and NN, while the Meta-
learner is Generalized Linear Model, so the ensembled model is a combination of
machine learning algorithms and regression models. The modelling structure of the
current research is explained and visualized in details in Chapter 3.4.

3.2 Patient Record

As we are working on the same dataset to have comparable results, the structure of
a patient record is the same as it was in our previous researches and consists of the
following groups and fields (the following categorisation is made by the authors of
this research to make referencing easier):

1. Group 1: General information about the patient (Event ID, Patient ID, If the
patient alives, Date of death, Gender, Date of birth, ZIP code)

2. Group 2: Previously reported diseases (Myocardial infarction, Heart fail-
ure, Hypertension, Stroke, Diabetes, Peripheral vascular disease, Hyperlipi-
daemia, Smoking)
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Figure 1
Schematic overview of Stacking

3. Group 3: Information about the pre- and in-hospital treatment (Prehospital
reanimation, Cardiogenic shock, Percutaneous Coronary Intervention, Level
of creatinine, Diagnosis, Treatment ID, Date of admission, Creatinine)

We had two fields without holding any relevant information in the given context:
Event ID, Patient ID, they were both eliminated. Level of creatinine was almost
an empty field (was filled only in 2.8% of the rows), so it was eliminated as well.
Finally, a total of 21 fields were involved as the features of our dataset.

3.2.1 Target Variables

As mortality usually examined in short and long run by physicians, our dependent
variables (target variables) were the 30-day and the 1-year mortality. Since these
values were not initially present in the dataset, the following simple technique was
used both here and in our previous works: they were calculated as the date range
between two of our fields, the date of hospital admission and the date of the death.

3.3 Missing Values and Imputation

The presence of missing values proved to be essential in our researches. These
values in percentage for each field are shown in Table 1 (table contains only the
attributes where at least one missing value is present):

To handle the issue with missing data, multiple imputation using Fully Conditional
Specification and Bayesian linear regression was applied with 5 imputations and 5
iterations, leaving the final, prepared dataset size at n = 47,391.

As a result, 5 different sub-datasets were created, and on each we performed the full
process of modelling for both the 30-day and 1-year mortality, as it can be seen in
the Modelling structure subsection.
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Table 1
Rates of missing values of attributes

Attribute name Missing value rate (%)
Hypertension 2.5

Myocardial infarction 4.3
Diabetes mellitus 4.4

Stroke 5.3
Prehospital reanimation 5.8

Creatinine 6.0
Heart failure 7.4

Cardiogenic shock 8.3
Peripheral vascular disease 9.9

Hyperlipidaemia 18.4
Smoking 39.4

3.4 Modelling Structure

After generating the imputations, training and validation sets were created on each
imputations with maintaining the original distribution of the target variables. The
trainings were used as the input data of the models (on these, the algorithm per-
formed boosting to find the optimal hyperparameters for the given model); while
the validation datasets were used to manually measure the prediction performance
in ROC AUC.

ROC AUC was applied to select the optimal parameters using the largest value.
For each parameter-combination, a bootstrap based validation with 10 resampling
iterations were used on the training set to obtain a reliable estimate of model perfor-
mance.

The Modelling structure can be visualized in three figures: on Figure 2, the full
modelling structure is visualized, while the next two figures focus on the separate
sections in a more detailed way.

Figure 3 depicts the first step: the connection between the original dataset, the im-
putations, the target variables and the models as inputs of the ensembled models.
It contains only one case (RF model) out of the three, but the same processes were
performed for GBM and NN as well.

After we finally had all the 5 (number of imputations) * 2 (number of target vari-
ables) * 3 (number of model types) = 30 models, we could go on with the ensem-
bling phase. Figure 4 depicts the connection between the initial models and the
ensembed ones.

3.5 Software Environment

As in the connected previous researches, we used R as an open-source software
environment for statistical computing and graphics [7].
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Figure 2
Modelling structure - Overview

Figure 3
Modelling structure - Step 1

For the three initial models the following packages were applied: randomForest
[8], GBM [9] and rms [10] (RF, GBM, LR, respectively), while the ensembling
methods were handled by caretEnsemble [11] package. For resampling and training
the models, we used Caret [12] package. To deal with missing data and imputation,
mice [13] package was used.
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Figure 4
Modelling structure - Step 2

3.6 Hardware Environment

During the investigation, we experienced that the usual hardware environment was
not suitable for Ensembled modelling on this size of dataset. Since with an av-
erage configuration (Intel Core i3 processor, 12 GB memory), the training times
were around 5 hours with neural networks, we chose Amazon Web Services with
EC2 instances with the following parameters: 16 vCPU, 70 ECU, 64 GB memory
(m5.4xlarge configuration). On this configuration, the average training time for a
given model was below 25 minutes.

This hardware configuration differs from the previously published RF and GBM
models’, but this fact doesn’t have any affect on the prediction power.

4 Results and Discussion

4.1 Prediction Capability

In Table 2 and Table 3 we summarized the ROC AUC values of the individual and
ensembled models for 30-day and 1-year mortality. All values were calculated on
the corresponding validation datasets.

Figure 5 depicts the performance of all the four models in a ROC curve while numer-
ical differences between the methods with 99.2% confidence intervals are shown on
Figure 6, both for a randomly selected case (30-day mortality as target variable and
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Table 2
ROC AUC values of the 30-days models, validation set.

Imp. #1 Imp. #2 Imp. #3 Imp. #4 Imp. #5 Avg
GBM 0.8411 0.8381 0.8375 0.8443 0.8346 0.8391

RF 0.8499 0.8472 0.8416 0.8528 0.8436 0.8470
NN 0.8358 0.8334 0.8353 0.8398 0.8326 0.8354

Ensembled 0.8592 0.8542 0.8517 0.8602 0.8522 0.8555

Table 3
ROC AUC values of the 1-year models, validation set.

Imp. #1 Imp. #2 Imp. #3 Imp. #4 Imp. #5 Avg
GBM 0.8169 0.8202 0.8251 0.8178 0.8246 0.8209

RF 0.8323 0.8332 0.8392 0.8312 0.8384 0.8349
NN 0.8134 0.8166 0.8234 0.8140 0.8224 0.8180

Ensembled 0.8358 0.8371 0.8439 0.8349 0.8432 0.8390

the first imputation was selected). Table 4 reports the standard deviation between
the ROC AUC values of the separate models trained on the different imputations.

Figure 5
Performance of our Neural Network, Random Forest, Generalized Boosted and Ensembled models.

Target: 30-day mortality, dataset: Imputation #1, validation set.
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Figure 6
Numerical differences between our Neural Network, Random Forest, Generalized Boosted and

Ensembled models. Target: 30-day mortality, dataset: Imputation #1, validation set.

Table 4
Standard deviation of the ROC AUC values of imputations per model type and target variable.

GBM RF NN Ensembled
30-day models 0.0037 0.0045 0.0028 0.0040
1-year models 0.0038 0.0037 0.0047 0.0043

4.2 Variable Importance

Variable importance, in general, refers to a measure of how much a model uses a
given variable to make accurate predictions. In this subsection, we are dealing with
the variable importance values for each individual and the ensembled model.

Since the definitions and the methods of calculating the variable importance in sep-
arate model types differ, instead of listing the exact feature importance values for
each model type, we deal with relative importance: the position of the given feature
on the list of the most important fields. With using relative importance it becomes
possible to compare the most important features of different models types, i.e. we
can make a global order between the variables over the different models.

As we used multiple imputations, we aggregated variable importance values in the
imputations: summed up all the relative importance values for each field for a given
target variable and for a given model type, then divide this value by the number
of imputations. The resulted value represents the relative importance of the given

– 136 –



Acta Polytechnica Hungarica Vol. 20, No. 4, 2023

feature, and in this number, all the imputations added their effects.

The aggregated and relative values of feature importance in descending order for the
30-day models are the following:

1. GBM: Cardiogenic shock (36.3), Age (21.1), Abnormal level of creatinine
(10.4), Percutaneous Coronary Intervention (6.7), Prehospital reanimation
(6.6)

2. Random Forest: Age (31.1), Cardiogenic shock (14.2), Smoking = never
(13.5), Smoking = quit (13.3), Hyperlipidaemia (6.6)

3. Neural net: Age (19.8), Cardiogenic shock (15.2), Percutaneous Coronary
Intervention (9.6), Abnormal level of creatinine (9.1), Prehospital reanimation
(7.4)

4. Ensembled: Age (26.1), Cardiogenic shock (15.7), Smoking = never (8.6),
Smoking = quit (8.4), Abnormal level of creatinine (7.4)

The aggregated and relative values of feature importance in descending order for the
1-year models are the following:

1. GBM: Age (34.1), Cardiogenic shock (16.9), Abnormal level of creatinine
(11.9), Percutaneous Coronary Intervention (10), Heart failure (7.8)

2. Random Forest: Age (36.6), Smoking = never (12.4), Smoking = quit (12),
Cardiogenic shock (8.2), Abnormal level of creatinine (6.5),

3. Neural net: Age (23.6), Cardiogenic shock (10.9), Percutaneous Coronary In-
tervention (10.7), Abnormal level of creatinine (9.1), Prehospital reanimation
(7)

4. Ensembled: Age (30.8), Cardiogenic shock (10.6), Abnormal level of creati-
nine (8.3), Percutaneous Coronary Intervention (7.3), Smoking = never (7.3),
Smoking = quit (8.4), Abnormal level of creatinine (7.4)

Conclusions

As can be seen in Section 4.1, for both target variables, the ensembling technique
proved to be the best among GBM, RF and NN models. In addition, it outperforms
not only the Decision Tree but the regression models published by the current au-
thors in previous papers and conferences.

In case of the 30-day models, the improvements were 1.64% 0.85% and 2.01%
(compared to GBM, RF and NN, respectively), while in case of the 1-year models,
these were 1.81%, 0.41% and 2.10% (compared to GBM, RF and NN, respectively),
all calculated and compared on the validation datasets.

Although the improvement is typically 1-2%, in the area of cardiovascular diseases,
this difference can play a significant role in the hand of physicians when they try to
select patients with high-risk of death.
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As mentioned in Section 3, in the data preparation process we applied multiple im-
putation using Fully Conditional Specification and Bayesian linear regression. We
can state, that the reported standard deviation between the imputations verifies the
operation of the imputations. At 5% significance level, the differences between
the results of the imputations were non-significant. To assess the differences, pair-
wise differences of performance measures were calculated and checked if they’re
equal with zero in expected value using a Welch corrected t-test with Bonferroni
adjustment for multiplicity. This means, that next to our RF and GBM models, the
Ensembled models also represent a stable learner.

Comparing the most important features from the view of Ensembled model, there
were two common items in the list of top 5 features between the ensembled and the
constituent models, namely Age and Cardiogenic shock; Abnormal level of creatinin
is present in GBM’s, NN’s and Ensembled’s list, while derived fields of Smoking
appear also in RF and Ensembled.

According to the general results of several papers, that an ensembled model can
boost up the predictive performance of the individual constituent models, we can
confirm this finding in the case of our models on the dataset of HUMIR. This result
is in line with referenced researches in Section 2. As a final conclusion, we have
found that the combination of machine learning algorithms and regression models
results the best performance in mortality prediction on the dataset of HUMIR.
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